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ABSTRACT

Ensuring that a predictor is not biased against a sensible feature is the key of Fairness
learning. Conversely, Global Sensitivity Analysis is used in numerous contexts to monitor
the influence of any feature on an output variable. We reconcile these two domains by
showing how Fairness can be seen as a special framework of Global Sensitivity Analysis
and how various usual indicators are common between these two fields. We also present
new Global Sensitivity Analysis indices, as well as rates of convergence, that are useful as
fairness proxies.

1 Introduction

Quantifying the influence of a variable on the outcome of an algorithm is an issue of high importance in order
to explain and understand decisions taken by machine learning models. In particular, it enables to detect
unwanted biases in the decisions that lead to unfair predictions. This problem has received a growing attention
over the last few years in the literature on fair learning for Artificial Intelligence. One of the main difficulty
lies in the definition of what is (un)fair and the choices to quantify it. A large number of measures have been
designed to assess algorithmic fairness, detecting whether a model depends on variables, called sensitive
variables, that convey an information that is irrelevant for the model, from a legal or a moral point of view.
We refer for instance to [13, 7, 31] and [11] and references therein for a presentation of different fairness
criteria. Most of these definitions stem back to ensuring the independence between a function of an algorithm
output and some sensitive feature that may lead to biased treatment. Hence, understanding and measuring the
relationships between a sensible feature S, which is typically included in X or highly correlated to it, and the
output of the algorithm f(X) that predicts a target Y , enables to detect unfair algorithmic treatments. Then,
ensuring that predictors are fair is achieved by controlling previous measures, as done in [29, 39, 19, 17, 11, 6].
If this notion has been extensively studied for classification, recent work tackle the regression case as in
[19, 24, 8] or [26].
Global Sensitivity Analysis (GSA) is used in numerous contexts for quantifying the influence of a set of
features on the outcome of a black-box algorithm. Various indicators, usually taking the form of indices
between 0 and 1, allow the understanding of how much a feature is important. Multiple set of indices have been
proposed over the years such as Sobol’ indices, Cramér-von-Mises indices, HSIC – see [23, 10, 22, 18, 16]
and references therein. The flexibility in the choice allows for deep understanding in the relationship between
a feature and the outcome of an algorithm. While a usual assumption in this field is to suppose the inputs to
be independent, some works [23, 28, 18] remove this assumption to go further in the understanding of the
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possible ways for a feature to be influential.
Hence GSA appears to provide a natural framework to understand the impact of sensitive features. This
point of view has been considered when using Shapley values in the context of fairness [21] and thus provide
local fairness by explainability. Hereafter we provide a full probabilistic framework to use GSA for fairness
quantification in machine learning.
Our contribution is two-fold. First, while GSA is usually concerned with independent inputs, we recall
extensions of Sobol’ indices to non-independent inputs introduced in [28] that offer ways to account for joint
contribution and correlations between variables while quantifying the influence of a feature. We propose an
extension of Cramér-von-Mises indices based on similar ideas. We also prove the asymptotic normality for
these extended Sobol’ indices to estimate them with a confidence interval. Then, we propose a consistent
probabilistic framework to apply GSA’s indices to quantify fairness. We illustrate the strength of this approach
by showing that it can model classical fairness criteria, causal-based fairness and new notions such as
intersectionality. This provides new conceptual and practical perspectives to fairness in Machine Learning.

The paper is organized as follows. We begin by reviewing existing works on Global Sensitivity Analysis
(Section 2). We give estimates for the extended Sobol’ and Cramér-von-Mises indices, along with respectively
asymptotic normality (Theorem 2.1). We then present a probabilistic framework for Fairness in which we
draw the link between fairness measures and GSA indices, along with applications to causal fairness and
intersectional fairness (Section 3).

2 Global Sensitivity Analysis

The use of complex computer models for the analysis of applications from science or real-life experiments is
by now the routine. The models often are expensive to run and it is important to know with as few runs as
possible the global influence of one or several inputs on the outcome of the system under study. When the
inputs or features are regarded as random elements, and the algorithm or computer code is seen as a black-box,
this problem is referred to as Global Sensitivity Analysis (GSA). Note that since we consider the algorithm
to be a black-box, we only need the association of an input and its output. This make it easy to derive the
influence of a feature for an algorithm for which we do not have access to new runs. We refer the interested
reader to [10] or [22] and references therein for a more complete overview of GSA.

The main objective of GSA is to monitor the influence of variables X1, · · · , Xp on an output variable, or
variable of interest, Y . For this, we compare, for a feature Xi and the output Y , the probability distribution
PXi,Y and the product probability distribution PXi

PY by using a measure of dissimilarity. If these two
probabilities are equal, the feature Xi has no influence on the output of the algorithm. Otherwise, the influence
should be quantifiable. For this, we have access to a wide range of indexes, generally tailored to be valued in
[0, 1] and sharing a similar property: the greater the index, the greater the influence of the feature over the
outcome. Historically, a variance-decomposition – or Hoeffding decomposition – is used of the output of the
black-box algorithm to have access to a second-order moment metric in the so-called Sobol’ method. However,
these methods were originally developed for independent features. For obvious reasons, this framework is
not adapted and has limitations in real-life cases. Additionally, Sobol’ methods are intrinsically restrained
by the variance-decomposition and others methods have been proposed. We will present two alternatives for
Sobol’ indices. The first one solves the issue of non-independent features. The second one circumvents the
limitations of working with variance-decomposition. We finish this section by merging these two alternatives,
inspired by the works of [1, 16] and [5].

2.1 Sobol’ indices

A popular and useful tool to quantify the influence of a feature on the output of an algorithm are the Sobol’
indices. Initially introduced in [36], these indices compare, thanks to the Hoeffding decomposition [37], the
conditional variance of the output knowing some of the input variables with respect to the overall total variance
of the output. Such indices have been extensively studied for computer code experiments.

Suppose that we have the relation Y = f(X) = f(X1, · · · , Xp) where Y is an unidimensionnal square-
integrable output, f an algorithm considered as a black-box and X1, · · · , Xp inputs, with p the number of
parameters. We denote by pX the distribution of X. For now, we suppose the different inputs to be independent,
meaning that pX = ⊗p

k=1pXk
. Then, we can use the Hoeffding decomposition [37] on Y – sometimes also

called ANOVA-decomposition – so that we may write

f(X) =
∑

s⊆J1,pK

fs(Xs), (1)
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where fs are square-integrable functions and Xs the set {Xi, i ∈ s}. We can either assume that f is centered
or that s can be the null set in this sum: it does not change anything since we are interested in the variance
afterwards. We will consider V = Var(Y ) and Vs = Var(fs(Xs)). Note that the elements of the previous sum
are orthogonal in the L2(pX) sense. So, to compute the variance, we can compute it term by term, and obtain

V =

p∑
k=1

Vk +

p∑
k2>k1

Vk1,k2
+ · · ·+ V1,··· ,p. (2)

This equation means that the total variance of the output, which is denoted by V , can be split into various
components that can be readily interpreted. For instance, V1 represents the variance of the output Y that is
only due to the variable X1 – that is, how much Y will change if we take different values for X1. Similarly,
V1,2 represents the variance of the output Y that is only due to the combined effect of the variables X1 and X2

once the main effects of each variable has been removed – that is, how much Y will change if we take different
values simultaneously for X1 and X2 and remove the changes due to main effects from X1 only or X2 only.

By dividing the Vk by V , we get the expression of the so-called Sobol’ sensitivity indices. These indices
quantify the proportion of the output’s variance caused by the input Xk, jointly or not with other inputs.

2.2 Sobol’ indices for non-independent inputs

In the classic Sobol’ analysis, for an input Y , we have two indices that quantify the influence of the considered
feature on the output of the algorithm, namely the first order and total indices. When the inputs are not
independent, we need to duplicate each index in order to differentiate whether influences caused by correlations
between inputs are taken into account or not. Introduced in this framework by [28], we use the Lévy-Rosemblatt
theorem to create two mappings of interest. We denote by ∼ i every index other than i. We create a mapping
between p independent uniform random variables U and the variables X either by mapping pUi

1
pUi

∼1
to

pXipX∼i|Xi
or by mapping pUi+1

∼p
pUi+1

p
to pX∼ipXi . In the Annex A, more in-depth details are given. In the

analysis of the influence of an input Xi, the first mapping captures the intrinsic influence of other inputs while
the second mapping excludes these influences and shows the variations induced by Xi on its own. Each of
these two mappings leads to two indices corresponding to classical Sobol’ and Total Sobol’ indices. The
influence of every input Xi is therefore represented by four indices, see Table 1.

Hence, the four Sobol’ indices for each variable Xi, i ∈ J1, pK are defined as followed:

Sobi =
V [E[gi(U

i)|U i
1]]

V [gi(Ui)]
=
V [E[f(X)|Xi]]

V [f(X)]
(3)

SobTi =
E[V [gi(U

i)|U i
∼1]]

V [gi(Ui)]
=

E[V [f(X)|Zi]]

V [f(X)]
(4)

Sobindi =
V [E[gi+1(Ui+1)|U i+1

p ]]

V [gi+1(Ui+1)]
=
V [E[f(X)|Zi]]

V [f(X)]
(5)

SobT ind
i =

E[V [gi+1(Ui+1)|U i+1
∼p ]]

V [gi+1(Ui+1)]
=

E[V [f(X)|X∼i]]
V [f(X)]

, (6)

where the random variable Zi has the distribution pXi|X∼i
and is equal to F−1Xi|X∼i

(U i+1
p ).

Remark 1. If the features are independent, then for all i ∈ J1, · · · , pK, U i
1 = U i+1

p . This leads to the
equalities Sobindi = Sobi and SobT ind

i = SobTi.

These definitions can be extended to multidimensional variables and thus enabling to consider groups of inputs
by replacing the subset {i} by a subset s ⊂ {1, · · · , p} in the formulas.

Remark 2. Thanks to the law of total variance – see [28], various bounds and equality can be found between
indices, echoing the various properties previously described for Sobol’ indices with independent inputs. For
instance, for all i ∈ {1, · · · , p}, 0 ≤ Sobindi ≤ Sobi ≤ SobTi ≤ 1 and 0 ≤ Sobindi ≤ SobT ind

i ≤ SobTi ≤
1. Note that, in general, there are no inequalities between Sobi and SobT ind

i .

In order to better understand these indices, we present the three typical ways for a feature to modify the output
of an algorithm.
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Table 1: Sobol’ indices: what is taken into account and what is not.

SOBOL’ INDICES
CORRELATION

BETWEEN JOINED
VARIABLES CONTRIBUTIONS

Sobi 3 7
SobTi 3 3

Sobindi 7 7

SobT ind
i 7 3

1. Firstly, a variable can be of interest, all by itself, without any correlation or joint contribution with the
other variables. Consider for example the case where f(x) = x1 and x1 independent to the rest of
the variables. In this example, we would have Sob1 = SobT1 = Sobind1 = SobT ind

1 = 1.

2. Secondly, a variable can interact with other variables and influence the output only by its impact
on the law of the other variables. For example, consider (x1, x2) where x2 = αx1 + ε – where
ε is a centered white noise of variance σ2 – and f(x) = x2. Then we get Sob1 = SobT1 =
(α2V (x1))/(α2V (x1) + σ2) while Sobind1 = SobT ind

1 = 0.

3. Lastly, a variable can contribute to an output jointly with other variables. Take for instance the
case where (x1, x2) are independent and f(x) = x1 × x2. There, the distinction will be between
first-order and total indices.

These main differences point out why we need four indices in order to assess the sensitivity of a system to a
feature. Table 1 sums up which index takes correlation or joined contribution into account. The difference
between these different indices can be very informative. For example, if the gap between Sobi and SobTi or
between Sobindi and SobT ind

i is big, then the featureXi is mainly influential because of its joined contributions
with the other features on the output. Conversely, if the gap between Sobindi and Sobi or between SobT ind

i
and SobTi is big, a large part of the influence of the feature Xi will be through its intrinsic influence on other
features.

We provide Monte-Carlo estimation of the extended Sobol’ indices in the Annex B. These estimators are
consistent and converge to the quantities defined as the Sobol’ and independent Sobol’ indices earlier. Ad-
ditionally, if we write each of these estimates as An/Bn, we can use the Delta-method theorem to prove a
central limit theorem.

Theorem 2.1. Each index S in the equations (3) to (6) can be estimated by their empirical counter part Sn
such that:

(i) Sn
a.s−−→ S .

(ii)
√
n(Sn − S)

D−→ N (0, σ2), with σ2 depending on which index we study, see Annex B.

2.3 Cramér-von-Mises indices

Sobol’ indices are based on a decomposition of the variance, and therefore only quantify the second order
influence of the inputs. Many other criteria to compare the conditional distribution of the output knowing
some of the inputs to the distribution of the output have been proposed – by the means of divergences, or
measures of dissimilarity between distributions for example. We recall here the Cramér-von-Mises indices
[16], an answer to this issue that will be of use later in a fairness framework – see Section 3.

2.3.1 Classical Cramér-von-Mises indices

The Cramér-von-Mises indices are based on the whole distribution of Y . We denote by (Xi, i = 1, · · · , p) the
inputs and by (Xj , Y j), j = 1, · · · , n a n-sample of both inputs and outputs. They are defined (see [16]), for
every input i, as follow:

CVMi =

∫
R E
[
(µ(t)− µi(t))2

]
dµ(t)∫

R µ(t)(1− µ(t))dµ(t)
(7)
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where µ(t) = E [1Y≤t] is the cumulative distribution function of Y and µi its conditional version µi(t) =
E [1Y≤t|Xi].

This equation can be rewritten as

CVMi =

∫
Var(E [1Y≤t|Xi])dµ(t)∫

Var(1Y≤t)dµ(t)
. (8)

As before, these indices extend to the multivariate case. Simple estimators have been proposed [5, 16], and are
based on permutations and rankings. We will recall the estimation in a following section.

Remark 3. The Cramér-von-Mises index is an extension of the Sobol’ index to quantify more than just the
second-order influence of the inputs on the output.

If we recall the definition of the Sobol’ index Sobi, it is the ratio between the variance Var(E[Y |Xi]) explained
by the feature Xi and the total variance of the algorithm Var(Y ). However, as mentioned earlier, the issue with
this comparison of variances is that only second-order influence is quantified, which can be limiting. Some
way to capture more complex influences on the whole distribution is to work with level lines of Y , that is
to look at Sobi(1Y≤t) and to integrate on the whole range of admissible t. This lead to the definition of the
Cramér-von-Mises index defined in equation (8).

2.3.2 Extension of the Cramér-von-Mises indices

Classical Cramér-von-Mises indices suffer from the same limitation as Sobol’ indices as they are tailored for
independent inputs. A natural extension is to create new indices to handle the case of dependent inputs. We
propose an extension of the Cramér-von-Mises indices, inspired by the ideas of the extended Sobol’ indices
and by the works of [1]. This new set of indices will capture the influence of a feature independently of the
rest of the features.

Definition 2.1. For every input i, we define the independent Cramér-von-Mises indices as:

CVM ind
i =

∫
E(Var(1Y≤t|X∼i))dµ(t)∫

Var(1Y≤t)dµ(t)
(9)

This extension enables to compare the influence of a feature on the output of an algorithm without its
dependencies with other features.

Remark 4. This independent Cramér-von-Mises index can be seen as an extension of the SobT ind index.

This remark is similar to Remark 3. From the independent Total Sobol index shown in (6), by changing the
output function as a threshold of the real algorithm and taking the mean along all the possible thresholds, we
obtain the independent Cramér-von-Mises.

Estimation of these indices is given in Annex D.

3 Fairness

3.1 Sensitivity Index as Fairness measures

In this section, we provide a probabilistic framework to unify all the various Fairness definitions as Global
Sensitivity Indices. Several measures of fairness corresponding to different definitions of fairness have been
proposed in the machine learning literature. The Statistical Parity see for instance in [13], requires that the
algorithm f , predicting a target Y , has similar outputs for all the values of S in the sense that P(f(X) =
1|S) = P(f(X) = 1) for general S, continuous or discrete. Equality of odds looks for the independence
between the error of the algorithm and the protected variable, i.e fairness here implies that f(X) ⊥⊥ S|Y . This
condition is equivalent in the binary case to P(f(X) = 1|Y = i, S) = P(f(X) = 1|Y = i), for i = 0, 1.

Previous notions of fairness are quantified using a Fairness measure Λ and a function Φ(Y,X) such that
Λ(Φ(Y,X), S) = 0 in the case of perfect fairness while the constraint is relaxed into Λ(Φ(Y,X), S) ≤ ε , for
a small ε, leading to the notion of approximate fairness. The following theorem proves that GSA measures
as defined in 2 or described in [10, 22] are suitable indicators to quantify fairness as follows and that these
definitions can be extended to continuous predictors and continuous Y .

5
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Table 2: Common fairness definitions and associated GSA measures

FAIRNESS DEFINITION GSA MEASURE ASSOCIATED
STATISTICAL PARITY VAR(E[f(X)|S])→ SobS(f(X))

AVOIDING DISPARATE TREATMENT E[VAR(f(X)|X)]→ SobTS(f(X))
EQUALITY OF ODDS E[VAR(E[f(X)|S, Y ]|Y )]→ CVM ind(f(X), S|Y )

AVOIDING DISPARATE MISTREATMENT VAR(E[`(f(X), Y )|S])→ SobS(`(f(X), Y ))

Definition 3.1. Let Φ be a function of the features X and of Y . We define a GSA measure for a function Φ
and a random variable Z as a Γ(., .) such that Γ(Φ(Y,X), Z) is equal to 0 if Φ(Y,X) is independent of Z
and is equal to 1 if Φ(Y,X) is a function of Z.
Theorem 3.1. Let Φ be a function of the features and Γ be a GSA measure for Φ and S. Then, Γ induces a
Fairness measure defined as Λ(Φ(Y,X), S) = Γ(Φ(Y,X), S).

Among well known fairness measures, we point out that we immediately recover two main fairness measures
used in the fair learning literature. GSA fairness measures can be computed for different function Φ highlight
either the behaviour of the algorithm, Φ(Y,X) = f(X), or its performance, Φ(Y,X) = `(Y, f(X)) for a
given loss `.

• In the classification case, set Φ(Y,X) = 1f(X)=1. The GSA measure quantifies the influence of
a random variable on the predictions given by the function f . The disparate impact defined as
DI(f) = |P(f(X) = 1|S = 0)− P(f(X) = 1|S = 1)| used top measure fairness in this case can
be computed as DI(f) = Λ(Φ(Y, f(X))) with Λ(t, S) = |E[t|S = 0]− E[t|S = 1]|.

• A second possibility is to take Φ(Y,X) = `(f(X), Y ), with ` a chosen loss function. In this case, the
GSA measure will quantify the influence of the sensitive variable on the performance of the predictor.
Here Avoiding Disparate Mistreatment measured as ADM = |P(f(X) 6= Y |S = 1)− P(f(X) 6=
Y |S = 0)| is a GSA index by setting ADM = Λ(Φ(Y, f(X))) with Λ(x) = Λ(t, S) = |E[t|S =
0]− E[t|S = 1]| and Φ(Y,X) = 1f(X) 6=Y .

The following proposition provides a GSA formulation for most of classical fairness definitions using Sobol’
and Cramér-von-Mises indices.
Proposition 1 (Classical Fairness definitions and associated GSA measures). For any fairness definition of
Table 2, there exist a GSA measure Γ for a certain Φ and the sensible feature S such that a predictor is fair if
and only if Γ(Φ(Y,X, S), S) = 0.

In Table 2, we give the different indexes associated to classical studied fairness definitions, given for the
special case where S and the predictor are both binary.
Remark 5. Many fairness measures are defined using discrete or binary sensitive variable. The GSA
framework enables to handle continuous variables. Moreover using kernel methods, GSA indices based on
kernels can be used for a large variety of variables such as graphs or trees, for instance. In particular HSIC
(see in [10, 2, 20, 35]) is a GSA measure that can be used in fairness.

3.2 Applications to Causal Models

Fairness is often measured using the outcome of an algorithm, yet from a legal point of view, discrimination is
often related to the causal effect of a variable. Causality is often modeled using DAG – directed acyclic graphs
[32]. Actually, the graph structure of a DAG enables to visualize the different interactions variables can have
with each other.

In this subsection, we show how to address causal notions of fairness using the GSA framework, illustrated by
two examples.
Example 1 (Causal graphs [34]). Lets consider a situation in which a protected variable S influence others
variables X , conjointly with an unobserved variable U . Then, the couple (X,S) are the inputs of a predictor
Y corresponding to

X = φ(U, S) Y = ψ(X,S),

where φ and ψ are some unknown functions. These equations are a consequence of the unique solvability of
acyclic models [3] and are illustrated in the various DAGs of Figure 1.

6
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The influence of S on the predictor Y is then two-fold as S can change directly the outcome Y or through its
influence on X .
Example 2 (College admissions). This example focus on college admissions process. Consider S to be the
gender, X the choice of department, U the test score and Y the admission decision. The gender should not
directly influence any admission decision Y , but different genders may apply to departments represented by
the variable X at different rates, and some departments may be more competitive than others. Gender may
influence the admission outcome through the choice of department but not directly. In a fair world, the causal
model for the admission can be modeled by a DAG without direct edge from S to Y . Conversely, in an unfair
world, decisions can be influenced directly by the sensitive feature S – hence the existence of a direct edge
between S and Y . This issue on unresolved discrimination is tackled in [25, 15].

In many practical cases, the causal graph is unknown and we need indices to quantify causality. We will show
how GSA can quantify causal influence following DAG structure, in particular , the Total Sobol and the Total
Independent Sobol indices. Different GSA indices will correspond to different paths from S to Y . Two type of
relationships can be measured, represented either by a path from S directly to Y or a path from S to another
variable X that influences itself the predictor Y .

Proposition 2. The condition SobT ind
S = 0 implies that the direct path from S to Y is non-existent. Similarly,

the condition SobTS = 0 implies that every path from S to Y is non-existent.

Proof. The proof is a direct consequence of the Hoeffding decomposition of the function Y = ψ(X,S) and
will be developed in the Annex.

In the case where SobT ind
S = 0, S can still be influential through X but not on its own. This type of fairness

corresponds to unresolved discrimination. However, if SobTS = 0, S is not influential on the outcome at all.
Remark 6. Fairness such as unresolved discrimination, sought after in cases such as Example 2, correspond
to the fact that S cannot be influential on its own, only through the other inputs X . This is equivalent to the
non-existence of a direct path from S to Y , i.e. the condition SobT ind

S = 0.

3.3 Quantifying intersectionality unfairness with GSA index

Most of fairness results are stated in the case where there is only one sensitive variable. Yet in many cases,
the bias and the resulting possible discrimination are the result of multiple sensitive variables. This situation
is known as intersectionality, when the level of discrimination of an intersection of several minority groups
is worse than the discrimination present in each group as presented in [9]. Some very recent works provide
extensions of fairness measures to take into account the bias amplification due to intersectionality. We refer
for instance to [30] or [14]. However, quantifying this worst case scenario cannot be achieved using standard
fairness measures. The GSA framework allows for controlling the influence of a set of variables and as such
can naturally address intersectional notions of fairness.
Consider two independent protected features S1 and S2 (i.e gender and ethnicity). Depending on the chosen
definition of fairness, there are situation where fairness is obtained with respect to S1, with respect to S2

but where the combined effect of (S1, S2) is not taken into account. For instance, let Y = S1 × S2. In this
toy-case, the Disparate Impact of S1, as well as the Disparate Impact of S2, is equal to 1 while the Disparate
Impact of (S1, S2) is equal to 0. This can be readily understood thanks to the link between fairness and GSA
as the Sobol’ indices for S1 and for S2 are null while the Sobol’ index for the couple (S1, S2) is maximal.

Intersectionality fairness is obtained when the variables S1 and S2 do not have any joined influence on the
output of the algorithm.
Definition 3.2. Let S1, S2, · · · , Sm be sensitive features. It is said that an algorithm output is in-
tersectionaly fair if Γ(Φ(X,S1, · · · , Sm); (S1, · · · , Sm)) = 0. This constraint can be relaxed to
Γ(Φ(X,S1, · · · , Sm); (S1, · · · , Sm)) ≤ ε with ε small for approximate intersectionality fairness.
Remark 7. Intersectionality fairness is different than classical fairness. Classical fairness is usually interested
only on the influence of a single sensitive feature on the outcome while intersectional fairness is quantifying
only the influence due to interactions between sensitive features. In applications, the goal is usually to have
both classical and intersectional fairness. However, we will see with Sobol’ indices that sometimes, a single
fairness definition can cover both types of fairness.
Example 3. We mentioned above that classical fairness definitions stem back from the Sobol’ indices and
that these indices can be readily interpreted. Let Y = f(X,S1, S2), with S1 and S2 two sensitive features.

7
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S

X

U

Y

(a) Causal generative model in which
a protected variable S influence both
another variable X and the outcome
Y .

S

X

U

Y

(b) Causal generative model in which
a protected variable S influence both
another variable X and the outcome
Y .

S

X

U

Y

(c) Causal generative model in which
X and S do not interact.

Figure 1: Examples of represention of causal models with directed acyclic graphs.

Table 3: Synthetic experiments based of causal DAGs – Figure 1

S ST Sind ST ind

Y = 2×X
X 1.00 1.00 0.75 0.75
S 0.24 0.25 0.00 0.00

Y = 0.7×X + 0.3× S
X 0.91 0.92 0.51 0.52
S 0.52 0.54 0.07 0.09

Y = 0.7×X + 0.3× S
X 0.78 0.84 0.81 0.82
S 0.13 0.17 0.14 0.15

There are four different Sobol’ indices associated with (S1, S2), as seen in the previous Section. Each of these
indices will lead to an intersectionality fairness definition. However, these definitions will not be equivalent.
We refer back to Table 1 for the various influences Sobol’ indices take or do not take into account. The Total
Sobol’ index is, out of the four Sobol’ indices, the only one to take into account every possible influence coming
from (S1, S2). It will therefore lead to the more restrictive intersectional fairness.

It is possible to compare some selected classical fairness definitions with some intersectionality fairness
definitions.

Proposition 3. Let (S1, S2) be two sensitive features. To be fair in the sense of Avoiding Disparate Treatment
for S1 implies intersectional fairness for (S1, S2). However, to be fair in the sense of Disparate Impact for S1

do not quantify any intersectional fairness.

Proof. Because of the various bounds on Sobol’ indices explained in previous Section, we know that
SobTS1,S2

≤ SobTS1
. Since SobTS1

is the GSA measure associated with Avoiding Disparate Treatment, we
have the first result. The second result is a direct consequence of the absence of bounds between SobS1

and
Sobol’ indices for (S1, S2) and an example has been given in the previous toy-case.

4 Experiments

4.1 Synthetic experiments

In this subsection, we focus on the computation of complete Sobol’ indices in a synthetic framework. We
design three experiments, modeled after the causal generative models shown in Figure 1. For simplicity, we
assume a Gaussian model. In each experiment j, j ∈ {1, 2, 3}, (X,S,U) are random variables drawn after a

8
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Figure 2: Cramér-von-Mises and independent Cramér-von-Mises indices for the Adult dataset.

Gaussian distribution with covariance matrix Cj , where

C1 = C2 =

(
1 0.5 0.5

0.5 1 0
0.5 0 1

)
, C3 =

(
1 0 0.5
0 1 0

0.5 0 1

)
.

The random variable U is unobserved in this case and therefore does not have Sobol’ indices. Its purpose is to
simulate exogenous variables that modify the features in X . The target Yj , described in the Table 3 for each of
the experiments, is equal to

Y1 =2×X,
Y2 = Y3 =0.7×X + 0.3× S.

The first experiment shows the difference between independent and non-independent Sobol’ indices. The
outcome is entirely determined by a single variable X and therefore, SobX = 1. However, X is intrinsically
linked with a sensible feature because of the covariance matrix, so that SobindX 6= 0. This is a concrete
example where Statistical parity is not obtained for S but unresolved discrimination mentioned in Example 2
is obtained, since S is influential only through X .

The second experiment adds a direct path from the variable S to the outcome Y . Since Y can be factorized as
an effect from X and an effect of S, we still have SobX = SobTX and SobindX = SobT ind

X . However, in this
case, X is no longer enough to fully explain the outcome, so that SobX 6= 1. SobindS quantify the influence of
this direct path from S to Y . Note that the difference between SobS and SobindS quantify the influence of the
path from S to Y through the intermediary variable X .

In the third experiment, S and X are independent and S can only influence the outcome directly. This is the
framework of classical Global Sensitivity Analysis. In this case, non-independent and independent Sobol’
indices are equal, as mentioned in Remark 1

4.2 Real data sets

In this section, we focus on the implementation of Cramér-von-Mises indices on two real-life datasets: the
Adult dataset [12] and the COMPAS dataset.

4.2.1 Adult dataset

The adult dataset consists in 14 attributes for 48,842 individuals. The class label corresponds to the annual
income (below/above 50.000 k$). We study the effect of different attributes and in particular the sensitive
attributes mostly considered : gender and country of origin. The results for a classifier obtained for an
algorithm built using an Extreme Gradient Boosting Procedure are shown in Figure 2.
First, we point out that we recover the influence of variables, which have already been shown in previous

9
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(a) Cramér-von-Mises indices computed for the COMPAS
decile score.

(b) Cramér-von-Mises indices computed on the loss between
COMPAS output and real case of recidivism after two years.

Figure 3: Cramér-von-Mises indices for the COMPAS dataset.

works to be the most important for the explanation of such algorithm. Our two indices provide a different
information. The independent Cramér-von-Mises index describes the direct effect of a variable in the outcome
of the algorithm without any correlation from other variables. Meanwhile, the Cramér-von-Mises indices
include the fact that inputs are not independent. Hence when the variables sex which stands for the gender and
native country have CVM high index, this shows the direct discrimination of the algorithmic decision, while
the race does not impact the decision. The independent CVM highlights the interactions of the variables on the
others and may lead to indirect effect. Here among the sensitive variables, the variable race is the one which
may affect the most the algorithm through its effect on the other features.

4.2.2 COMPAS dataset

The so-called COMPAS dataset, gathered by ProPublica described for instance in in [38] , contains information
about the recidivism risk predicted by the COMPAS tool, as well as the ground truth recidivism rates, for 7214
defendants. The COMPAS risk score, between 1 and 10 (1 being a low chance of recidivism and 10 a high
chance of recidivism), is obtained by an algorithm using all other variables used to compute it, and is used to
forecast whether the defendant will reoffend or not. We analysed this dataset with Cramér-von-Mises indices
in order to quantify fairness exhibited by the COMPAS algorithm. The results are shown in Figure 3.

First, every independent index is null, which means that the COMPAS algorithm does not rely on a single
variable to predict recidivism. Also, gender and ethnicity are virtually not used by the algorithm, opposed to
the variables "age" or "priors_count" (the number of previous crimes). Hence as expected, the algorithm
appears to be fair. However, when comparing the accuracy of the predictions of the algorithm with real-life
two-year recidivism, the "race" variable is found to be influential. Hence we show that the indices we propose
recover the bias denounced by Propublica with an algorithm that, despite fair predictions, shows a behavior
that favors a part of the population based on the race variable.

5 Conclusion

We recalled classical notions both for the Global Sensitivity Analysis and the Fairness literature. We presented
new Global Sensitivity Analysis tools by the mean of extended Cramér-von-Mises indices, as well as proved
asymptotic normality for the extended Sobol’ indices. These sets of indices allow for uncertainty analysis for
non-independent inputs, which is a classical situation in real-life data but not often studied in the literature.
Concurrently, we link Global Sensitivity Analysis to Fairness in an unified probabilistic framework in which a
choice of fairness is equivalent to a choice of GSA measure. We showed that GSA measures are natural tools
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for both the definition and comprehension of Fairness. Such a link between these two fields offers practitioners
customized techniques for solving a wide array of fairness modeling problems.
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A Lévy-Rosemblatt theorem and associated mappings

The aim of the Lévy-Rosenblatt transform is to find a transport map between the correlated X and independent
uniform variables U ∈ Rp. From now, we assume the distribution of X to be absolutely continuous.

Theorem A.1 (Lévy-Rosemblatt theorem,[27, 33]). : there is a bijection (denoted "RT" for Rosemblatt
transform) between p(X) and p independent uniform random variables

(Xi, (Xi+1|Xi), · · · , (Xi−1|X∼(i−1))) ∼ pX
RT−−→ (U i

1, · · · , U i
p) ∼ Up(0, 1). (10)

Example 4. In the following, we will always be interested in two groups of variables: the sensitive variableXi

and the rest of the variables X∼i. Therefore, it may help to understand the special case where X = (X1, X2)
since it encapsules all the difficulty. In this case, we have two different ways to decompose pX.

(i) If we decompose pX as pX1 × pX2|X1
, then we can map this to (U1

1 , U
1
2 ). With this mapping, we can

draw random variables with distributions pX1 and pX2|X1
. For this, we need only to have access to

independent uniform random variables and use the inverse Rosenblatt transform. We denote as FT the
cumulative distribution function of the random variable T . The inverse Rosenblatt transform is then
given by

z1 = F−1X1
(u11) (11)

z2 = F−1X2|X1=x1
(u12). (12)

We first draw a random variable Z1 with distribution pX1
from an uniform random variable by quantile

inversion. Now that we have this realisation z1, we have the second distribution pX2|X1=z1 . We then
draw a random variable Z2 that follows the distribution pX2|X1=z1 and such that the couple (Z1, Z2)
has the same distribution as (X1, X2). This random variable is similar to X2 but does not contain its
correlation with X1.

(ii) Similarly, if we decompose pX as pX2
× pX1|X2

, then we can map this to (U2
1 , U

2
2 ).

Note that the only case where these two mappings are similar is when X1 and X2 are independent. In that
case, pX1

= pX1|X2
and pX2

= pX2|X1
.

Several things need to be said about this transform.

Remark 8. It enables to transform a set of possibly dependent random variables into a set of random variables
without any dependencies. Moreover, for one such set of independent variables Ui, there exists a function
gi square integrable such that f(X) = gi(U

i). One way to compute Sobol’ indices for the output f(X) is
therefore to use the Hoeffding decomposition of gi(Ui).

Remark 9. In terms of information, U i
1 carries as much information as Xi since U i

1 = FXi
(Xi). Note

that this include the eventual dependency with other variables. This means that the Sobol’ indices of U i
1

will correspond to the Sobol’ indices of Xi as defined in the previous section. Meanwhile, the law of U i
n

is associated with the law of Xi−1|X∼(i−1). This conditional distribution aim to capture all the remaining
randomness in Xi−1 when the intrinsic effects of the others inputs on it has been removed. Therefore, it has
all the remaining information in the law of Xi−1 when the contribution of the other variables are discarded.

Remark 10. The previous point is the reason why we do not need to consider all n! possible Rosenblatt
Transforms of X. Since we are only interested in the information carried by a variable – with (Xi) – and by
the law of this same variable without its dependencies in the other variables – with (Xi|X∼i), we are only
interested in U i

1 and U i
n, for all i. Therefore, we can without loss of generality, consider a cyclic permutation.

That being said, if, for numerical reasons, other Rosenblatt transforms are easier to work with, there is no
theoretical reasons not to use them.

In the classic Sobol’ analysis, for an input Y , we have two indices that quantify the influence of the considered
feature on the output of the algorithm, namely the first order and total indices. Now, thanks to the Lévy-
Rosemblatt, we have two different mappings of interest: the mapping from U i

1 to Xi that includes the intrinsic
influence of other inputs over this particular input and the mapping from U i+1

p to Xi|X∼i that excludes these
influences and shows the variation induced by this input on its own. These two different mappings will each
lead to two indices (the Sobol’ and Total Sobol’ indices of U i

1, and the ones of U i+1
p ) so every input Xi will be

represented by four indices.
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B Estimates of extended Sobol’ indices

We recall that in the independent Sobol’ framework, for every input Xk, we have two different mappings: the
mapping from Uk

1 to Xk that includes the intrinsic influence of other inputs over this particular input and the
mapping from Uk+1

p to Xk|X∼k that excludes these influences and shows the variation of this input on its
own. These two different mappings will each lead to two indices (the Sobol indices of Uk

1 and the ones of
Uk+1
p ) so every input Xk will be represented by four indices, explained in the following subsection.

As seen previously, the four Sobol’ indices for each variable Xi, i ∈ J1, nK are defined as followed:

Sobi =
V [E[gi(U

i)|U i
1]]

V [gi(Ui)]
=
V [E[f(X)|Xi]]

V [f(X)]
(13)

SobTi =
E[V [gi(U

i)|U i
∼1]]

V [gi(Ui)]
=

E[V [f(X)|Zi]]

V [f(X)]
(14)

Sobindi =
V [E[gi+1(Ui+1)|U i+1

p ]]

V [gi+1(Ui+1)]
=
V [E[f(X)|Zi]]

V [f(X)]
(15)

SobT ind
i =

E[V [gi+1(Ui+1)|U i+1
∼p ]]

V [gi+1(Ui+1)]
=

E[V [f(X)|X∼i]]
V [f(X)]

(16)

We recall that these indices use the Rosemblatt transform, a bijection between independent uniforms and the
distribution of the features. This bijection can be inverted to generate samples from uniforms. We denote
the inverse of the Rosemblatt transform as IRT – Inverse Rosemblatt Transform. Thanks to the IRT, we can
generate four samples:

(ui1, · · · , uip)
IRT−−→ x = (xi, · · · , xi−1) ∼ p(X),

(ui′1 , · · · , ui′p )
IRT−−→ x′ = (x′i, · · · , x′i−1) ∼ p(X),

(ui1, u
i′
2 , · · · , ui′p )

IRT−−→ xi = (xi, x
′
i+1 · · · , x′i−1) ∼ p(Xi)p(X∼i|Xi),

(ui′1 , · · · , ui′p−1, uip)
IRT−−→ xi−1 = (x′i, x

′
i+1 · · · , xi−1) ∼ p(X∼i−1)p(Xi−1|X∼i−1).

(17)

Once we obtain, for each i ∈ {1, · · · , p}, the four samples defined above, we can compute the estimators of
the Sobol’ and independent Sobol’ indices as follows:

Ŝobi =
1
N

∑N
k=1 f(xk)×

(
f(xi

k)− f(x′k)
)

V̂

̂SobT ind
i =

1
N

∑N
k=1

(
f(xi−1

k )− f(x′k)
)2

2V̂

Ŝobindi−1 =
1
N

∑N
k=1 f(xk)×

(
f(xi−1

k )− f(x′k)
)

V̂

ŜobTi =
1
N

∑N
k=1

(
f(xi

k)− f(x′k)
)2

2V̂
,

(18)

where x∗k = (x∗k,1, · · · , x∗k,p) is the k−th Monte-Carlo trial in the sample x∗, k ∈ {1, n} and V̂ is the total
variance estimate that can be computed as the average of the total variances computed with each sample x∗.

C Central Limit Theorem for Sobol’ indices

We recall the theorem 2.1 we presented in Section 2.
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Theorem C.1. Each index S in the equations (3) to (6) can be written asA/B and the corresponding estimate
Sn can be written as An/Bn. For each of these indices, we have a central limit theorem:

√
n(Sn − S)

D−→ N (0, σ2) (19)

with σ2 depending on which index we study.

We propose to study the central limit theorem for the estimator of the index Sobi proposed in Appendix B.
Note that the result is the same for other estimators of the Sobol’ indices proposed in the same section.

If we denote

Zn =


n−1

∑
f(Xi,k, X∼i,k)f(Xi,k, X

′
∼i,k)

n−1
∑
f(Xi,k, X∼i,k)f(X ′i,k, X

′
∼i,k)

n−1
∑
f(Xi,k, X∼i,k)

n−1
∑
f2(Xi,k, X∼i,k)

 (20)

then the estimator Ŝobi of the Sobol’ index Sobi is equal to h(Zn) where

h(β1, β2, β3, β4) =
β1 − β2
β4 − β2

3

.

Applying the delta-method [37], we obtain the convergence of h(Zn) to h(Z) = Sobi
√
n
(
Ŝobi − Sobi

)
→ N (0,∇h(β)Σ∇h(β)T ), (21)

for which we need to compute the gradient of h

∇h(β1, β2, β3, β4) =

(
1

β4 − β2
3

,− 1

β4 − β2
3

,
2(β1 − β2)β3
(β4 − β2

3)2
,
−(β1 − β2)

(β4 − β2
3)2

)T

and the correlation matrix Σ for the variable Zn which is

Σ =

σ
2
11 σ2

12 σ2
13 σ2

14

σ2
12 σ2

22 0 0
σ2
13 0 σ2

33 σ2
34

σ2
14 0 σ2

34 σ2
44

 (22)

where the values σ2
ij = Cov(Zi, Zj) are given as

σ2
11 =Var(f(X,X∼i)f(X,X ′∼i))

σ2
12 =E[f2(X,X∼i)f(X,X ′∼i)f(X ′, X ′∼i)]

σ2
13 =E[f2(X,X∼i)f(X,X ′∼i)]

σ2
14 =E[f3(X,X∼i)f(X,X ′∼i)f(X ′, X ′∼i)]− E[f2(X,X∼i)]E[f(X,X ′∼i)f(X,X ′∼i)]

σ2
22 =Var(f(X,X∼i))

2

σ2
33 =Var(f(X,X∼i))

σ2
34 =E[f3(X,X∼i)]

σ2
44 =E[f4(X,X∼i)− E[f2(X,X∼i)]

2.

(23)

D Estimation of Cramér-von-Mises indices

We propose two ways of estimating the extended Cramér-von-Mises indices that we denote by U(Y,Xi|X∼i)
defined in (9).

The first one is to use the fact that

U(Y,Xi|Z) =

∫
E(Var(E [1Y≤t|Xi,Z] |Z))dµ(t))∫

Var(1Y≤t)dµ(t))

= T (Y,Xi|Z)× (1− T (Y,Z)).

(24)
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We need to estimate T (Y,Xi|X∼i) and T (Y,X∼i). Estimates for both theses quantities are taken from [1].

Consider a triple of random variables (X,Z, Y ) and an i.i.d sample (Xi, Zi, Yi)1≤i≤n. For simplicity, we
still suppose the random variables to be diffuse (that is without ties). The random variable Z is used for the
conditioning.

For each i, let N(i) be the index j such that Zj is the nearest neighbor of Zi with respect to the Euclidean
distance and let M(i) be the index j such that (Xj , Zj) is the nearest neighbor of (Xi, Zi). Let Ri be the rank
of Yi, that is the number of j such that Yj ≤ Yi.
The correlation coefficient defined in [1] is defined as:

Tn(Y,X|Z) =

∑n
i=1

(
min{Ri, RM(i)} −min{Ri, RN(i)}

)∑n
i=1

(
Ri −min{Ri, RN(i)}

) . (25)

The authors of [1] prove that this estimator converges almost surely to a deterministic limit T (Y,X|Z) which
is equal to the quantity we defined in the first section. In order to estimate the extended Cramér-von-Mises
sensitivity index CVM ind

X , we propose the estimator

Un(Y,Xi|X∼i) = Tn(Y,Xi|X∼i)× (1− Tn(Y,X∼i)) . (26)

The convergence of the estimator Un(Y,Xi|X∼i) to the quantity of interest U(Y,Xi|X∼i) is immediate.

We propose an alternative method for the estimation of this index. We take advantage of the estimates given in
[1] and [5]. We have the two following convergences almost surely:

Qn(Y,X|Z) = n−2
n∑

j=1

(
min{Rj , RM(j)} −min{Rj , RN(j)}

)
→
∫

E(Var(E [1Y≤t|X,Z] |Z))dµ(t))

(27)

Sn(Y ) = n−3
n∑

j=1

Lj(n− Lj)→
∫

Var(1Y≤t)dµ(t)) (28)

where Lj is the number of k such that Yk ≥ Yj .

Proposition 4 (Estimator of the extended Cramér-von-Mises indices). The quantity defined as Ũn(Y,X|Z) =
Qn(Y,X|Z)/Sn(Y ) is a consistent estimator of U(Y,Xi|X∼i).

The proof is elementary using classical probability tools.

E Main proofs

E.1 Proof of Theorem A.1

Proof. Indeed, we can always write

pX = pXi
× pXi+1|Xi

× · · · × pXi−1|X∼(i−1)
. (29)

Since we are back to a product of marginals, we have a hierarchical independence. We choose the cyclical
hierarchy ( Xi, followed by Xi+1|Xi, then Xi+2|Xi, Xi+1, and so on and so forth till Xi−1|X∼(i−1) ) as we
are in fact only interested in the first and the last elements of this hierarchy ( Xi and Xi−1|X∼(i−1)). We
can always map univariate random variables to uniform distributions by matching the quantiles by using the
cumulative distribution function – one can view this operation as hierarchical Optimal Transport, see [4] – and
by doing so for each variable defined above, we have the so-called Levy-Rosenblatt transform, denoted here as
RT, that is:

(Xi, (Xi+1|Xi), · · · , (Xi−1|X∼(i−1))) ∼ pX
RT−−→ (U i

1, · · · , U i
p) ∼ Up(0, 1). (30)

E.2 Proof of Proposition 1

Proof. We will show here how each definition of fairness and GSA measure presented in Table 2 match for
binary classification with S binary.
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(i) The definition of Statistical Parity is given by |P(f(X) = 1|S = 1) − P(f(X) = 1|S = 0)|. For
simplicity, we consider Var(f(X)) = 1. If we compute the Sobol’ index of the predictor f(X) for the
protected variable S, we obtain:

SobS(f(X)) = VarS(EX\S [f(X)|S])

= ESE2
X\S [f(X)|S]− EX[f(X)|S]2

= P(S = 1)P(f(X) = 1|S = 1)2 + P(S = 0)P(f(X) = 1|S = 0)2 − P(f(X) = 1)2

= P(S = 1)P(S = 0)× [P(f(X) = 1|S = 1)− P(f(X) = 1|S = 0)]
2

= P(S = 1)P(S = 0)×DI2.

We see that the quantity of interest in Statistical Parity is the same as the Sobol’ index, up to a constant
depending on the proportion in each class of the protected variable.

(ii) For avoiding Disparate mistreatment, the quantity of interest is |P(f(X) 6= Y |S = 1) − P(f(X) 6=
Y |S = 0)|. This can be obtained by replacing f(X) by 1f(X) 6=Y in the quantity of interest for Statistical
Parity. Therefore, by the same computation as previously, we can link avoiding Disparate mistreatment
to the Sobol’ index of the error of the predictor 1f(X)6=Y for the protected variable S.

(iii) For Equality of Odds, we are interest in the difference |P(f(X)|Y = i, S = 1)−P(f(X)|Y = i, S = 0)|
for i = 0, 1. Each of this difference can be expressed as seen before as VarS(EX [f(X)|Y = i, S]).
Since we want this quantity to be equal to zero for each i, we can compute Equality of Odds with
EY VarS(EX [f(X)|Y, S]), which is the extended Cramèr-von-Mises index of the predictor for the
protected variable S.

(iv) For avoiding Disparate Treatment, the quantity of interest is very similar to Statistical Parity since we
are interested in proving f(X)|X \ S ⊥⊥ S. By similar computations as before, this fairness boils back
to looking at EX\SVarEX\S [f(X)|X]. This can be simplified into EX\SVar[f(X)|X \ S], which is the
Total Sobol’ index of the predictor for the protected variable S.
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