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The limiting amplitude principle states that the response of a scatterer to a harmonic
light excitation is asymptotically harmonic with the same pulsation. Depending on the
geometry and nature of the scatterer, there might or might not be an established the-
oretical proof validating this principle. In this paper, we investigate a case where the
theory is missing: we consider a two-dimensional dispersive Drude structure with cor-
ners. In the non lossy case, it is well known that looking for harmonic solutions leads
to an ill-posed problem for a speci�c range of critical pulsations, characterized by the
metal's properties and the aperture of the corners. Ill-posedness is then due to highly
oscillatory resonances at the corners called black-hole waves. However, a time-domain
formulation with a harmonic excitation is always mathematically valid. Based on this
observation, we conjecture that the limiting amplitude principle might not hold for all
pulsations. Using a time-domain setting, we propose a systematic numerical approach
that allows to give numerical evidences of the latter conjecture, and �nd clear signature
of the critical pulsations. Furthermore, we connect our results to the underlying physical
plasmonic resonances that occur in the lossy physical metallic case.
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1. Introduction

Plasmonic structures are commonly made of noble metals (silver, gold, etc.) and

dielectrics (air, vacuum, glass). At optical frequencies, metals can be dispersive,

allowing the propagation of localized surface waves at the metal-dielectric interface

called surface plasmons [24]. The �eld of plasmonics is very active as surface plas-

1



2 C. Carvalho, P. Ciarlet Jr., C. Scheid

mons o�er strong light enhancement, with applications to next-generation sensors,

antennas, high-resolution imaging, cloaking and other [2, 35, 31, 25, 29, 1]. Several

models are available in the literature to model dispersive materials. In particular,

Drude model [15] is relevant for classical noble materials: in this approximation,

the metal is considered as a free electrons gas (with a static lattice of positive

ions). Then interactions of these electrons with the ion lattice manifest through a

collision frequency parameter, representing dissipation in the equations. Over the

past decades, new models have been developed, including the so-called negative-

index metamaterial, and interesting ideal cases (negligible dissipation) have been

uncovered.

If the source of incident illumination is monochromatic, one would naturally

expect the time dependent electromagnetic �eld to evolve asymptotically (in time)

to a harmonic state with the corresponding incident frequency. This asymptotic

harmonic behavior is called Limiting amplitude principle and allows to work with

the associated frequency-domain boundary value problem. The limiting amplitude

principle has been investigated for a long time, and is well understood for the wave

equation and related classical scattering problems [26, 19, 16, 22, 30]. Recently

there has been a new interest in exploring this principle in the context of emerging

plasmonic structures [18, 11]. In particular, the speci�c case of a planar interface

with a non lossy Lorentz model has been fully investigated in [11]. However for

other con�gurations, the landscape is di�erent: this is especially not clear for (non

lossy) plasmonic structures with corners.

The limiting amplitude principle is closely related to well-posedness of the cor-

responding harmonic equation. Although the time-dependent equations system is

mathematically well-posed (in the usual function spaces), the frequency-domain

counterpart has proven to be more challenging [4, 5, 21, 27, 3, 7, 10]. A key point

lies in the fact that the Fourier transform of a non lossy metal's constitutive law

can correspond to a real negative permittivitya. The induced possible change of

sign of the permittivity at the interface a�ects the optical response. If the struc-

ture has corners, the frequency-domain equations system may be mathematically

ill-posed for a range of critical frequencies (corresponding to a critical range of

permittivities). In this range of frequencies, hypersingular behaviors arise at the

interface (especially at corners), requiring speci�c numerical treatments to avoid

spurious re�ections and inaccurate predictions. Ill-posedness in frequency-domain

corresponds to an unphysical in�nite electromagnetic energy, indicating that the

limiting amplitude principle should not hold in that case. This conjecture motivates

our exploration.

In this paper we provide a systematic approach to numerically assess the latter

conjecture in non lossy subwavelength plasmonic structures with corners. We base

our strategy on a time-domain framework. From typical quantities of interest (�elds,

energy, cross sections, Poynting �ux, etc.), we manage to identify a signature of

aIt commonly provides some imaginary part for lossy materials.
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the underlying critical interval from the frequency-domain, by using time-domain

simulations. Our results show a clear change of behavior at critical frequencies.

Additionally, we �nd this signature also when considering physical structures (in-

corporating losses): in other words the limit non lossy case is useful to highlight

intrinsic resonances in physical plasmonic structures.

The paper is organized as follows. Section 2 presents the general context, the

model problem along with relevant quantities of interest. In Section 3, we specify

the two-dimensional (or 2D), geometrical, physical and numerical framework that

we precisely consider to explore the limiting amplitude principle. The numerical

evidences that assess our conjecture are detailed in Section 4. Then, in Section

5, we continue our e�orts towards a more physical discussion. Finally Section 6

presents our concluding remarks.

2. General context: plasmonics and limiting amplitude principle

2.1. Drude Model in plasmonics

As mentioned in the introduction, plasmonic structures are commonly made of

noble metals and dielectrics, where surface plasmons arise at the interface at optical

frequencies. We present below the well-known Drude model and related equations

to model the electromagnetic �eld in those structures.

Metals at optical frequencies are known to be dispersive: each monochromatic

wave travels with di�erent speeds through the metallic material. To accurately

model optical properties of metallic structures, one has thus to rely on models that

take into account the frequency-dependent velocity of the wave. This dispersion

phenomenon is equivalently explained as a delay e�ect in the reaction of the elec-

trons of the metal to light excitation. In this work, we will use the well-known Drude

model to account for this dispersion phenomenon. It is based on the kinetic theory

of gases [15], considering the metal as a static lattice of positive ions immersed

in a free electrons gas. In the case of scattering by a metallic obstacle, the set of

(linearized) equations can be eventually summarized as follows.

The time-dependent electromagnetic �eld is computed using time-domain Maxwell's

equations with variables (D,E,B,H)b where dispersive e�ects are incorporated

through the electric constitutive law. The latter relates the electric displacement D

and the electric �eld E and incorporates the possible time history (when dispersive

e�ects are taken into account) via a time convolution (denoted ∗t):

D = ε ∗t E, (2.1)

where

ε(t, ·) := δ0(t)ε0εr(·) + χ(t, ·), (2.2)

brespectively electric displacement, electric �eld, magnetic induction, magnetic �eld.
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is the space-time dielectric permittivity, ε0 the vacuum permittivity, εr the relative

permittivity and χ is the electric sensitivity. These quantities are de�ned in R3 and

such that causality property holds (see e.g. [12] for a nice review). Since we do

not take any dispersive e�ects into account in the dielectric, one sets χ = 0 there.

However, in the metallic obstacle, χ is non vanishing. If one de�nes the polarization

current J as J := −∂t(χ ∗tE), one can rewrite the whole set of Maxwell's equations

in terms of (E,H,J) variables only. In particular, J veri�es a linear di�erential

equation that is linearly coupled to (E,H) through classical Maxwell's equations.

With this approach, we do not need the expression of χ explicitly. The reason is

that Drude model is entirely determined via the variable J (see below). We will see

later that χ plays an important role in frequency-domain.

We �x an end time T > 0, and a domain Ω, that is an open and connected

subset of ⊂ R3 with Lipschitz boundary. In our model, the domain Ω is the metal-

lic obstacle, and it is immersed in a homogeneous dielectric background. In what

follows, µ0 denotes the permeability of vacuum, εd denotes the dielectric relative

permittivity of the dielectric and ε∞ the relative permittivity (at in�nite frequency)

of the metallic obstacle Ω. We now set

εr(x) :=

{
εd, for x ∈ R3 \ Ω̄,

ε∞, for x ∈ Ω,
(2.3)

and we will denote ε := ε0εr. Thereafter, Drude model in the time-domain writes

on [0, T ] as:

µ0
∂H

∂t
= −curlE in R3, (2.4a)

ε0εd
∂E

∂t
= curlH + Jext in R3 \ Ω̄, (2.4b)

ε0ε∞
∂E

∂t
= curlH− J + Jext in Ω, (2.4c)

∂J

∂t
= ω2

pε0E− γJ in Ω, (2.4d)

J = 0, in R3 \ Ω̄, (2.4e)

where ωp is the plasma angular frequency, and γ the collision frequency (coming

from Drude model). Here Jext denotes a possible external current that we will use

to model volumic source excitation in the following.

Remark 2.1. Note that the plasma angular frequency characterizes the angular

frequency above which an incident wave can completely penetrate the metal. On the

other hand, the strong plasmonic e�ects induced by surface plasmons are obtained

by an illumination, below the plasma angular frequency, of subwavelength metallic

structures.

We will call this system time-dependent Maxwell-Drude equations in plasmonic

structures.
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Well-posedness. As commonly done, in order to compute the solution, we will ar-

ti�cially truncate the exterior domain R3 \ Ω̄ and close the system (2.4) by adding

approximate transparent boundary conditions (for E and H), transmission condi-

tions at ∂Ω (for E and H) and initial conditions (for E, H and J). At the arti�cial

boundary, to approximate transparent boundary conditions, we will use classical

�rst order Silver-Müller boundary conditions. In this setting, using classical semi-

group theory, one can prove that system (2.4) is well posedc (see e.g. [28] for details).

Excitation. Several excitations of the scatterer are possible. A physically compli-

ant one consists of using an incident illumination that we denote (Einc,Hinc). To

take this illumination into account in the set of equations, we use the non homoge-

neous Silver-Müller boundary conditions as:

n×E− n× (

√
µ0

ε0
H× n) = n× ginc, (2.5)

with ginc = Einc − (

√
µ0

ε0
Hinc × n) and n the outward normal to the exterior

arti�cial boundary.

Remark 2.2. As a result, the total electromagnetic �eld (E,H) can be decomposed

into an incident contribution (Einc,Hinc) and a scattered one (Esca,Hsca). The

scattered �eld (Esca,Hsca) veri�es Maxwell's equations with homogeneous radiation

condition and a source term Jext.

Electromagnetic energy, Poynting vector. We de�ne the time-dependent total

energy of system (2.4) by

E(t) =
1

2
‖
√
ε0εrE(., t)‖2L2(R3) +

1

2
‖√µ0H(., t)‖2L2(R3) +

1

2ε0ω2
p

‖J(., t)‖2L2(R3). (2.6)

The space-time dependent Poynting vector also plays a central role in the study of

the energy's variations, classically de�ned as

Π = E×H. (2.7)

Recalling that we have div(E×H) = H ·curlE−E ·curlH, formally we get, using

equations (2.4)

∂E
∂t

(t) =

ˆ
R3

(div(E(x, t)×H(x, t)) + Jext(x, t) ·E(x, t))dx

+

ˆ
Ω

J(x, t) ·E(x, t)−E(x, t) · J(x, t)dx− γ

ε0ω2
p

ˆ
Ω

J(x, t) · J(x, t)dx,

=

ˆ
R3

div(Π(x, t))dx +

ˆ
R3

Jext(x, t) ·E(x, t)dx− γ

ε0ω2
p

ˆ
Ω

J(x, t) · J(x, t)dx.

(2.8)

cthis result is obtained in the natural space C0([0, T ], H(curl ))×C0([0, T ], H(curl ))×C0([0, T ], L2)
with L2 tangential traces for E and H.
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The pointwise version of the equality is the Poynting theorem. From (2.8), we deduce

that if Jext ≡ 0, div(Π(x, t)) ≡ 0 and γ = 0, then the energy is preserved. If Jext ≡ 0

and the quantity div(Π(x, t)) ≤ 0, then the energy is dissipated. In the rest of the

paper, we focus on the limit case where there is no physical dissipation, i.e. γ = 0.

Remark 2.3. When using �rst order Silver-Müller boundary conditions, we in-

troduce arti�cial dissipation in the system and as a result div(Π(x, t)) ≤ 0 if the

condition is homogeneous.

Long time asymptotics. If the source is monochromatic, one would naturally

expect the solution to evolve asymptotically (in time) to a harmonic state with

the corresponding incident frequency. This asymptotic harmonic behavior is called

Limiting amplitude principle. This principle holds for standard settings and is closely

related to well-posedness of the corresponding harmonic equation. This principle is

well-understood in classic dielectric materials. However in the non lossy case and

for objects with corners, the landscape is di�erent and less trodden.

2.2. Limiting amplitude principle

The limiting amplitude principle has been studied for a long time (e.g. [26, 19, 16,

22, 30]) and states the following. Given a source t 7→ e−iωtF(.), with F ∈ L2(R3)

(and support suppF b R3), a given pulsation ω > 0, and a problem of the form

∂2
tU + LU = e−iωtF, with L a linear di�erential operator, then after a long time

the solution asymptotically behaves as U = e−iωtW with W satisfying a problem

of the form −ω2W + LW = F.

This statement indicates that a periodic regime is asymptotically established and

therefore it is natural to consider the problem in the time-harmonic regime (sta-

tionary problem).

Assume for now we can write the external current Jext(x, t) = <(Jext(x)e−iωt),

and (E,H,J)(x, t) = <(E(x)e−iωt,H(x)e−iωt,J(x)e−iωt), with Jext,E,H,J denot-

ing complex-valued �elds. Then system (2.4) (with γ = 0) simpli�es to

−iωµ0H = −curlE in R3, (2.9a)

−iωε0ε̂rE = curlH + Jext in R3, (2.9b)

with

ε̂r(x, ω) :=

εd > 0, for x ∈ R3 \ Ω̄,

εm(ω) =
(
ε∞ −

ω2
p

ω2

)
, for x ∈ Ω

, (2.10)

and transmission conditions, plus some radiation condition at in�nity. Indeed, J

is known, and equal to i
ω2
pε0
ω E in Ω, respectively 0 in R3 \ Ω̄. We will also denote

ε̂ := ε0ε̂r. Above ε0εm(ω) represents the non lossy Drude model permittivity. Let us

point out that if 0 < ω <
ωp√
ε∞

(optical frequency range), then εm(ω) < 0. System

(2.9) will be called the frequency-dependent Maxwell-Drude equations in plasmonic
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structures.

Remark 2.4. We make the abuse of terminology to denote ω by the terms pulsa-

tion, frequency, or angular frequency. However in numerical experiments, ω will be

always given in rad.s−1.

Well-posedness. Classical theory considers E,H ∈ Hloc(curl ) := {X ∈
L2

loc
(R3)| ∀ξ ∈ C∞c (R3), ξX ∈ H(curl )}, and (2.9) is equivalent to solve:

curl ε̂−1
r curlH− k2H = −curl ε̂−1

r Jext in R3, (2.11a)

−iωε0ε̂rE = curlH + Jext in R3, (2.11b)

with k = ω
√
ε0µ0. One can also consider the system

−iωµ0H = −curlE in R3, (2.12a)

curl curlE− k2ε̂rE = −iωµ0curl Jext in R3. (2.12b)

Note that, if one chooses Jext so that div(Jext) = 0, then (E,H) ∈ Hloc(curl )2

solution of (2.12) or (2.11) also belongs to Vloc(ε̂; curl ) × Vloc(µ0; curl ), with

Vloc(ζ; curl ) := {X ∈ Hloc(curl )|div(ζX) = 0}.
Contrary to the time-domain case, due to the change of sign of ε̂r at op-

tical frequencies, the problems (2.11)-(2.12) can be ill-posed in Vloc(ε̂; curl ) ×
Vloc(µ0; curl ). With the T-coercivity approach it has been shown (e.g. [8, 4, 6,

5, 21, 3, 7]) that there exists two cases depending on the contrast κε :=
εm
εd

:

• for contrasts κε far enough from −1, then the problem is well-posed in

Vloc(ε̂; curl )×Vloc(µ0; curl ).

• for contrasts κε close to −1, plasmonic hypersingularities arise at the cor-

ners of the interface (if any), and the problems is ill-posed inVloc(ε̂; curl )×
Vloc(µ0; curl ).

Those guidelines can be re�ned for the speci�c case of Maxwell 2D. In that case the

interval of contrasts (acceptable or not) is explicitly known. For now, let's denote Ic
this interval. We will provide explicit bounds if needed for numerical purposes. Let

us note that this interval Ic corresponds to a critical interval of angular frequencies

Iω, and that it holds that

κε = −1 if, and only if, ω := ωsp :=
ωp√

εd + ε∞
(2.13)

with ωsp denoting the surface plasmon angular frequency. The speci�c case ω = ωsp
is very peculiar and the problem is strongly-ill posed. In what follows we will exclude

this case.

To sum up, in the frequency-domain, there is a critical range of angular fre-

quencies for which the problem is then ill-posed, whereas in the time-domain the

problem is always mathematically well-posed. This interesting result questions the
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validity of the limiting amplitude principle at critical angular frequencies, indicating

that

• If ω 6∈ Iω: the limiting amplitude principle holds.

• If ω ∈ Iω: the limiting amplitude should not hold.

Using this conjecture, the rest of the paper is dedicated to provide several ap-

proaches and results to �nd signature of the critical interval Iω in time-domain

simulations. To that aim we will need to compute quantities of interest in frequency-

domain.

Remark 2.5. The limiting amplitude principle has been studied for Lorentz meta-

materials (both permeability and permittivity can change sign in frequency-domain)

for planar interfaces. It has been shown that this principle doesn't hold for κε = −1,

and that in this case the �elds' amplitude increases linearly with respect to time [11].

Electromagnetic energy, Poynting vector and Cross sections. Time-domain

quantities such as the electromagnetic energy and the Poynting vector can be com-

pared to frequency-domain ones if harmonic behavior is achieved. In the time-

domain, we consider a real-valued harmonic excitation of the form Jext(x, t) =

<(Jexte
−iωt), with ω > 0 and Jext a complex-valued �eld. If we denote (E,H) the

solution of (2.9) with source term Jext, then if the solution of (2.4) is harmonic,

it should write as (E(x, t),H(x, t),J(x, t)) = <(E(x)e−iωt,H(x)e−iωt,J(x)e−iωt).

Then to relate frequency- and time-domain energy, the adequate quantity to start

with is the time average energy

E =
1

T (ω)

ˆ T (ω)

0

E(t)dt, (2.14)

where T (ω) is equal to the time period, i.e. T (ω) = 2πω−1. Using expression (2.6),

the average energy becomesd

E =
1

2T (ω)

ˆ T (ω)

0

‖
√
ε

2
(Ee−iωt + E∗eiωt)‖2L2(R3) + ‖

√
µ0

2
(He−iωt + H∗eiωt)‖2L2(R3)

+
1

ε0ω2
p

‖1

2
(Je−iωt + J∗eiωt)‖2L2(R3)dt,

=
1

4

(
‖
√
εE‖2L2(R3) + ‖√µ0H‖2L2(R3) +

1

ε0ω2
p

‖J‖2L2(R3)

)
,

(2.15)

with V∗ denoting the complex conjugate of V.

Remark 2.6. We here point out a very straightforward fact that will be used later

in the computations. If the time-domain �elds have a harmonic behavior, the time

average of the energy on an interval of length T (ω) should not depend on the chosen

dRecall that J = 0 in R3 \ Ω̄.
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interval. This simple remark provides us with a necessary condition for a signal to

be harmonic, that we will use later.

Similarly, we can compute the time average Poynting vector over the time period

T (ω) de�ned as follows:

Π(ω) =
1

T (ω)

ˆ T (ω)

0

Π(t)dt =
1

2
Re(E×H∗). (2.16)

We will omit to write the space dependence using the abuse of notations Π(ω) =

Π(·, ω), Π(t) = Π(·, t).
To further exploit information from the Poynting vector, it is natural to in-

troduce physical quantities called cross sections. As introduced in Remark 2.2, we

separate the contributions from the scattered �elds (Esca,Hsca) and the incident

�elds (Einc,Hinc): we de�ne Πsca = Esca×Hsca, Πsca(ω) =
1

T (ω)

ˆ T (ω)

0

Πsca(t)dt,

and similarly Πinc using the incident electromagnetic �elds. Note that |Πinc| is
independent of the spatial variables.

To quantify the amount of absorbed energy P abs and scattered energy P sca at a

given pulsation, we compute the �uxes of, respectively, the total Poynting vector Π

and the scattered Poynting vector Πsca on a closed surface S enclosing the scatterer:

P abs(ω) =: −
ˆ
S

Π(ω) · ndS, P sca(ω) =: −
ˆ
S

Πsca(ω) · ndS, (2.17)

where n is the outward normal vector to S. If one denotes by V the bounded

volume such that S = ∂V , one has obviously P abs(ω) = −
´
V

divΠ(ω)dx. If there

is a scatterer in the domain, not all the energy entering the volume delimited by

S will leave it: some energy is absorbed (P abs(ω) > 0). The cross sections are then

de�ned relative to the power density (per unit area) of the incident �eld:

Cabs =
P abs
|Πinc|

, Csca =
P sca
|Πinc|

, (2.18)

where Cabs denotes the absorption cross section, Csca the scattering cross sectione.

These three frequency-domain quantities are widely used to measure the absorption

or scattering features of a given scatterer. For some standard structures, it is also

possible to have their analytical expression (see e.g. [17] and references therein).

3. The two-dimensional case: theoretical and numerical guidelines

We focus on the light scattering by a rod structure with transversal section D. We

seek solutions of system (2.4) that have an invariance with respect to the direction of

the rod's axis. In this setting the tridimensional Maxwell's equations can be recast

eone can �nally de�ne Cext, the extinction cross section as Cext = Cabs + Csca. It will not be
used in this work.
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in two 2D sets of equations de�ning two transverse modes: TE (Transverse Electric)

and TM (Transverse Magnetic).

In the rest of this paper, we consider that Ω is a metallic rod of bounded section

D, Ω := D×R and we concentrate on the 2D TM polarization. Then ( ~E⊥, Hz, ~J⊥),

with ~V⊥ := (Vx, Vy)t, is solution of the corresponding two-dimensional version of

Maxwell's equations.

3.1. An explicit theoretical critical interval

As mentioned previously, there exists a critical interval Iω, centered around the

surface plasmon frequency ωsp, for which the problem is ill-posed in frequency-

domain. In some cases, this interval is explicitly known, and hypersingular behaviors

have been identi�ed in the ill-posed con�gurations. We will use this framework to

assert if the limiting amplitude principle holds.

According to (2.11a), in frequency-domain, the problem in Hz becomes

curl ε̂−1
r curlHz − k2Hz = −curl ε̂−1

r
~Jext,⊥ in R2.

Similarly for the problem in ~E⊥ (cf. (2.12b)). Classical theory considers ~E⊥ ∈
L2

loc
(R2) so that Hz ∈ H1

loc
(R2), and the bounds of the interval Ic depends on

the interface's geometry. Suppose that the interface Σ := ∂D is polygonal with

0 < α < 2π the sharpest interior angle in D. We de�ne Iα := max
(

α
2π−α ; 2π−α

α

)
> 1,

then Ic := [−Iα;−1/Iα]. This gives us

−Iα ≤ κε ≤ −
1

Iα
⇐⇒ ωp√

Iαεd + ε∞
≤ ω ≤ ωp√

ε∞ + εd
Iα

,

Iω :=

 ωp√
Iαεd + ε∞

;
ωp√

ε∞ + εd
Iα

 (3.1)

Moreover, we have the following result:

• If ω 6∈

[
ωp√

Iαεd + ε∞
;

ωp√
ε∞+

εd
Iα

]
: problem in Hz is well-posed in H1

loc
(R2).

Mathematical well-posedness in this function space guarantees to have a

bounded total electromagnetic energy.

• If ω ∈ Iω \ {ωsp}: problem in Hz is ill-posed in H1
loc

(R2). There exist black-

hole waves s 6∈ H1
loc

(R2) that propagate towards the corners.

Remark 3.1. Given a polygonal interface Σ with N corners ci, i = 1, ..., N , and

denoting αi, i = 1, . . . , N all the interior angles in D, one can de�ne subintervals

Ici := [−Iαi ;−1/Iαi ], and Ici ⊆ Ic, i = 1, . . . N, or equivalently Iωi ⊆ Iω, i = 1, . . . N.

This means that, depending on the contrast κε (and therefore depending on the

angular frequency ω), all black-hole waves, or only some of them, can be excited.

This will play a certain role to interpret numerical results.
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Remark 3.2. Black-hole waves can be characterized as follows. Given a corner c,

we denote (r, θ) the polar coordinates centered at c, the black-hole wave propagating

towards the corner c is of the form s(r, θ) = riλΦ(θ), with λ ∈ R∗, and Φ a periodic

function. Moreover it has been established that (see [3] for details):

• If ω ∈
[

ωp√
Iαεd + ε∞

, ωsp

)
, the black-hole wave is an odd coupled plasmon.

This means that the black-hole wave exhibits two localized oscillating be-

haviors along the interface that are skew-symmetric with respect to the

angle's bisector (Φ is an odd function).

• If ω ∈

(
ωsp,

ωp√
ε∞+

εd
Iα

]
, the black-hole wave is an even coupled plasmon.

This means that the black-hole wave exhibits two localized oscillating be-

haviors along the interface that are symmetric with respect to the angle's

bisector (Φ is an even function).

Figure 1 represents the two types of black-hole waves near a corner.

Fig. 1: Representation of black-hole waves near a corner: odd (left), and even (right).

Remark 3.3. The speci�c case ω = ωsp is strongly ill-posed, the provided black-

hole characterization is valid for ω ∈ Iω \{ωsp}. We refer for example to [11, 27, 34]

for more details.

The two-dimensional case is fully characterized in frequency-domain. It provides

the adequate framework to investigate if the limiting amplitude principle holds

in plasmonic structures. In particular, we will look for a signature of this critical

interval Iω in time-domain.

3.2. Physical problem

In order to investigate situations with corners, we choose an isosceles triangle of

upper aperture π
6 , with characteristic size (height of longest bisector) equal to 20nm

for the transversal section D (see Figure 2) and with area aT ≈ 1.07× 10−16 m2. It

is tilted so that the edge ab is vertical.

The exterior domain R2 \ D̄ is �lled with vacuum (εd = 1). The section D will

either consist of

(i) Dielectric: ε∞ = 3.73, ωp = 0 rad/s.
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b = p3

c

a = p1

p2

π

6

D
y

x

Fig. 2: Physical domain and notations. 2D section in the (x, y)-plane of the metallic

rod.

(ii) Gold: ε∞ = 1, ωp = 13.87× 1015 rad/s, with values taken from [20].

(iii) Another Drude material: ε∞ = 3.7362, ωp = 13.87× 1015 rad/s.

We will illuminate the structure at a range of pulsations [ωmin, ωmax] that in-

cludes the critical interval Iω associated to both materialsf and that is such that

ωmax ≤ ωp. Therefore the smallest wavelength is greater than 2πc0
ωp
≈ 135nm, with

c0 = 1√
ε0εdµ0

. In this regard, the metallic structure is subwavelength for incident

illuminations below the plasma angular frequency ωp.

Some quantities will be visualized at three selected probe points: p1 situated

at the top vertex a, p2 is the middle of segment [ab] and p3 situated at the left

bottom vertex b. To investigate the limiting amplitude principle, we use an incident

illumination ( ~E⊥,inc,Hz,inc) (added to radiation conditions). The latter will be

(a) a monochromatic plane wave (solution of Maxwell's in vacuum), or

(b) a polychromatic gaussian pulse (Gaussian modulated plane wave).

We choose the vertical direction of propagation −y for the incident plane wave �eld.
By tilting the triangle, we break the symmetry, allowing us to excite both odd and

even coupled plasmons.

3.3. Limiting amplitude principle requirements

The monochromatic case (a) is readily covered by the Limiting Amplitude principle

framework. Indeed, as already mentioned in Remark 2.2, the total electromagnetic

�eld can then be decomposed into the incident contribution ( ~Einc,⊥,Hinc,z) and the

scattered one ( ~Esca,⊥,Hsca,z). As a result, the scattered �eld ( ~Esca,⊥,Hsca,z) veri�es

Maxwell's equations with homogeneous radiation conditions and source term ~Jext,⊥
with support in D. This source term expresses the fact that the incident plane wave

( ~Einc,⊥,Hinc,z) is solution of Maxwell's equation in vacuum, but is not solution in

fHere, if ω̃ ∈ Iω , then ω̃ ≤ ωp√
ε∞+

εd
Iα

≤ ωp.
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the scatterer. Since the incident �eld is monochromatic, so is the source term. In

other words, our source term is monochromatic, with support b R2 and in L2(R2)

which �ts in the theoretical framework led by [16, 22] to investigate the limiting

amplitude principle.

Same procedure can be applied with the Gaussian modulated plane wave (b).

However, in this case, the resulting source term ~Jext,⊥ in the scattered �eld equation

is not anymore monochromatic. The latter is in addition attenuated. This case does

not readily fall into the Limiting Amplitude principle framework. However, such an

incident �eld allows for the excitation of the scatterer by a whole range of pulsations

using one single excitation. Moreover, using Fourier transform, the spectral response

of the scatterer is easily attainable once the time-domain �elds are known. Source

(b) provides a practical (but empirical) approach to investigate the problem.

3.4. Numerical framework and strategy

In what follows, we will need to compute a numerical approximation of the solution

of the time-domain equations. To do so, we consider a Discontinuous Galerkin Time

Domain (DGTD) framework as developed in [33]. This numerical framework is

particularly adapted to the challenges encountered for scattering problems and has

been assessed on several occasions especially for plasmonics problems (see e.g. [9, 14]

and references therein). In the numerical tests, we use a non-dissipative DGTD

scheme. It relies on a discontinuous Galerkin Finite Element space discretization

(with Lagrange nodal basis) with centered �uxes, and a leap-frog scheme in time.

This scheme has the advantage to be explicit; the price to pay is that one should

choose discretization parameters according to a CFL constraint.

We approximate the solution over a su�ciently long physical time relative to the

period of the incident signal (in the case of a monochromatic source (a)), or relative

to the period of the smallest frequency in the pulse (in the case of a polychro-

matic source (b)). We are able to compute all the quantities mentioned in Section

2: time evolution of the energy, time evolution of the �elds at probe points, and

time averaged quantities. In particular, we compute the discrete time evolution of

the total discrete energy (on the whole computational domain) and in a small do-

main surrounding each corner. When considering a polychromatic source (b), we

compute cross sections and Poynting �uxes at the end of the simulation, using a

Fourier transform that is computed "on the �y" (done in one simulation run). For

illuminations considered in this work, we note that the quantity |Πinc| that appears
in (2.18) can be analytically computed and does not depend on space variable.

As mentioned previously, the monochromatic source type (a) falls into the ex-

act Limiting Amplitude principle setting, and therefore will be used to �nd a clear

indication of a non-harmonic response to the harmonic incident �eld. The poly-

chromatic source type (b) will allow to obtain a spectral response and investigate

physical quantities over the whole spectral band of interest, and in one single run.

The two approaches are thus complementary and are used to thoroughly test our
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b
c

a

Γ

S

D

Fig. 3: The computational domain is delimited by an arti�cial boundary Γ. A side

of Γ has a length of 60 nm. The cross sections are computed on a line S around the

scatterer, which is approximately 20 nm away from it. The black-hole �uxes and

energy are computed in small disks centered at each corner.

approach.

The scheme has been implemented in a in house 2D Fortran code developed

within the Inria Atlantis project team (Inria Sophia Antipolis, France) g. Previous

versions of this code have been already exploited in the context of [23] and [32].

Discretization parameters have been �xed so that we use a discretization �ne enough

with respect to the incident wavelength and ful�ll the CFL condition. If ∆t denotes

the physical time step, and hmax the space discretization parameter, we use ∆t ≈
10−19s and hmax ≈ 1nm (the mesh is non uniform and is appropriately re�ned at

the corners of the domain and close to the interface, where the size of the mesh is

approximately 1
5hmax). Unless speci�ed, we use a P2 (polynomials of degree less than

or equal to 2) basis for our �nite element space. Finally, in Figure 3 we detail the

computational domain and geometrical entities that we use to compute the solution

and quantities of interest. Numerically, one computes Poynting �uxes, called black-

hole �uxes for short, around each corner, for ω in the range of pulsations of interest:

Fk(ω) :=

ˆ
Dk

divΠ(ω), k = {a, b, c}, (3.2)

where (Dk)k={a,b,c} are (small) disks of radius 2 nm around each corner a, b, c,

respectively. Similarly, the energies at the vicinity of each corner are computed for

ghttp://www-sop.inria.fr/atlantis/
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k = {a, b, c} and t ∈ [0, T ] using

Ek(t) =
1

2
‖
√
ε0εr ~E⊥(t)‖2L2(Dk) +

1

2
‖√µ0Hz(t)‖2L2(Dk) +

1

2ε0ω2
p

‖ ~J⊥(t)‖2L2(Dk). (3.3)

4. Numerical results

First, we investigate the situation where the Limiting Amplitude principle (LAP)

holds. This is the situation where one considers for example a dielectric inclusion

(case (i) in Section 3.2). We use this simple case as a benchmark to validate our

strategy. Then, we consider situations where the LAP might not hold (cases (ii)

and (iii) in Section 3.2).

4.1. When limiting amplitude principle holds

We consider here, case (i) of a dielectric inclusionh.

4.1.1. Response to monochromatic illumination.

We consider a monochromatic incident �eld (a) of pulsation ω, with ω ∈ [2 ×
1015, 13.8× 1015] rad.s−1.

Study of the energy. Figure 4 represents the evolution of the electromagnetic

energy E over the last 10% of the total physical time i.e. t ∈ [0.9T, T ] , for some

incident pulsations ω. Results show that the electromagnetic energy stays clearly

bounded over time and is periodic. Moreover, for each pulsation, we observe that the

value of the energy mean E (see Figure 5) varies in the range [2.255×10−15, 2.285×
10−15]. Thus, it stays of the same order of magnitude over pulsations and varies

fairly little (relative variation of ≈ 1%).

In the spirit of Remark 2.6, at each �xed pulsation ω, we compute the mean

value of the energy over several time intervals of length T (ω) (these intervals are

chosen around the end of the physical simulation time). We observe only relative

variations of maximum 10−6, that allows us to conclude that (for a �xed pulsation)

the mean value of the energy is numerically independent of the chosen interval: the

signal appears to be harmonic at the expected frequency.

Fourier transform. We now compute the Fourier transform (via FFT) of the

magnetic �eld over the range of frequencies of interest at chosen probe points (see

Section 3.2), and compute the relative error between the computed main pulsation

hTo be complete, and for a further validation of the benchmark, the very simple case of vacuum
has also been tested. The results are conclusive and as expected. We choose not to reproduce them
here, since the situation is completely straightforward. The results will be only used sometimes
for comparison, to support our reasoning.
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Fig. 4: Representation of E(t) (computed via (2.6)) for di�erent incident �elds. The

incident �eld is monochromatic, we vary the pulsation ω and represent the result

for ω = 2× 1015 rad.s−1, ω = 6× 1015 rad.s−1, ω = 8× 1015 rad.s−1.

Fig. 5: (Left) Mean energy E (computed with (2.15)) with respect to the incident

pulsation. For each value of the pulsation ω, we compute the mean of the energy on

di�erent time intervals of length T (ω) over the simulation time duration. (Right)

Zoom of the energy mean where there is a maximum of variations, scaled by a factor

10. Computations show relative variations of order 10−6.

and the chosen incident pulsation ω. Figure 6 (Left) and Table 1 show that we

recover harmonic signals centered within less than 0.4% of relative error from the

incident pulsation. To observe whether these e�ects are also visible globally, we also

plot in Figure 6 (right) the L2-norm in space of the Fourier transform (in time)

of the total electromagnetic �eld. Here again, we recover a (numerical) harmonic

behavior. The above observations can be viewed as strong numerical evidences that

the limiting amplitude principle holds, as expected for dielectric materials.
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Fig. 6: Left: FFT of Hz at �rst probe points p1. Similar plots are obtained at other

probe points and we do not represent them here to ease the reading. Right: L2-norm

of the FFT of the total electromagnetic �eld on the whole computational domain.

Vertical lines represent the chosen incident ω. All obtained peaks match the incident

pulsation.

ω (rad/s) Error p1 Error p2 Error p3

2e15 4.61e-3 4.61e-3 4.61e-3
4e15 4.61e-3 4.61e-3 4.61e-3
6e15 4.61e-3 4.61e-3 4.61e-3
8e15 3.23e-3 3.23e-3 3.23e-3
10e15 1.66e-3 1.66e-3 1.66e-3
12e15 6.17e-4 6.17e-4 6.17e-4

Table 1: Relative errors of the computed main pulsations at the chosen probe points

(via FFT) with the exact pulsation ω, with ω ∈ [2× 1015, 12× 1015] rad.s−1.

4.1.2. Response to polychromatic illumination

We also investigate the FFT of the magnetic �eld for a polychromatic illuminationi.

This allows to: (i) alleviate any discrepancy in the Fourier signal that may be

sensitive to a single pulsation, (ii) test multiple incident pulsations in one single

run. Figure 7 represents the FFT of the magnetic �eld at probe points in the case

of propagation of a polychromatic pulse (b). Results show that a Gaussian Fourier

signal is recovered without discrepancy. Same conclusion holds for the global L2-

norm of the Fourier transform, that we do not reproduce here.

iAs in previous Subsection, we choose here to represent the �eld Hz , since this is the �eld that
naturally compares to frequency-domain approach via equation (2.11a). We could have also rep-
resented the two components of the electric �elds, leading to similar conclusions.
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Fig. 7: Modulus of the Fourier transform for various gaussian pulses at probe points

p1 (left), p2 (middle), p3 (right) for several Gaussian pulses. We use several central

frequencies (4×1015, 7×1015 and 10×1015 rad.s−1) and two widths for the pulses.

4.2. Breaking the limiting amplitude principle

We now consider a metallic scatterer with parameters from case (ii) or (iii). We

will follow the same strategy as in Section 4.1, but �rst we make use of results in

Section 3.1.

4.2.1. Explicit critical interval of pulsations

In this Section we specify Iω given in (3.1) for cases (ii) and (iii). Given the geometry,

the critical interval is associated to corner a with aperture π
6 (then Iα = 1

11 ). Using

Remark 3.1 we compute the critical subintervals associated to the other corners b, c

to identify when black-hole waves may appear.

• For material (ii) (corresponding to gold) we obtain

ω ∈ Iω ⇐⇒ ωp√
12
≤ ω ≤ ωp√

12
11

leading to Iω = [4.0039 × 1015, 13.2795 × 1015] rad.s−1, and the surface

plasmon angular frequency (2.13) is equal to

ωsp :=
ωp√

2
' 9.8076× 1015 rad.s−1.

The other two corners b, c of angle 5π
12 , provide Iωb = Iωc = [6.3307 ×

1015, 12.3409× 1015] rad.s−1.

• For material (iii) we obtain

ω ∈ Iω ⇐⇒ ωp√
11 + 3.7362

≤ ω ≤ ωp√
3.7362 + 1

11

leading to Iω = [3.6131 × 1015, 7.0899 × 1015] rad.s−1, and the surface

plasmon angular frequency (2.13) is equal to

ωsp :=
ωp√

1 + 3.7362
' 6.3732× 1015 rad.s−1.
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Further we obtain Iωb = Iωc = [5.0524× 1015, 6.9355× 1015]rad.s−1.

Remark 4.1. In what follows, we will indicate Iω in light red, and the subinterval

Iωb in dark red in the plots.

4.2.2. Response to monochromatic illumination

We consider a monochromatic incident �eld of pulsation ω, with ω ∈ [2×1015, 13.8×
1015] rad.s−1. The covered pulsation range includes the critical interval Iω associ-

ated to both materials. Contrary to the previous case we expect changes for ω ∈ Iω.

Study of the energy. Figure 8 represents the evolution of the energy for several

incident pulsation values for both cases. Contrary to the previous case, we observe a

drastic change of behavior of the energy when the pulsation ω of the monochromatic

source belongs to Iω: the energy drastically increases by several orders of magnitude

(10−13 compared to 10−15), and doesn't exhibit a clear periodic behavior. This

change is clearly visible when ω "enters" the critical interval. Moreover, at lower

pulsations, the energy exhibits a periodic behavior. When ω "leaves" the critical

interval, the energy drastically decreases. For case (ii) it is not clear that we recover a

periodic signal at the chosen pulsation (located right outside of the critical interval),

however for case (iii) the periodic behavior for ω 6∈ Iω is more visible. Figure 9

represents the means of energy E with respect to the monochromatic pulsation.

For each incident source, we compute the mean of the energy for di�erent time

intervals of length T (ω) over the �nal part of the simulation time duration. The

light blue shadow indicates the variations between those computations (we report

the minimal and maximal values), scaled by a factor 10. As observed before, the

energy is considerably more important at critical pulsations (indicated by the red

zones). Additionally the computation of the mean E is highly sensitive to the time

interval when we choose ω ∈ Iω, indicating that a periodic regime may not be

established. Note that the energy mean is two orders of magnitude stronger than

what was observed in Section 4.1. Furthermore, one can observe that the strongest

variations within the means are obtained when all corners are excited (ω ∈ Iωb).
Based on the energy observations, one can conclude that there is de�nitely a change

of behavior at critical pulsations, indicating that the limiting amplitude principle

should not hold.

Fourier transform at probe points. Figure 10 represents the Fourier transform

of the magnetic �eld over the range of frequencies of interest at probe point p1 (see

Section 3.2)j. Figure 11 represents the L2-norm in space of the Fourier transform

(in time) of the whole electromagnetic �eld ( ~E⊥, Hz). Results show that we still

recover harmonic-like signals centered at the incident pulsation, however the signal

is perturbed for critical pulsations. We can make several observations:

jSimilar plots have been obtained for other probe points, we do not present them here.
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Fig. 8: Representation of E(t) (computed via (2.6)) for di�erent incident �elds for

case (ii) (top) and for case (iii) (bottom), with zooms at the long time simulation.

The green and blue curves correspond to ω 6∈ Iω, whereas the warm colored curves

correspond to ω ∈ Iω.

• at each frequency, one main peak occurs at the pulsation of the incident

�eld. The numerical relative error to the exact value does not exceed the

one obtained in Section 4.1,

• for some pulsations inside the critical interval, the main peak is wider

and/or stronger in intensity,

• for pulsations inside the critical subinterval, secondary peaks do appear.

The last two items above invalidate the limiting amplitude principle.

In the next Section we compute the Fourier transform when considering a Gaus-

sian pulse, where the break of the harmonic signal is signi�cantly more striking.

4.2.3. Response to polychromatic illumination

We now investigate the response of the metallic scatterer to a pulse illumination

(b). As before, we investigate the Fourier transform of the magnetic �eld.
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Fig. 9: Mean of energy E (computed with (2.15)) with respect to the monochromatic

pulsation: for case (ii) (left), for case (iii) (right). The green zones indicate when

ω 6∈ Iω, the red zones indicate when ω ∈ Iω. The darker red zone indicates the

critical subinterval ω ∈ Iωb .

Case (ii)

Case (iii)

Fig. 10: (Left) FFT of Hz at �rst probe point p1: for case (ii) (top row), for case

(iii) (bottom row). Vertical lines represent the chosen ω. The green zones indicate

when ω 6∈ Iω, the red zones indicate when ω ∈ Iω. The darker red zone indicates the

critical subinterval ω ∈ Iωb . (Middle, Right): samples of FFT from the two cases:

for ω 6∈ Iω (middle), and for ω ∈ Iω (right). The orange '−×' curves correspond to

FFT peaks in vacuum (where the response is always harmonic).
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Fig. 11: L2-norm of FFT of the whole electromagnetic �eld (left) comparison with

vacuum results (right): for case (ii) (top row), for case (iii) (bottom row). The orange

`−×' curves correspond to FFT peaks in vacuum and the computations have been

performed on same meshes for both cases. Vertical lines represent the chosen ω.

The green zones indicate when ω 6∈ Iω, the red zones indicate when ω ∈ Iω. The
darker red zone indicates the critical subinterval ω ∈ Iωb .

Fourier transform. Figure 12 represents the Fourier transform of the magnetic

�eld at the probe points p1, p2, p3 for a Gaussian pulse centered at 4×1015, 7×1015

and 10 × 1015 rad.s−1. One clearly observes that the Gaussian signal is recovered

for ω 6∈ Iω and completely perturbed when ω ∈ Iω. These e�ects are also observable
globally. In Figure 13, we plot the L2-norm (in space) of the Fourier transform of the

whole electromagnetic �eld ( ~E⊥, Hz) (we here choose to represent only one central

frequency 7× 1015 rad.s−1, the others being similar).

4.2.4. Conclusion

To sum up, through various quantities of interests, we can clearly identify a change

of behavior in the spectral response in the critical interval. This provides numerical

evidences about the proposed limiting amplitude principle conjecture. Moreover,

using polychromatic pulse illumination, one is directly able to �nd precisely traces
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Fig. 12: FFT of |Hz| at probe points p1 (left),p2 (middle), p3 (right) for several

Gaussian pulses centered at 4× 1015, 7× 1015 or 10× 1015 rad.s−1 and two widths:

for case (ii) (top row), for case (iii) (bottom row). The green zones indicate when

ω 6∈ Iω, the red zones indicate when ω ∈ Iω. The darker red zone indicates the

critical subinterval ω ∈ Iωb .

Fig. 13: L2-norm in space of the time FFT of the whole electromagnetic �eld for a

Gaussian pulse centered at 7× 1015 rad.s−1: for case (ii) (left), for case (iii) (right).

The green zones indicate when ω 6∈ Iω, the red zones indicate when ω ∈ Iω. The
darker red zone indicates the critical subinterval ω ∈ Iωb .

of the critical interval. In what follows, we continue our investigation and examine

the impact of underlying black-hole waves on the time-domain simulations.
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5. Black-hole waves resonances

Results from previous Section clearly highlight the break of the limiting amplitude

principle for critical pulsations. In this Section, we investigate its impact on more

physical quantities and situations.

5.1. Cross sections and black-hole �uxes

The amount of light di�racted or absorbed by an illuminated tridimensional struc-

ture is measured by energy �uxes. The intrinsic capacity of an object to di�ract

or absorb light is then measured relative to the power of the incident light beam

excitation. One way to quantify this is to measure the di�raction or absorption cross

sections (de�ned in (2.18)). As a matter of fact, these provide the equivalent area of

the incident beam that would have to be used to obtain the same energy than that

provided by the illuminated object. Thus when a scatterer absorbs or scatters light

on a much larger area compared to its physical size, it transpires in the absorption

and scattering cross sections as intense peaks, and their location indicates the as-

sociated resonance frequency. Cross sections are by nature positive and in the 2D

setting that we consider, cross sections have the dimension of a length and provide

an equivalent perimeter. We now investigate how they vary for cases (ii) and (iii),

in the context of a polychromatic illumination.

Remark 5.1. We choose a polychromatic source that illuminates the range of

interest [1 × 1015, 14 × 1015] rad.s−1. With these chosen parameters, the range of

frequencies at which we illuminate the structure lies in the visible-near UV range.

Furthermore, as mentioned in Section 3.2, the structure used is subwavelength.

Cross sections. Figure 14 represents the scattering and absorption cross sections

obtained with an incident Gaussian pulse for both Drude materials. Results show

a clear trace of the critical interval: strong resonances do appear for ω ∈ Iω. While

Csca remains positive, Cabs presents quite signi�cant unphysical oscillations and

negative values. The latter is also sensitive to mesh discretization and the chosen

degree of interpolation (even for a re�ned mesh).

These observations can be explained. Scattering cross section Csca tracks the far-

�eld's response whereas absorption cross section Cabs is linked to the near-�eld's

response of the scatterer. The more erratic behavior of Cabs can thus be explained by

the di�culties to accurately capture black-hole waves close to the corners, where dis-

cretization has to be �ne enough to avoid spurious re�ections. This phenomenon has

been well characterized in frequency-domain [3], where an e�cient modi�ed FEM

approximation with corner treatments has been developed. Results may indicate

that, even for time-domain formulations for which the problem is mathematically

well-posed, the discretization fails to approximate those highly-oscillatory behav-

iors and would bene�t from a similar speci�c corner treatment. This will be part

of future investigations. As mentioned before, while the polychromatic illumination
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Fig. 14: (Left): Scattering cross sections Csca (computed with (2.18)) when consid-

ering a Gaussian pulse: for case (ii) (top row), for case (iii) (bottom row). (Right):

Absorption cross sections Cabs when considering a Gaussian pulse: for case (ii) (top

row), for case (iii) (bottom row).

doesn't �t the theoretical LAP framework, it allows to highlight the predicted phe-

nomena in a single run. This strongly suggests a systematic strategy to numerically

identify signatures of a critical interval on a given structure, even when the theory

is not known.

Poynting �uxes. Figure 15 compares the total Poynting �ux to the black-

hole �uxes around each corner of the triangle scatterer. The black-hole �uxes

(Fk)k={a,b,c} are computed in a disk centred at the corner and of radius 2 nm,

see (3.2) and Figure 3 for details. Results show that:

(i) all black-hole �uxes are (almost) equal to zero when ω /∈ Iω (no black-hole

waves are excited) ;

(ii) black-hole �uxes remain small when ω ∈ Iω \ Iωb , that is when only the

black-hole singularities located at the corner a can be excited ;

(iii) all black-hole �uxes are signi�cant when ω ∈ Iωb (corresponding to all

black-hole singularities being excited) ; in this situation, we also observe
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Fig. 15: Poynting �uxes when considering a Gaussian pulse illumination, for case (ii)

(top row) and for case (iii) (bottom row). We compute the total Poynting �ux (left

column), the black-hole �uxes (middle column), and compare the total Poynting

�ux to the sum of the black-hole �uxes (right column).

that almost all the contributions to the Poynting �ux are due to the corners.

All those observations are in accordance with theory from frequency-domain de-

tailed in [3]: this is closely related to black-hole excitation.

All results above illustrate that strong responses arise when illuminating a polyg-

onal metallic obstacle with a source swiping critical pulsations ω, and those strong

behaviors are directly connected to the black-hole waves that are known to exist in

frequency-domain. Here we considered an ideal case without dissipation. In what

follows we compare results with and without dissipation: this allows to identify

whether the above observations are degenerate behaviors (i.e. they only occur in

the absence of dissipation), or intrinsic behaviors (i.e. they are observable also with

dissipation), of the physical structure.

5.2. Back to physics: the role of dissipation

Metals are always lossy, meaning that in practice one considers γ 6= 0 in equation

(2.4d). In this Section, we study the impact of introducing dissipation (γ 6= 0) in our

computations. Note that adding dissipation changes the asymptotics of the solution

since the solution will be damped (up to vanishing). Moreover, problem (2.9) in

frequency-domain is always mathematically well-posed in presence of dissipation.

This implies that there are actually no critical pulsations to consider. We explore

the question of �nding a signature of the limit problem (and consequently limit
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behaviors) in lossy cases.

Figures 16 and 17 present comparisons between previous cross sections and

Poynting �uxes, and the ones obtained when we add dissipation: we now consider

models (ii) and (iii) with the physical value γ = 4.515 × 1013 rad.s−1. Obtained

cross sections for lossy cases remain positive (which is more physically relevant)

and less sensitive to the mesh discretization. However in both con�gurations (non

lossy, lossy), cross sections present similar behaviors: strong resonances arise at

"critical" pulsations. Those resonances have less intensity with dissipation, and dis-

sipation prevents strong spurious resonances mentioned above in the non lossy case

(assuming the mesh is su�ciently re�ned at the corners). The fact that intense res-

onance peaks remain can be explained via the frequency-domain framework [13, 3].

By adding dissipation, the frequency problem becomes well-posed, however strong

oscillations at the corners remain. Dissipation allows to attenuate the black-hole

waves, s 6∈ H1
loc

(R2) being replaced by sγ ∈ H1
loc

(R2), and selects the outgoing ones

(limiting absorption principle), where the outgoing wave is the one traveling to-

wards the corners (as reference to their names). Observed peaks then correspond to

attenuated black-hole waves going towards the corners. Similarly, Poynting �uxes

Fig. 16: Comparison of cross sections for cases (ii) (top row) - (iii) (bottom row)

with and without dissipation: scattering Csca (left), absorption Cabs (right).
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Fig. 17: Left: comparison of Poynting �uxes with and without dissipation: case (ii)

(top row), case (iii) (bottom row). Right: comparison of total Poynting �uxes and

the sum of the Poynting �uxes at the corners: case (ii) with dissipation (top row),

case (iii) with dissipation (bottom row).

get smoothed out by dissipation, and most of the energy �uxes come from the

corners at critical pulsations: this corresponds to attenuated black-hole resonances

contributions.

Remark 5.2. As explained in Section 3.1, the frequency theory also allows to

characterize the singularities as odd or even coupled plasmons depending on the

surface plasmon frequency. Due to the chosen non symmetric con�guration, we ex-

pect that the excitation of odd plasmons will be favoured under the surface plasmon

frequency, whereas the excitation of even plasmons will be favoured above the sur-

face plasmon frequency. One can identify a change of behavior in Csca, where the

scattering cross section vanishes for ω = ωsp.

To sum up, studying the limit non lossy models allows to explain underlying

resonances from physical lossy con�gurations.
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5.3. Corner e�ects

It is well known via Mie theory that dissipative subwavelength cylindrical scatterers

exhibit one resonance located at the surface plasmons frequency ωsp. This resonance

is called a dipole resonance. This result is in accordance with the fact that the critical

interval reduces to exactly {ωsp} for smooth interfaces. We simply provide below

illustrations of the above statement, using the same material properties and for D a

disk with same perimeter as the considered triangle. Figure 18 shows that only one

resonance at ωsp is observed. This also allows to additionally validate our approach

by recovering a known result.

On the other hand, from Section 5.2 we identify multiple resonances at critical

pulsations, and those resonances are related to speci�c surface plasmons (called in

the limit case black-hole waves). In other words, this single subwavelength struc-

ture with corners allows to produce multipolar resonances (quadripolar, octopolar,

etc...). Furthermore, the level of intensity of these multiple resonances is equiva-

lent to the level of the dipolar resonance that could be obtained with a cylinder

with equivalent section perimeter (see Figure 19). The resonance obtained with a

cylinder is however broader. This is thus possible to use triangular scatterers rather

than spherical ones to obtain: (i) multiple resonances with one single structure,

(ii) sharper resonances of equivalent intensity than the single dipolar resonance of

a cylindrical structure of equivalent perimeter. Polygonal interfaces then o�er a

larger range of possible light enhancements.

Fig. 18: Scattering cross sections for a disk made of a Drude material (ii) and (iii)

(no dissipation). The 2D section of the cylinder (a disk) has the same perimeter as

the triangle section used in this work. The maximum is achieved at ω = 9.74× 1015

rad.s−1 for case (ii) (0.6% relative error to ωsp) and ω = 6.34 × 1015 rad.s−1 for

case (iii) (0.5% relative error to ωsp).
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Fig. 19: Comparison of scattering cross sections for a disk made of a Drude mate-

rial (ii) with dissipation using the triangular section and a disk section with same

perimeter as the triangle section.

6. Conclusion

In this paper we provided a systematic numerical approach to identify if the limiting

amplitude principle holds in ideal plasmonic structures that is, non lossy plasmonic

structures with corners, and identi�ed the underlying causes when it doesn't. More-

over, a study of cross sections and Poynting �uxes revealed that the underlying

resonances appearing at critical pulsations are related to localized surface plasmons

at the corners called black-hole waves. We found that those characterized behaviors

are intrinsic to the problem, as being captured with or without dissipation.

Overall, this �rst work provides an interesting framework to investigate unexplored

models and con�gurations, where no theory is available. One can for example now

investigate the fully three-dimensional case, where the associated critical interval

is not explicitly known in general, and test other plasmonic models such as Drude-

Lorentz or more generalized models (such as those in [33]). In particular, future

work will include the study of non-local e�ects.
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