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The system of differential equations derived from the so-called “closed-loop” mechanistic scheme was

solved analytically by applying realistic proportionality assumptions between the different concentrations

of reactive species during the entire course of the thermal oxidation. This new method of analytical reso- 

lution allowed obtaining a sounder kinetic model accurately describing the three first stages of the ther- 

mal oxidation kinetics: the induction period, the auto-acceleration of the oxidation kinetics at the end

of the induction period, and the steady-state regime. This kinetic model was used to identify the ther- 

mal oxidation behavior at 120 and 150 °C in a large range of oxygen partial pressures (typically between 

0.21 and 10 bars) of two epoxy-diamine (EPO-DA) matrices. In addition, the kinetic model was used to

determine the accelerated aging conditions representative of the cruising flight of a commercial airliner.

It was found that the oxygen partial pressure must be increased much more than the temperature to

avoid any deformation of the structural degradation state in the two EPO-DA matrices, thus leading to

the definition of extreme environmental conditions very difficult to access in practice.

1. Introduction

The vast majority of composite material structures used in the 

civil aeronautical sector are made of epoxy or polyimide matrix re- 

inforced with carbon fibers. Since the early 1980s, numerous stud- 

ies [1-21] clearly showed that, during their in-service use just be- 

low their glass transition temperature, these composite materi- 

als can perish by matrix embrittlement induced by thermal oxi- 

dation. This latter is restricted to a superficial layer owing to its 

kinetic control by oxygen diffusion [ 22 , 23 ]. “Spontaneous” crack- 

ing can then occur in this superficial layer (without any external 

loading) due to the development of tensile stress gradients and 

the catastrophic fall of fracture properties [ 16 , 21 , 24 ], thus allow- 

ing oxygen penetration into deeper layers [ 16 , 25 , 26 ]. The repetition 

of this sequential scenario allows damage to propagate until the 

core of the composite material [16] . Thenceforth, failure can occur 

untimely. 

The first attempts at kinetic modeling of the thermal oxidation 

process in composite materials were initiated in the early 1980s 

by Nelson [27] , and continued for only a few years by Bowles and 
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coll. [ 28 , 29 ]. For these authors, oxidation was a purely surface phe- 

nomenon leading to the formation of organic volatile compounds 

according to a one-step polymer/oxygen reaction, of which the ap- 

parent reaction order had to be determined experimentally, in par- 

ticular from weight loss measurements. In the mid-1990s, Seferis 

and coll. [ 6 , 7 , 30 , 31 ] perfected this first kinetic model by introduc- 

ing differential equations derived from solid/gas reactions in order 

to describe the propagation of the oxidation front from the exter- 

nal surfaces towards the core of the composite material. Thus, for 

these authors, thermal ageing transformed the composite material 

into a sandwich structure consisting in a completely oxidized su- 

perficial layer surrounding a still intact core. The resulting weight 

losses were expressed as a function of the square root of time if 

the thermal oxidation kinetics was diffusion-controlled, otherwise 

they were written as a linear function of time. However, this ap- 

proach was rapidly abandoned because it led to inconsistent re- 

sults. As an example, it was several times reported that the weight 

loss measurements did not obey the two behavioral laws men- 

tioned above. In addition, this approach did not give access to the 

oxidation profiles in the sample thickness. It was thus impossible 

to precisely locate, in the sample thickness, the critical oxidation 

events responsible for its embrittlement and subsequently, to fully 

apply the methodology currently used for lifetime prediction. 
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Undoubtedly, the most realistic approach would have been to 

write a real coupling between oxygen diffusion and its chemical 

consumption (by the oxidation reaction), as already done since the 

1950s for unfilled hydrocarbon polymers [ 22,  23,  32-38 ]. In the case 

of unidirectional diffusion (e.g. in the sample thickness), this cou- 

pling can be written as follows: 

∂C 

∂t 
= D 

∂ 2 C 

∂ z 2 
− r ( C ) (1) 

where C is the local oxygen concentration, r(C) is the local rate 

of the oxygen chemical consumption (commonly called the “oxida- 

tion rate”), D is the coefficient of oxygen diffusion into the sample 

thickness, t is the exposure time and z is the spatial co-ordinate 

(i.e. the depth beneath the sample surface). 

From this point of view, the kinetic model developed in the late 

1990s by McManus and coll. [39-42] was much more satisfying. 

However, the oxidation rate was always expressed in a completely 

empirical form: 

r ( C ) = r 0 
∂a ( C ) 

∂t 
(2) 

∂a 

∂t 
= k ( 1 − a ) 

n C 

p (3) 

where r 0 is a constant of proportionality, a is the local conversion 

ratio of the oxidation process generally expressed as a function 

of the local variation of the polymer density, k is a rate constant 

obeying an Arrhenius law, and n and p are apparent reaction or- 

ders. 

Indeed, parameters r 0 , n and p were very difficult to justify 

from mechanistic considerations. In fact, they were purely ad- 

justable parameters. Their values were found to considerably vary 

with the thermal aging conditions, but the physical meaning of 

these variations was not well understood. 

At the turn of the last century, our research group at Arts et 

Métiers proposed to benefit from the advances realized during the 

past half century by the scientific community on the oxidation of 

unfilled hydrocarbon polymers [ 22 , 23 , 32-38 ]. Thanks to a careful 

kinetic analysis of the so-called “closed-loop” mechanistic scheme 

[43] , it was shown that a non-empirical analytical solution can be

determined for the oxidation rate without making the usual sim- 

plifying assumptions [44] that seriously degraded the reliability of 

all the analytical kinetic models established until then. In particu- 

lar, the following general expression was obtained only if consid- 

ering the steady-state assumption for hydroperoxides and radical 

species [ 45 , 46 ]: 

r ( C ) = 2 r 0 
βC 

1 + βC 

[
1 − βC 

2 ( 1 + βC ) 

]
(4) 

where r 0 and β are kinetic parameters which express as a function 

of the elementary rate constants and the substrate concentration. 

Both parameters are easily accessible from conventional laboratory 

techniques. Indeed, as schematized in Fig. 1 , β−1 corresponds the 

critical value of the oxygen concentration C C above which oxygen 

excess is reached, and r 0 is the maximal value of the oxidation rate 

reached in oxygen excess. 

The reliability of this analytical solution was successfully 

demonstrated in a wide range of temperatures and oxygen partial 

pressures for both epoxy and polyimide matrices [ 45 , 46 ]. Subse- 

quently, Equation (4) was introduced into Equation (1) by several 

authors in order to determine the oxidation profiles, but also to 

predict the consequences of oxidation on mechanical properties, 

first of all in epoxy [ 45 , 47 ] and polyimide matrices [ 46 , 4 8 , 4 9 ], then 

in their corresponding composite materials [50-56] . 

It is important to remember here that, due to the starting 

(steady-state) assumption, Equation (4) is not valid at low conver- 

sion ratios of the oxidation reaction. Consequently, this equation 

Fig. 1. Shape of the curve: oxidation rate versus oxygen concentration.

cannot be used for predicting the thermal oxidation kinetics during 

the induction period, but also the auto-acceleration of the oxida- 

tion kinetics at the end of the induction period. This is not very pe- 

nalizing at high temperatures (typically for T > 180 °C) at which ac- 

celerated aging tests in laboratory are usually performed, because 

the induction period is extremely short and therefore, these two 

first oxidation stages can be reasonably neglected. In contrast, the 

invalidity of Equation (4) prevents access to the effects of the very 

first oxidation events over relatively long time scales at lower tem- 

peratures (in particular, at the temperature of the industrial appli- 

cation), which then poses an serious problem for determining the 

lifetime of composite materials. 

Aware of this weakness, the decision was taken to privilege the 

numerical approach (over the previous analytical approach) in or- 

der to eradicate all simplifying assumptions. Thus, the oxygen dif- 

fusion term (i.e. the Fick’s second law) was directly introduced into 

the system of differential equations derived from the closed-loop 

mechanistic scheme, and this system was solved simultaneously in 

space (z) and time (t) using the numerical algorithms especially 

recommended for “stiff problems” of chemical kinetics [57] . It was 

found that the numerical solution gives very satisfying results for 

both epoxy and polyimide matrices, but also for their correspond- 

ing composite materials [58-60] . Subsequently, this new approach 

was generalized by several authors to other families of unfilled 

polymers and organic composite materials, e.g. in reference [61] . 

Despite this recognized success, the numerical approach poses 

several practical problems. In addition to being relatively complex 

to understand for non-specialists in chemistry and chemical kinet- 

ics, it is very cumbersome to deploy in the common mechanical 

calculation codes. Indeed, the calculation time increases almost ex- 

ponentially with the number of freedom degrees and the dimen- 

sion of the numerical problem to be solved, so that the comput- 

ing possibilities are rapidly exceeded [62] . If there is no doubt that 

a numerical solution is essential for an advanced understanding 

of the thermal oxidation mechanisms and kinetics, it also appears 

clearly that a more rigorous analytical solution is lacking to allow 

mechanical researchers to take into account the durability of com- 

posite structures from the moment of their design and sizing. In 

addition, this analytical solution could be used to predict the de- 

velopment of damage in composite materials and their lifetime un- 

der service conditions. 

The purpose of the present study is twice. At first, a new 

method for solving analytically the system of differential equations 

will be presented and the reliability of the corresponding analyt- 

ical solution obtained for the oxidation rate will be checked nu- 



Table 1

Main oxidation sites in EPO-DA networks.

Starting epoxy monomer Oxidation sites

DGEBA, DGEBF, DGEBD, TGPAP, TGTPM, TGMDA, etc…

TGPAP and TGMDA only

Abbreviations: Diglycidyl ether of bisphenol A (DGEBA), Diglycidyl ether of bisphenol F (DGEBF), Digly- 

cidyl ether of bisphenol D (DGEBD), Triglycidyl ether of para-amino phenol (TGPAP), Triglycidyl ether of

triphenyl methane (TGTPM), Tetraglycidyl ether of methylene dianiline (TGMDA).

merically. This new solution will be used to accurately identify the 

thermal oxidation behavior of two epoxy-diamine matrices (EPO- 

DA) considered for composite structure applications at low to mod- 

erate temperatures (typically between 70 and 150 °C) in the civil 

aeronautical sector, but also to position them within the whole 

EPO-DA family from a durability point of view. Then, the practi- 

cal interest of having an analytical solution will be demonstrated 

through the determination of the accelerated aging conditions in- 

ducing a simple acceleration of the natural aging kinetics without 

any deformation of the structural degradation state. Indeed, the re- 

search of accelerated aging conditions perfectly representative of 

the natural aging remains a completely open challenge in industry 

even today. Knowing them would allow significantly reducing the 

duration and cost of experimental campaigns currently performed 

in industry in order to qualify a material for a given application. 

2. Theory

2.1. Closed-loop mechanistic scheme 

In EPO-DA matrices, the main oxidation sites are oxy-methylene 

(-O-CH 2 -), amino-methylene ( > N-CH 2 -) and methanol groups 

( > CH-OH) because they contain the most labile C-H bonds. In- 

deed, aliphatic C-H bonds located in α of an heteroatom (O or N)

are characterized by a much lower dissociation energy (E D ≈ 376

kJ.mol −1 ) than aliphatic C-H bonds in polymethylenic sequences

(E D ≈ 393 kJ.mol −1 ) and aromatic C-H bonds (E D ≈ 465 kJ.mol −1 )

[63] .

If oxy-methylene (-O-CH 2 -) and amino-methylene ( > N-CH 2 -)

groups can be already present in the starting epoxy monomers, 

in contrast, methanol groups ( > CH-OH) are formed during the 

polymerization reaction between the epoxy monomer and diamine 

hardener. All these oxidation sites are reported in Table 1 , as well 

as the corresponding name of the starting epoxy monomer. 

In this study, no difference will be made between these three 

types of oxidation sites. They will be all noted PH for a sake of 

simplicity. 

In a recent publication [64] , it was shown that the thermal ox- 

idation of six EPO-DA matrices with very different glass transition 

temperatures can be accurately described using a single numerical 

kinetic model derived from the so-called closed-loop mechanistic 

scheme, provided that the impact of molecular mobility is taken 

into account in the Arrhenius laws of the different rate constants. 

This mechanistic scheme can be summarized by the following six 

reactions: 

Initiation: 

1) δPOOH → λP • + μPO 2 
• (k 1 )

Propagation:

Fig. 2. Shape of the boundary delimitating thermal oxidation initiated by bimolec- 

ular (1b) and unimolecular POOH decompositions (1u).

2) P • + O 2 → PO 2 
• (k 2 )

3) PO 2 
• + PH → POOH + P • (k 3 )

Terminations:

4) P • + P • → Inactive products (k 4 )

5) P • + PO 2 
• → Inactive products (k 5 )

6) PO 2 
• + PO 2 

• → Inactive products + O 2 (k 6 )

where PH, POOH, P • and PO 2 
• designate an oxidation site, an hy- 

droperoxide, alkyl and peroxy radicals, respectively. δ, λ, and μ are 

stoichiometric coefficients and k i are reaction rate constants. 

This general form of mechanistic scheme allows describing a 

large variety of thermal oxidative agings differing essentially in 

their initiation step. In most cases of thermal aging, POOH decom- 

position is exclusively unimolecular at high temperature (i.e. δ = 1, 

λ = 2, μ = 0 and k 1 = k 1u ) or mainly bimolecular at low tem- 

perature ( δ = 2, λ = μ = 1, and k 1 = k 1b ), but rarely a combina- 

tion of both modes. The boundary delimiting the domains in which 

each initiation predominates over each other displays the shape of 

Fig. 2 . This boundary corresponds to a critical hydroperoxide con- 

centration [POOH] C reached when the respective rates of the two 

initiation modes are equal: 

k 1u [ POOH ] = k 1b [ POOH ] 
2 (5) 

i.e.

[ POOH ] C = 

k 1u

k 1b 

(6) 



Since both rate constants obey an Arrhenius’ law, it comes: 

[ POOH ] C = A 0 Exp

(
− E C

RT

)
(7) 

with A 0 = 

k 1u0 
k 1b0 

and E C = E 1u − E 1b where k 1u0 , E 1u , k 1b0 and E 1b are 

the Arrhenius’ parameters of the rate constants k 1u and k 1b , re- 

spectively. 

For EPO-DA matrices, typical values for these Arrhenius’ pa- 

rameters are [64] : k 1u0 = 1.3 × 10 13 s −1 , E 1u = 130 kJ.mol −1 , 

k 1b0 = 1.9 × 10 9 L.mol −1 .s −1 and E 1b = 90 kJ.mol −1 .

Since E 1u > E 1b , then E C > 0 and [POOH] C is an increasing func- 

tion of temperature. As an example, the numerical application of 

Equation (7) for EPO-DA matrices gives: [POOH] C = 1.7 × 10 −2 

mol.L −1 at 100 °C, 7.9 × 10 −2 mol.L −1 at 150 °C, and 2.6 × 10 −1 

mol.L −1 at 200 °C. 

Different chemical (e.g. FTIR spectroscopy and iodometry) or 

calorimetric techniques (DSC) can be used to measure the ini- 

tial hydroperoxide concentration [POOH] 0 . For weakly pre-oxidized 

polymers, [POOH] 0 is often close to 10 −2 mol.l −1 [ 65 , 66 ]. This 

value is of the same order of magnitude as [POOH] C at the two ex- 

posure temperatures under investigation (i.e. 120 and 150 °C). That 

is the reason why, in the present article, it will be considered that 

thermal oxidation is directly initiated in bimolecular mode: 

1b) 2POOH → P • + PO 2 
• (k 1b )

2.2. System of differential equations 

At the low conversion ratios of the thermal oxidation reaction 

(i.e. for [PH] ≈ [PH] 0 ≈ constant), the following system of differ- 

ential equations can be derived from the closed-loop mechanistic 

scheme: 

d [ P 

•] 

dt 
= k 1b [ POOH ] 

2 − k 2 C [ P 

•] + k 3 [ PO 2 
•
] [ PH ] − 2k 4 [ P 

•] 
2

− k 5 [ P 

•] [ PO 2 
•
] (8) 

d [ PO 2 
•
]

dt 
= k 1b [ POOH ] 

2 + k 2 C [ P 

•] − k 3 [ PO 2 
•
] [ PH ] − k 5 [ P 

•] [ PO 2 
•
]

− 2k 6 [ PO 2 
•
] 

2 (9) 

d [ POOH ] 

dt 
= −2k 1b [ POOH ] 

2 + k 3 [ PO 2 
•
] [ PH ] (10) 

where the oxygen concentration C is related to the oxygen partial 

pressure P O2 in the exposure environment by the classical Henry’s 

law: 

C = S . P O2 (11) 

and S is the coefficient of oxygen solubility into the polymer ma- 

trix. 

There is no rigorous analytical solution for this system of dif- 

ferential equations, which can be solved numerically without any 

simplifying assumption. However, an approached analytical solu- 

tion would be very useful because it would allow appreciating the 

behavioral trends of the reactive species [P •], [PO 2 
•], [POOH] with

key exposure parameters, in particular: temperature T and oxy- 

gen partial pressure P O2 . In addition, this analytical solution would 

then allow calculating key physico-chemical properties, from a 

practical point of view, because they can be checked experimen- 

tally, such as: oxygen consumption Q, carbonyl build-up [P = O], 

weight changes �m / m 0 , etc. (see section 2.5 ). 

Analytical solving is only possible through the use of simpli- 

fying assumptions. The most common assumption is the so-called 

“steady state” assumption according to which the radical concen- 

trations remain constant throughout the exposure duration. This 

assumption can only be justified in the steady-state regime where 

the decomposition of hydroperoxides equilibrates their formation. 

According to Equation (10) , it can be thus written: 

2k 1b [ POOH ] 
2 
∞ 

= k 3 [ PO 2 
•
] ∞ 

[ PH ] (12) 

where [ POOH ] ∞ 

and [ PO 2 
•] ∞ 

are the steady concentrations of hy- 

droperoxides and peroxy radicals, respectively. 

In summary, the application of the steady-state assumption to 

hydroperoxides is equivalent to considering a constant initiation 

rate for the thermal oxidation. Therefore, the concentrations of the 

two radical species should rapidly tend towards their steady val- 

ues: [P •] ∞ 

and [ PO 2 
•] ∞ 

.

However, it is inconceivable to consider that the radical con- 

centrations are constant during the induction period because this 

would mean that the radical species have absolutely no influence 

on the thermal oxidation kinetics. In oxygen excess, Tobolsky et al. 

[32] used an artefact to round this difficulty. They assumed that

the sum of the radical concentrations (i.e. [P •] + [ PO 2 
•] ) is also a

constant whereas each individual radical concentration can vary

freely, which leads finally to:

d [ P 

•] 

dt 
+ d [ PO 2 

•
] 

dt 
= 0 (13) 

i.e.

2k 1b [ POOH ] 
2 = 2k 6 [ PO 2 

•
] 

2 (14) 

i.e.

[ PO 2 
•
] =

(
k 1b 

k 6 

)1 / 2

[ POOH ] (15) 

These results are physically reasonable insofar as only hydroper- 

oxides and peroxy radicals are considered. Indeed, it was shown 

that the corresponding concentrations of these two reactive species 

increase in a pseudo-exponential manner with exposure time 

[ 67 , 68 ], which is in perfect agreement with the available experi- 

mental data. In contrast, the concentration changes in alkyl radi- 

cals are completely unrealistic because, according to Equation (13) , 

[P •] would be maximum at the beginning of exposure and would 

decrease continuously to finally vanish when reaching the steady- 

state regime, while the thermal oxidation reaction would be in its 

auto-acceleration phase: 

[ P 

•] = [ PO 2 
•
] ∞ 

− [ PO 2 
•
] (16) 

It seemed to us that a sound analytical kinetic model, aimed at 

describing accurately the thermal oxidation kinetics during the in- 

duction period and the auto-acceleration of the oxidation kinetics 

at the end of the induction period, and at predicting the induc- 

tion time and the lifetime of EPO-DA matrices, cannot be based 

on the steady-state assumption. In other words, this latter must be 

replaced by a more physically reasonable and mathematically con- 

sistent assumption. How to choose such an assumption? 

2.3. First novelty for solving the system of differential equations 

In the previous section, it was shown that the Equation (15) ob- 

tained in oxygen excess can be used as a starting assumption. In- 

deed, the idea that, during the entire course of thermal oxidation, 

[ PO 2 
•] is proportional to [ POOH ] is quite realistic whatever the

oxygen concentration [68] . Consequently, it was decided to gen- 

eralize this assumption to the entire range of oxygen concentra- 

tions: 

[ PO 2 
•
] = m [ POOH ] (17) 

where m is a function of the oxygen concentration C. 

The mathematical expression of m can be established by apply- 

ing the steady-state assumption to radical species. In the general 

case, Equation (13) leads to: 

2k 1b [ POOH ] 
2 = 2k 4 [ P 

•] 
2 + 2k 5 [ P 

•] [ PO 2 
•
] + 2k 6 [ PO 2 

•
] 

2 (18) 



The introduction of Equation (12) into Equation (18) leads to: 

k 4 [ P 

•] 
2 + k 5 [ P 

•] [ PO 2 
•
] − k 3 [ PH ] 

2 

[ PO 2 
•
] + k 6 [ PO 2 

•
] 

2 = 0 (19) 

whose the positive root is: 

[ P 

•] = 

k 5 [ PO 2 
•
]

2k 4 

{
−1 +

[
1 + ψ 

(
[ PO 2 

•
] 0

[ PO 2 
•
]

− 1

)]1 / 2 
}

(20) 

where 	 is a kinetic parameter quantifying the competition be- 

tween the different terminations of radical species: 

ψ = 

4 k 4 k 6

k 2 
5 

(21) 

and [ PO 2 
•] 0 is the steady concentration of peroxy radicals in oxy- 

gen excess [ 67 , 68 ]: 

[ PO 2 
•
] 0 = 

k 3 [ PH ]

2k 6 
(22) 

If, as shown by Gillen et al. [69] , ψ << 1, then there is a more 

or less wide range of oxygen concentrations for which: 

1 ≥ [ PO 2 
•
]

[ PO 2 
•
] 0 

> 

5 ψ 

1 + 5 ψ 

(23) 

In this range of oxygen concentrations, Equation (20) can be 

simplified as follows: 

[ P 

•] = 

k 6
k 5 

( [ PO 2 
•
] 0 − [ PO 2 

•
] ) (24) 

If introducing Equation (24) into Equation (9) and if applying 

the steady-state assumption to peroxy radicals, it comes finally: 

[ PO 2 
•
] ∞ 

= 

k 3 [ PH ]

2k 6 

βC 

1 + βC 

(25) 

where β−1 corresponds to the critical value of the oxygen concen- 

tration C C above which oxygen excess is reached: 

β = 

1

C C 

= 

k 6 k 2
k 5 k 3 [ PH ] 

(26) 

The corresponding critical value of the oxygen partial pressure 

P O2C in the exposure environment is deduced from the classical 

Henry’s law (Eq. 11): 

P O2C = 

C C

S 
= 

1

β S 
= 

k 5 k 3 [ PH ]

k 6 k 2 S 
(27) 

Finally, Equation (12) leads to: 

[ POOH ] ∞ 

= 

(
k 3 [ PH ] 

2k 1b 

[ PO 2 
•
] ∞ 

)1 / 2

= 

k 3 [ PH ]

2 ( k 1b k 6 ) 
1 / 2

(
βC 

1 + βC 

)1 / 2

(28) 

and 

m = 

[ PO 2 
•
]

[ POOH ] 
= 

[ PO 2 
•
] ∞

[ POOH ] ∞ 

= 

(
k 1b 

k 6 

)1 / 2 (
βC 

1 + βC 

)1 / 2

(29) 

It is now possible to integrate Equation (10) . The introduction 

of Equation (29) into Equation (10) leads to: 

d [ POOH ] 

dt 
= −2 k 1b [ POOH ] 

2 + K [ POOH ] (30) 

where K is a rate constant expressed by: 

K = m k 3 [ PH ] = k 3 [ PH ] 

(
k 1b 

k 6 

)1 / 2 (
βC 

1 + βC 

)1 / 2

(31) 

Equation (30) can be rewritten such as: 

d [ POOH ] 

dt 
= −K 

(
[ POOH ] 

2 

[ POOH ] ∞ 

− [ POOH ]

)
(32) 

i.e.

d [ POOH ]
[ POOH ] ∞

[ POOH ] 
2

[ POOH ] 
2 
∞ 

− [ POOH ]
[ POOH ] ∞

= −K dt (33) 

i.e.(
1 

[ POOH ]
[ POOH ] ∞

− 1
− 1

[ POOH ]
[ POOH ] ∞

)
d [ POOH ] 

[ POOH ] ∞ 

= −K dt (34) 

The integration of Equation (34) with respect to time t leads to: 

Ln 

(
1 − [ POOH ] ∞

[ POOH ] 

)
= −K t + a (35)

where a is a constant to be determined by considering the initial 

conditions, i.e. [ POOH ] = [ POOH ] 0 when t = 0 . 

Rearranging Equation (35) in a more adequate form leads finally 

to: 

[ POOH ] ∞ 

[ POOH ] 
= 1 + b Exp ( −K t ) (36) 

i.e.

[ POOH ] = 

[ POOH ] ∞ 

1 + b Exp ( −K t ) 
(37) 

with 

b = 

[ POOH ] ∞ 

− [ POOH ] 0
[ POOH ] 0 

(38) 

For weakly pre-oxidized samples, [ POOH ] ∞ 

� [ POOH ] 0 . Experi- 

mental measurements [ 65 , 66 ] show that: [ POOH ] ∞ 

> 10 [ POOH ] 0 , 

therefore it can be reasonably considered that: b >> 1. In a first 

approach, a value of b = 10 was chosen in this study. 

Then, the introduction of Equation (37) into 

Equation (29) gives: 

[ PO 2 
•
] = 

[ PO 2 
•
] ∞ 

1 + b Exp ( −K t ) 
(39) 

Similarly, the introduction of Equation (37) into

Equation (24) gives: 

[ P 

•] = 

k 3 [ PH ]

2k 5 

(
1 − βC

1 + βC 

1 

1 + b Exp ( −K t ) 

)
(40) 

Undoubtedly, the proportionality assumption between [ PO 2 
•]

and [ POOH ] leads to sounder analytical solutions for [ PO 2 
•] and

[ POOH ] which are valid in almost the entire range of oxygen con- 

centrations, except at the very low oxygen concentrations not sat- 

isfying Equation (23) . This validity range can be rewritten such as: 

βC > 5 ψ (41) 

In contrast, this analytical method used for solving the sys- 

tem of differential equations is not completely satisfying because 

Equation (40) , obtained by applying the steady-state assumption 

to radical species ( Eq. 24 ), gives always unrealistic changes of [P •] 

with exposure time. As in Equation (16) , [P •] decreases with ex- 

posure time, but fortunately here, this concentration remains very 

low and does not vanish when reaching the steady-state regime: 

[ P 

•] ∞ 

= 

k 3 [ PH ]

2k 5 

1 

1 + βC 

(42) 

Despite this undeniable improvement, it was decided to look 

for a more realistic equation. 



Table 2

Result of the analytical solving of the system of differential equations without using the classical simplifying as- 

sumptions. Initial and steady values.

Species Analytical solution Initial value Steady value General case Steady value Oxygen excess

[ POOH ] [ POOH ] ∞
1+ b Exp ( −K t )

[ POOH ] 0
k 3 [ PH]

2 ( k 1b k 6 ) 
1 / 2 ( βC 

1+ βC 
) 1 / 2 k 3 [ PH]

2 ( k 1b k 6 ) 
1 / 2

[ PO 2 
•] [ PO 2 

• ] ∞
1+b Exp (−K t)

[ PO 2 
•] ∞ 

[ POOH ] 0 
[ POOH ] ∞

k 3 [ PH]
2 k 6

βC
1+ βC

k 3 [ PH]
2 k 6

[ P ] [P •] ∞ ( 
1

1+b Exp (−K t) 
) 

2 
[P •] ∞ 

[ POOH ] 
2 
0 

[ POOH ] 
2 
∞

k 3 [ PH]
2 k 5

1
1+ βC

k 3 [ PH]
2 k 5

1
βC

2.4. Second novelty for solving the system of differential equations 

As in the previous section, it seemed to us interesting to 

start from the observation that, during the entire course of ther- 

mal oxidation, [P •] is proportional to [ POOH ] 2 [68] . From the 

Equations (28) and (42) established in the steady-state regime, it 

can be written: 

m 

’ = 

[ P 

•] ∞
[ POOH ] 

2 
∞ 

= 

2k 1b

k 2 C 

(43) 

It was decided to generalize this assumption to the entire 

course of thermal oxidation: 

[ P 

•] = m 

’ 

[ POOH ] 
2 = [ P 

•] ∞ 

(
1 

1 + b Exp ( −K t ) 

)2

(44) 

Undoubtedly, the proportionality assumption between [P •] and 

[ POOH ] allows avoiding the last contradictions induced by the ap- 

plication of the steady-state assumption to radical species. Indeed, 

in Equation (44) , [P •] increases with exposure time up to its max- 

imal value in the steady-state regime. It should be recalled here 

that this sounder analytical solution for [P •] is also valid in almost 

the entire range of oxygen concentrations, except at very low oxy- 

gen concentrations (see Eq. 41 ). 

All these new analytical solutions, obtained for [ POOH ] , [ PO 2 
•]

and [P •] , have been compiled in Table 2 , as well as their initial and 

steady values (both in the general case and in oxygen excess). 

2.5. Calculation of the physico-chemical properties 

From these analytical solutions, it is now possible to calculate 

several key physico-chemical properties, from a practical point of 

view, because these properties can be checked experimentally. Un- 

doubtedly, hydroperoxide concentration [POOH] and oxygen con- 

sumption Q are the most relevant properties because their math- 

ematical expressions can be derived from the closed-loop mecha- 

nistic scheme without using any additional adjustable parameter. 

Thus, they can be used to accurately determine the different rate 

constants from experiments. 

Recall that the rate of oxygen consumption writes: 

r ( C ) = −d [ O 2 ]

dt 
= k 2 C [ P 

•] − k 6 [ PO 2 
•
] 

2 (45) 

i.e.

r ( C ) = 2k 1b [ POOH ] 
2 − k 6 [ PO 2 

•
] 

2 (46)

If replacing [ POOH ] and [ PO 2 
•] by their analytical solutions in

Equation (46) , it comes: 

r ( C ) = 

k 2 3 [ PH ] 
2 

2 k 6 

βC 

1 + βC 

(
1 − βC 

2 ( 1 + βC ) 

)(
1 

1 + b Exp ( −K t ) 

)2

(47) 

i.e.

r ( C ) = r ∞ 

(
1 

1 + b Exp ( −K t ) 

)2

(48) 

with 

r ∞ 

= 2 r 0 
βC 

1 + βC 

(
1 − βC 

2 ( 1 + βC ) 

)
(49) 

and 

r 0 = 

k 2 3 [ PH ] 
2 

4 k 6 
(50) 

where r ∞ 

and r 0 are the respective steady rates of oxygen con- 

sumption in the general case and in oxygen excess. 

It should be noted that the rate constant K ( Eq. 31 ) can be also 

expressed such as: 

K = 2 ( r 0 k 1b ) 
1 / 2

(
βC 

1 + βC 

)1 / 2

(51) 

The integration of Equation (48) with respect to time t gives 

access to the concentration of oxygen consumed by the chemical 

reaction Q: 

Q = 

t

∫ 
0

r ( C ) dt (52) 

i.e.

Q = r ∞ 

t

∫
0 

dt 

[ 1 + b Exp ( −K t ) ] 
2 

(53) 

i.e.

Q = r ∞ 

[
t

∫ 
0

dt −
t 

∫ 
0 

b Exp ( −K t ) dt 

1 + b Exp ( −K t ) 
−

t

∫
0 

b Exp ( −K t ) dt 

( 1 + b Exp ( −K t ) ) 
2 

]
(54) 

i.e.

Q = 

r ∞
K 

[
Kt + Ln 

(
1 + b Exp ( −K t ) 

1 + b 

)
− 1

1 + b Exp ( −K t ) 
+ 

1

1 + b 

]
(55) 

This curve admits as asymptotic straight-line Q ∞ 

in the steady- 

state regime (i.e. when t → ∞ ): 

Q ∞ 

= 

r ∞
K 

[
Kt − Ln ( 1 + b ) − b

1 + b 

]
(56) 

It is now possible to deduce the mathematical expression of 

the induction time corresponding to the intersection point of this 

straight-line with the time axis: 

t i = 

1

K 

[
Ln ( 1 + b ) + 

b

1 + b 

]
(57) 

As b >> 1, a correct approximation is: 

t i ≈
1 − Ln ( Y 0 )

K 

(58) 

with 

Y 0 = 

[ POOH ] 0
[ POOH ] ∞ 

(59) 

It should be recalled here that K in a hyperbolic function of 

oxygen concentration Eq. 51 ). Thus, Equations (47) and ( (58) allows 



highlighting a very important feature of the thermal oxidation ki- 

netics, already put in evidence on many unfilled polymers in the 

literature, e.g. in PP [70]:  Oxidation kinetics does not only depends 

on temperature, but also on the oxygen partial pressure in the ex- 

posure environment. Indeed, increasing the oxygen concentration 

C within the sample not only reduces the induction time ( Eq. 58 ), 

but also increases the oxidation rate ( Eq. 47 ). Consequently, oxy- 

gen partial pressure can be used in combination with temperature 

to accelerate the thermal oxidation kinetics. 

Another key property, largely used in the literature to esti- 

mate the orders of magnitude of the different rate constants, is 

the carbonyl concentration [P = O]. In the closed-loop mechanism, 

these oxidation products can only be formed in initiation (1) and 

termination reactions (6) through specific chemical events (e.g. 

β scission, disproportionation, etc.) generally in competition with 

many other chemical events, in particular with hydrogen abstrac- 

tion which gives alcohols. Consequently, the calculation of the for- 

mation rate of these oxidation products requires the use of ad- 

justable parameters: 

d [ P = O ] 

dt 
= γ1 CO k 1b [ POOH ] 

2 + γ6 CO k 6 [ PO 2 
•
] 

2 (60) 

where γ1 CO and γ6 CO are the respective formation yields of car- 

bonyl products in initiation (1) and termination (6). 

In a recent publication [64] , it has been shown that at 120 

and 150 °C for the two EPO-DA matrices under study, γ1 CO = γ6 CO = 

0 . 30 ± 0 . 05 . This average value will be kept in this study. 

If replacing [ POOH ] and [ PO 2 
•] by their analytical solutions in

Equation (60) , it comes: 

d [ P = O ] 

dt 
= 

k 2 3 [ PH ] 
2 

4 k 6 

βC 

1 + βC 

(
γ1 CO + γ6 CO 

βC 

1 + βC 

)

×
(

1 

1 + b Exp ( −K t ) 

)2

(61) 

i.e.

d [ P = O ] 

dt 
= r CO ∞ 

(
1 

1 + b Exp ( −K t ) 

)2

(62) 

with 

r CO ∞ 

= r 0 
βC 

1 + βC 

(
γ1 CO + γ6 CO 

βC 

1 + βC 

)
(63) 

The integration of Equation (62) with respect to time t gives a 

mathematical expression similar in form to Q, thus admitting the 

same induction time t i : 

[ P = O ] = 

r CO ∞
K 

[
Kt + Ln 

(
1 + b Exp ( −K t ) 

1 + b 

)

− 1

1 + b Exp ( −K t ) 
+ 

1

1 + b 

]
(64) 

3. Experimental

3.1. Materials 

The two EPO-DA matrices under study result from the re- 

action of a common bi-functional epoxy monomer: diglycidyl 

ether of bisphenol F (DGEBF) or diglycidyl ether of bisphenol A 

(DGEBA), with an aromatic diamine hardener: 9,9-bis(3-chloro-4- 

aminophenyl)fluorene (CAF). Films of unfilled matrices, with thick- 

nesses typically ranging between 25 and 100 μm, were produced 

by compression molding then post-cured under primary vacuum 

(i.e. 10 −3 bar) in accordance with the recommended industrial cure 

cycle, with the objective of reaching the maximum crosslinking 

Table 3

Molar mass of the repetitive monomer unit (mUCR), density (r) and

concentration in oxidation sites (PH) for perfect EPO-DA networks.

Matrix m UCR (g.mol −1 ) ρ [PH] (mol.L −1 ) T g ( °C)

DGEBF-CAF 1041 1.25 14.4 158

DGEBA-CAF 1097 1.25 13.7 182

Abbreviations: Diglycidyl ether of bisphenol F (DGEBF), Diglycidyl ether

of bisphenol A (DGEBA) and 9,9-bis(3-chloro-4-aminophenyl)fluorene

(CAF).

density while avoiding any undesired pre-oxidation before expo- 

sure to thermal ageing. These precautions allowed minimizing the 

concentration in structural defects (in particular, in hydroperoxides 

POOH) in both EPO-DA matrices. That is the reason why, as ex- 

plained in previous in section 2.3 (see Equation (38) ), a high value 

was chosen for parameter b in this study (typically b = 10). 

After processing, the films were characterized by conventional 

laboratory techniques. In particular, their glass transition tempera- 

ture (T g ) was determined by differential scanning calorimetry (DSC, 

with a 20 °C.min 

−1 heating rate, under nitrogen) and confirmed 

by mechanical spectrometry (DMA, in tensile mode, with a 1 Hz 

frequency and a 2 °C.min 

−1 heating rate, under nitrogen). These 

measurements were found very close to the theoretical values of 

T g determined with the Di Marzo’s equation for perfect networks 

(i.e. without dangling chains) [71] : T g ≈ 158 °C for DGEBF-CAF and 

182 °C for DGEBA-CAF. 

In addition, the concentration in oxidation sites [PH] was esti- 

mated from the knowledge of the repetitive monomer unit of per- 

fect network. These concentrations were found to be roughly the 

same for both matrices: [PH] ≈ 14.4 mol.L −1 for DGEBF-CAF and 

13.7 mol.L −1 for DGEBA-CAF. All these physico-chemical character- 

istics have been compiled in Table 3 for the two EPO-DA matrices 

under study. 

3.2. Experimental procedures 

The thermal oxidation kinetics of DGEBF-CAF and DGEBA-CAF 

matrices was studied at 120 and 150 °C under an oxygen partial 

pressure ranged between 0.21 bar (in air-ventilated ovens) and 10 

bars (in autoclaves) for a minimum duration of 3 months. All the 

films were periodically removed from the ageing chambers and 

cooled to room temperature in a desiccator containing silica gel for 

preventing any moisture recovery prior to be characterized by FTIR 

spectrophotometry. The FTIR spectra were recorded in a transmis- 

sion mode between 400 and 4000 cm 

−1 with a Perkin Elmer Fron- 

tier apparatus, after having averaged the 16 scans obtained with 

a minimum resolution of 4 cm 

−1 . As already shown in a recent 

publication [64] , the main structural modifications were observed 

in the carbonyl region where two new wide absorption bands ap- 

peared and grew rapidly with exposure time: one centered around 

1680-1690 cm 

−1 , and the other around 1720-1730 cm 

−1 . As an ex- 

ample, Fig. 3 shows the changes over time in the FTIR spectrum 

of DGEBF-CAF matrix at 150 °C under 0.21 bar of oxygen (i.e. am- 

bient air). These two bands were assigned to amides and other 

types of carbonyl products, respectively. Unfortunately, the great 

variety of these latter products (aldehydes, carboxylic acids, phenyl 

formates, etc.), often resulting from oxidation induced chain scis- 

sions in the hydroxyl propyl ether segment [72] , did not allow 

identifying them precisely. Their average concentration throughout 

the film thickness [P = O] was determined by applying the classical 

Beer-Lambert’s law: 

[ P = O ] = 

OD

ep ε 
(65) 

where OD is the optical density of the IR absorption band centered 

at 1720-1730 cm 

−1 (dimensionless), ε is the corresponding molar 



Fig. 3. Changes in the FTIR spectrum of DGEBF-CAF matrix during its thermal age- 

ing at 150 °C under 0.21 bar of oxygen (i.e. ambient air). The final spectrum (in sky

blue) was recorded after 156 hours of thermal exposure.

Fig. 4. Carbonyl build-up in 25 μm thick films of DGEBF-CAF matrix at 150 °C be- 

tween 0.21 (ambient air) and 10 bars of oxygen. Comparison between simulations

with the numerical model (solid lines) and experimental data (points) [64] .

extinction coefficient (expressed in L.mol −1 .cm 

−1 ), and ep is the 

film thickness (in cm). 

For carbonyl products, typical values of ε are ranged between 

150 L.mol −1 .cm 

−1 (for ketones) and 850 L.mol −1 .cm 

−1 (for car- 

boxylic acids) [ 65 , 73-76 ]. In a first approximation, an average value 

of 500 L.mol −1 .cm 

−1 was chosen for ε in the present study. 

4. Checking the validity of the analytical solution

The numerical model recently developed for predicting the 

thermal oxidation kinetics of the whole family of EPO-DA matrices 

[64] was naturally chosen to check the reliability of the analytical

Equation (64) in this study. Examples of numerical simulations of

experimental data between 0.21 and 10 bars of oxygen at 150 °C for

DGEBF-CAF and at 120 °C for DGEBA-CAF are recalled in Figures 4

and 5 , respectively. It can be clearly seen that the numerical model

is capable of accurately accounting for the four main successive

stages commonly observed throughout the course of thermal ox- 

idation, i.e.: the period of induction, the sharp auto-acceleration of 

oxidation kinetics at the end of the induction period, the steady- 

state regime and finally, the sudden slow-down of oxidation kinet- 

ics when the concentration of oxidation sites vanishing. 

The same simulations were performed with analytical 

Equation (64) . Examples of comparisons between the simula- 

tions with Equation (64) and the numerical model at 150 °C for 

DGEBF-CAF and at 120 °C for DGEBA-CAF are shown in Figures 6 

and 7 , respectively. It can be clearly seen that Equation (64) is 

also capable of accurately accounting for all stages of the ther- 

Fig. 5. Carbonyl build-up in 25 μm thick films of DGEBA-CAF matrix at 120 °C be- 

tween 0.21 (ambient air) and 10 bars of oxygen. Comparison between simulations

with the numerical model (solid lines) and experimental data (points) [64] .

Fig. 6. Simulation of carbonyl build-up in the DGEBF-CAF matrix at 150 °C under

0.21 (ambient air), 3 and 10 bars of oxygen. Comparison between the analytical

Equation (64) (dashed black lines) and the numerical model (solid colored lines).

Fig. 7. Simulation of carbonyl build-up in the DGEBA-CAF matrix at 120 °C under

0.21 (ambient air), 1, 5 and 10 bars of oxygen. Comparison between the analytical

Equation (64) (dashed black lines) and the numerical model (solid colored lines).

mal oxidation kinetics, except the last one. Indeed, recall that 

Equation (64) was established by assuming low conversion ratios 

(i.e. [PH] ≈ [PH] 0 ≈ constant). For this reason, it cannot account 

for the sudden slow-down of oxidation kinetics at long-term. This 

behavioral deviation between the analytical and numerical mod- 

els appears when the concentration in oxidation sites typically 

decreases by about ten percent, and it progressively increases 

with exposure time. However, since the embrittlement of EPO-DA 

matrices is generally observed at low conversion ratios, i.e. during 

the induction period or the auto-acceleration of the oxidation 



Table 4

Values of parameters used for simulating the carbonyl build-up in DGEBF-CAF and

DGEBA-CAF matrices at 120 and 150 °C with Equation (64) .

Matrix DGEBF-CAF DGEBA-CAF

T ( °C) 120 150 120 150

b (mol.L −1 ) 10 10 10 10

S (mol.L −1 .Pa −1 ) 1.45 × 10 −7 1.45 × 10 −7 1.45 × 10 −7 1.45 × 10 −7 

γ1 CO (%) 0.3 0.3 0.3 0.3

γ6 CO (%) 0.3 0.3 0.3 0.3

r 0 (mol.L −1 .s −1 ) 4.5 × 10 −5 2.5 × 10 −4 6.0 × 10 −5 6.5 × 10 −4 

β (L.mol −1 ) 13 40 15 18

k 1b (L.mol −1 .s −1 ) 2.0 × 10 −3 2.0 × 10 −2 2.0 × 10 −3 8.0 × 10 −3 

Table 5

Critical values of oxygen concentration and oxygen partial pressure in

DGEBF-CAF and DGEBA-CAF matrices at 150 and 120 °C.

Matrix DGEBF-CAF DGEBA-CAF

T ( °C) 120 150 120 150

C C (mol.L −1 ) 2.3 × 10 −1 7.5 × 10 −2 2.0 × 10 −1 1.7 × 10 −1 

P O2C (bar) 15.9 5.2 13.8 11.5

kinetics, the domain of validity of the analytical model (and thus, 

Eq. 64 ) is largely sufficient in order to apply the current method- 

ology for lifetime prediction thereafter. From these comparisons, 

it can be thus concluded that the reliability of Equation (64) is 

demonstrated. 

The values of the seven adjustable parameters used for simulat- 

ing the carbonyl build-up with Equation (64) in Figures 6 and 7 are 

reported in Table 4 . Do not forget that four of these parameters 

were already fixed in previous sections from theoretical considera- 

tions (b), or determined in a previous publication [64] (S, γ1 CO and 

γ6 CO ). Finally, the simulations allowed only identifying the three 

remaining parameters characterizing the thermal oxidation behav- 

ior of the two EPO-DA matrices: r 0 , β and K (i.e. k 1b ). Their values 

determined at 120 and 150 °C call for the following comments: 

i) k 1b takes almost the same values as those recently determined

with the numerical model in reference [64] . It is thus con- 

firmed that k 1b obeys an Arrhenius law with the same values

of pre-exponential factor and activation energy given just be- 

low Equation (7) .

ii) In contrast, β and r 0 show much more complicated variations

with temperature because these two parameters depend on

rate constants k 3 and k 6 (see Eq. (26) and Eq. (50) ) which, as

shown in reference [64] , are affected by the molecular mobility

and, for this reason, no longer obey an Arrhenius’ law in the

action zone of the glass transition. Of course, the impact of the

molecular mobility on β and r 0 is expected to be more pro- 

nounced for the DGEBF-CAF matrix because its glass transition

temperature (T g = 158 °C) is much closer to the two exposure

temperatures under investigation. This is exactly what can be

seen in Table 4: When increasing the temperature from 120 to

150 °C, β increases faster whereas r 0 increases slower for this

epoxy matrix, in accordance with the temperature variations of

k 3 and k 6 previously reported in reference [64] .

The critical values of the oxygen concentration C C and oxygen

partial pressure P O2C above which oxygen excess is reached were 

deduced from the values of β using Equations (26) and (27) , re- 

spectively. As expected, C C and P O2C also show complicated varia- 

tions with temperature but they vary in the opposite direction of 

β . In the glass transition zone (i.e. at 150 °C for DGEBF-CAF), it is 

found that P O2C is about 5 bars, i.e. a value often reported for EPO- 

DA networks in the literature, e.g. in reference [77] . In the glassy 

domain, however, P O2C is found to be between two and three times 

higher, which requires realizing thermal ageing experiments under 

very high oxygen partial pressures (typically 50 bars) for accessing 

the thermal oxidation kinetics in oxygen excess. 

5. Using the analytical solution for determining the accelerated

aging conditions

The analytical kinetic model developed in previous sections 

can be easily implemented into common mechanical calculation 

codes for determining the consequences of oxidation on mechan- 

ical properties. In addition, this model can be used to determine 

the accelerated aging conditions inducing a simple acceleration of 

the natural aging kinetics without any deformation of the struc- 

tural degradation state. 

To accelerate the thermal aging, it is usual to increase the ex- 

posure temperature T. In general, care is taken not to change of 

physical state (e.g. not to pass from glassy to rubbery state) be- 

cause the literature reports examples of the impact of the molec- 

ular mobility on the oxidation kinetics [64] . However, as repeat- 

edly shown in the literature, e.g. in references [ 16 , 45 ], the rise in 

temperature causes a reduction in the thickness of the superficial 

oxidized layer (TOL), which will affect the global mechanical prop- 

erties of the sample, but can also completely modify its mode of 

rupture when it is mechanically stressed. Fortunately, it is possible 

to play on another environmental factor to keep TOL constant: the 

oxygen partial pressure P O2 . 

According to Audouin et al. [23] , the steady value of TOL can be 

estimated by using a simple scaling law: 

TOL ≈
(

D C

r ∞ 

)1 / 2

(66) 

where C and r ∞ 

are the oxygen concentration (Eq. 11) and the 

steady value of oxidation rate ( Eq. 49 ) at the sample surface, re- 

spectively. 

As already shown by Audouin et al. [23] , two extreme ki- 

netic regimes can be distinguished (see Fig. 1 ): i) When the oxy- 

gen concentration C is much higher than its critical value C C 

above which oxygen is in excess (i.e. for βC � 1 ), r ∞ 

≈ r 0 , thus 

Equation (66) writes as follows: 

TOL ≈
(

D C

r 0 

)1 / 2

(67) 

The introduction of the Henry’s law (11) into

Equation (67) gives finally: 

TOL ≈
(

D S P O2

r 0 

)1 / 2

(68) 

Remember that, in a given physical state (i.e. in rubbery or 

glassy state), r 0 and D obey an Arrhenius law. Their respective ac- 

tivation energies will be noted E r and E D thereafter. In contrast, S 

erratically varies with temperature, so that it is generally consid- 

ered independent of temperature [78] . Finally, the introduction of 

these temperature dependences into Equation (68) leads to: 

TOL ∝ P 

1 / 2 
O2 

Exp 

(
−E TOL

RT

)
(69) 



Fig. 8. Decomposition of the oxidation rate (black line) into a series of power func- 

tions (colored lines). The equations of these different functions are specified nearby

their domain of validity.

with 

E TOL = 

1 

2 

( E D − E r ) (70) 

It should be pointed out that Equation (69) presents a real 

physical meaning as it allows accounting for the general trends 

of the diffusion-limited oxidation effects experimentally observed 

for many polymers by several authors. First, it well predicts that 

TOL increases according to the square root of the oxygen par- 

tial pressure P O2 , as observed for instance for PE and its EPR 

copolymer [ 23 , 35 , 38 ]. In addition, as in most cases: E D < E r , i.e. 

E TOL < 0 , it also predicts that TOL is a decreasing function of tem- 

perature, as already reported between 150 and 200 °C in air for 

epoxy matrices [ 16 , 45 ]. In this latter case, it was also shown that 

Equation (69) gives the correct order of magnitude of TOL. ii) In 

contrast, when C is much lower than C C (i.e. for βC 
 1 ), r ∞ 

≈
2r 0 βC , thus Equation (68) writes as follows: 

TOL ≈
(

D 

2r 0 β

)1 / 2

(71) 

In this case, TOL only depends on temperature. Finally, the 

introduction of the temperature dependences in a given physi- 

cal state (i.e. in rubbery or glassy state) of r 0 , β and D into 

Equation (71) leads to: 

TOL ∝ Exp 

(
−E TOL

RT 

)
(72) 

with 

E TOL = 

1 

2 

(
E D − E r − E β

)
(73) 

Equation (72) (or a very similar formulation) was shown to 

be particularly suitable for capturing the general trends of the 

diffusion-limited oxidation in PP [37] . 

At intermediary oxygen concentrations, i.e. when the increase 

in r ∞ 

is strongly slowed down with the increase in C (see Fig. 1 ), 

r ∞ 

can be approached by a simple power law in each elementary 

interval �C of the entire concentration range under investigation 

(see Fig. 8 ): 

r ∞ 

≈ A r 0 ( βC ) 
n 

(74) 

with A = 0 . 85 ± 0 . 10 . 

Exponent n is close to unity when βC 
 1 , but decreases 

rapidly with C to finally almost cancel when βC � 1 . 

The introduction of Equation (74) into Equation (66) leads to: 

TOL ≈
(

D C 

1 −n 

r 0 βn 

)1 / 2

(75) 

The introduction of the Henry’s law (11) into

Equation (75) gives finally: 

TOL ≈
(

D S 1 −n P 

1 −n 
O2 

r 0 βn 

)1 / 2

(76) 

As expected, in the general case, TOL depends both on temper- 

ature and oxygen partial pressure. Finally, the introduction of the 

temperature dependences in a given physical state (i.e. in rubbery 

or glassy state) of r 0 , β , D and S into Equation (76) leads to: 

TOL ∝ P 

( 1 −n ) / 2 
O2 

Exp 

(
−E TOL

RT

)
(77) 

with 

E TOL = 

1 

2 

(
E D − E r − n E β

)
(78) 

It can be noticed that Equations (77) and (78) can be consid- 

ered valid over the whole range of concentrations under investi- 

gation, because they allow finding the equations of the two ex- 

treme kinetic regimes if considering the corresponding extreme 

values of exponent n, i.e. Equations (69) and (70) if taking n = 0 , 

and Equations (72) and (73) if taking n = 1 . That is the reason why 

this general Equation (77) will be used, in the next paragraphs, to 

predict the combined effects of oxygen partial pressure and tem- 

perature. 

Let us now consider a natural aging, denoted “N”, characterized 

by a couple of mild environmental conditions ( P O2N , T N ). An accel- 

erated aging “A” will be representative of this natural aging only if 

TOL remains unchanged: 

TO L N 
TO L A 

= 1 (79) 

i.e. if the accelerated environmental conditions ( P O2A , T A ) satisfy

the following equation:(
P O 2 N 

P O 2 A 

) 1 −n
2

Exp 

[
−E TOL

R

(
1

T N 

− 1

T A

)]
= 1 (80) 

i.e.

P O2 A = P O2 N Exp 

[
− 2E TOL

( 1 − n ) R 

(
1

T N 

− 1

T A

)]
(81) 

Equation (81) predicts that the conditions for accelerating nat- 

ural ageing can be represented by a curve of exponential shape in 

the ( P O2 , T ) map. 

Let us now consider the cruising flight conditions of a commer- 

cial airliner: P O2 N 
= 0 . 21 bar (i.e. for ambient air) and T N = 70 ◦C . In

these conditions, TOL is typically 1.2 mm for EPO-DA matrices [45] . 

Let us only focus on accelerated ageing conditions allowing to sig- 

nificantly reduce the duration of the ageing experiments, in partic- 

ular high values of P O2 for which it can be assumed that n 
 1 (see 

Fig. 8 ). In this case, Equation (81) can be simplified as follows: 

P O2 A = P O2 N Exp 

[
−2E TOL

R

(
1

T N 

− 1

T A

)]
(82) 

An example of accelerated ageing conditions predicted with 

Equation (82) has been plotted in Fig. 9 for the DGEBA-CAF matrix 

in glassy state (T g ≈ 182 °C). The value of E D recently identified be- 

tween 10 and 110 °C for the EPO-DA matrices cross-linked with an 

aromatic diamine hardener [64] was used for this calculation. In 

addition, E r was estimated from the activation energies of the rate 

constants k 3 and k 6 in glassy state determined for the whole fam- 

ily of EPO-DA matrices in the same publication [64] . Indeed, from 

Equation (50) , it can shown that: 

E r = 2 E 3 − E 6 (82) 

Finally, E TOL was deduced from Equation (70) . The correspond- 

ing values of E D , E r and E TOL are compiled in Table 6 . 



Fig. 9. Accelerated aging conditions representative of a natural aging of DGEBA-CAF

matrix under 0.21 bar of oxygen at 70 °C predicted with Equation (82) .

Table 6

Activation energies of oxygen diffusion, oxidation rate

and thickness of oxidized layer for DGEBF-CAF and

DGEBA-CAF matrices in glassy state.

E D (kJ.mol -1 ) 20

E r (kJ.mol −1 ) 112

E TOL (kJ.mol −1 ) - 46

In Fig. 9 , it can be observed that the oxygen partial pressure 

should be considerably increased, typically up to 527 bars for 

DGEBA-CAF, in order to keep TOL at a constant value when the 

temperature is raised up to 180 °C. This result is not surprising be- 

cause when βC � 1 , the oxidation rate r ∞ 

is almost no longer de- 

pendent on P O2 . It is therefore increasingly difficult to counterbal- 

ance the effects of an increase in temperature by an increase in 

oxygen partial pressure. In other words, to have an effect of P O2 

comparable to that of temperature on TOL, P O2 must be increased 

much more than temperature. 

Such extreme environmental conditions are necessary to avoid 

a deformation of the structural degradation state and thus, to guar- 

antee the reliability of the results of mechanical tests. Unfortu- 

nately, they may be very difficult to access with the current ex- 

perimental tools available in research laboratories. 

6. Conclusion

The system of differential equations derived from the so-called 

closed-loop mechanistic scheme was solved analytically without 

making the usual simplifying assumptions that seriously degraded 

the reliability of all the analytical kinetic models established until 

then, but only generalizing the proportionalities observed between 

the different steady concentrations of reactive species: [ POOH ] , 

[ PO 2 
•] and [P •] , to the entire course of thermal oxidation. These

proportionality assumptions were found quite realistic. They led to 

a sounder analytical kinetic model capable of accurately describing 

the three first stages of the thermal oxidation kinetics: the induc- 

tion period, the auto-acceleration of the oxidation kinetics at the 

end of the induction period, and the steady-state regime. This new 

kinetic model was used to identify the thermal oxidation behav- 

ior at 120 and 150 °C in a large range of oxygen partial pressures 

(between 0.21 and 10 bars) of two epoxy-diamine matrices con- 

sidered for composite structure applications at low to moderate 

temperatures in the civil aeronautical sector. It can be now eas- 

ily implemented into commercial mechanical calculation codes for 

determining the consequences of oxidation on mechanical proper- 

ties. 

In addition, the new analytical model was used to predict the 

accelerated aging conditions inducing a simple acceleration of the 

natural aging kinetics without any deformation of the structural 

degradation state. These accelerated aging conditions correspond 

to a curve of exponential shape in the ( P O2 , T ) map. It was found 

that the oxygen partial pressure must be increased much more 

than the temperature to avoid any deformation of the structural 

degradation state in the two EPO-DA matrices under study. How- 

ever, accessing such extreme environmental conditions could pose 

almost insurmountable problems in practice. 
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