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Abstract

We introduce weak barycenters of a family of probability distributions, based on
the recently developed notion of optimal weak transport of mass [25], [9]. We
provide a theoretical analysis of this object and discuss its interpretation in the
light of convex ordering between probability measures. In particular, we show that,
rather than averaging the input distributions in a geometric way (as the Wasser-
stein barycenter based on classic optimal transport does) weak barycenters extract
common geometric information shared by all the input distributions, encoded as
a latent random variable that underlies all of them. We also provide an iterative
algorithm to compute a weak barycenter for a finite family of input distributions,
and a stochastic algorithm that computes them for arbitrary populations of laws.
The latter approach is particularly well suited for the streaming setting, i.e., when
distributions are observed sequentially. The notion of weak barycenter and our
approaches to compute it are illustrated on synthetic examples, validated on 2D
real-world data and compared to standard Wasserstein barycenters.

1 Introduction

Optimal transport (OT) [40] has had a tremendous impact in the machine learning (ML) community
recently, as it provides meaningful and implementable distances between probability distributions
[33], thus advancing many aspects in the field, see e.g. [7, 42, 32]. The space of probability measures
on Rd with finite second moment can be metrised with the Wasserstein-2 distance, the computation
of which amounts to finding a transport plan that minimises the quadratic average cost of transporting
mass from a source probability measure onto a target one. In this context, a natural method for
averaging a finite family of probability measures is to compute their Fréchet mean, with respect to
the Wasserstein-2 distance, which corresponds to the Wasserstein barycenter introduced in [1].

The goal of the present work is to explore theoretical features and potential applications to ML of
barycenters of probability measures analogously defined in terms of optimal weak transport (OWT,
see [25]) or more precisely quadratic barycentric transport costs. In a nutshell, for a source measure µ
and a target measure ν, the OWT problem aims to transport mass so that the conditional spatial mean
of target support points y, given their source support points x, is close to x in average. This amounts
to finding an intermediate measure η, possibly more concentrated than ν in the sense of convex
ordering of probability measures, which is close to µ with respect to the Wasserstein-2 distance.

The main motivation of our work is to investigate the effect and meaning of combining a family of
probability measures using OWT instead of OT. To that end, we will define the weak barycenter of
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this family through an optimisation problem, and discuss some of its properties. Importantly, we will
see that, rather than averaging the input distributions in a metric sense, solving a weak barycenter
problem corresponds to finding probability measures that encode geometric or shape information
shared across all of them. In fact, the weak barycenter problem will be interpreted as finding a
latent random variable common to all the input distributions. Implications of this latent variable
interpretation, in terms of robustness to outliers, will also be drawn in our work.

A second motivation for our work is to develop and implement computational methods for weak
barycenters, capitalising on the fact that the optimal weak coupling between any pair of distributions,
with finite second moments, is always realised by a unique optimal map. This property is in sharp
contrast to standard OT, where the absolute continuity with respect to the Lebesgue measure of the
source or target measure is typically needed to grant the existence and uniqueness of a map—the
so-called Monge map— realising the optimal coupling between them. This map is often required in
different ways to compute Wasserstein barycenters (see [5], [43] or [34]).

Similarly to the Wasserstein barycenter problem, we will develop a fixed-point formulation of the
weak barycenter problem, based on OWT plans. This allows us to, following [5, 43], construct an
iterative procedure to compute a weak barycenter for a finite family of distributions and analyse its
convergence properties. We will also define and study the so-called weak population barycenters, that
deal with a population of probability measures distributed according to a given law Q supported on
the Wasserstein-2 space, as in [29] for the OT case. Extending ideas from [34], we will then propose
an iterative stochastic algorithm for online computation of the weak population barycenter, from a
stream of probability measures sampled from Q. We will then provide numerical simulations using
this proposed method, in order to illustrate the geometric meaning of the weak barycenter, and we
will compare it with related objects obtained with standard OT or its entropy-regularised counterpart.

Organisation of the paper. Sec. 2 documents the background on OWT and the assumptions
underlying our work. Sec. 3 analyses the weak barycenter problem, interprets it in the light of convex
ordering and a latent variable model and addresses the case of an infinite population of distributions.
Sec. 4 introduces two algorithms for computing the weak barycenter in the finite or population
settings. Sec. 5 and 6 present the experimental setting and validation of our proposal respectively.
Lastly, Sec. 7 discusses our findings and future research questions. The Appendix contains all the
proofs, additional details or our simulations and the code of our experiments.

2 Background : optimal weak transport and Wasserstein barycenter

The optimal transport (OT) problem [41] aims to find the lowest cost to transfer the mass from
one probability measure onto another. Therefore, OT is a natural way to compare two probability
distributions in terms of their geometric information. In particular, the Wasserstein-p distance Wp,
associated with the Euclidean cost in Rd, metrises the space Pp(Rd) of probability measures on Rd
with finite p-moment. Precisely, for µ, ν ∈ Pp(Rd),

Wp(µ, ν) =

(
min

π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖pdπ(x, y)

)1/p

, (1)

where π is a transport plan between µ and ν, that is, an element of the set Π(µ, ν) of probability
measures on the product space Rd × Rd with marginals µ and ν. For p = 2 and µ absolutely
continuous (a.c.), the unique optimal plan is concentrated on the graph of a measurable map called
Monge map such that ν = T#µ, see eq. (14) in Appendix A.1.

Optimal weak transport. We consider here the optimal weak transport (OWT) problem introduced
in [25] and in particular the special case of barycentric transport costs. The OWT problem is then
defined for µ, ν ∈ P2(Rd) by

V (µ|ν) = inf
π∈Π(µ,ν)

∫
Rd
‖x−

∫
Rd
ydπx(y)‖2dµ(x), (2)

where πx is the disintegration of the transport plan π with respect to the first marginal µ, i.e.
π(dxdy) = πx(dy)µ(dx). As our work strongly leans on OWT theory, we recall in Appendix A.2,
Th. 6, that V is continuous with respect to the Wasserstein metric [9]. Additionally, the two following
results from [8] (stated for our specific setting) lay the ground for our proposed weak barycenters.
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Theorem 1 ([8], Theorem 1.2). The problem (2) admits a unique minimiser.

This first result strongly differs from the classical OT setting, for which the uniqueness of an optimal
transport plan is not guaranteed for arbitrary measures. The optimisation problem in Eq. (2) can
also be reformulated thanks to the Brenier-Strassen theorem [24], [8], through the notion of convex
ordering. We denote by η ≤c ν the convex order of measures, meaning that

∫
φdη ≤

∫
φdν for any

convex function φ that is nonnegative or integrable with respect to η + ν. By Strassen’s theorem [39],
two distributions are in convex order if and only if there exists a martingale coupling between them.
The following theorem is a generalisation of the result originally proved in [24], Th. 1.2.

Theorem 2 ([8], Theorem 1.4). Let µ ∈ P2(Rd) and ν ∈ P1(Rd). There exists a unique η∗ ≤c ν
such that

W 2
2 (µ, η∗) = inf

η≤cν
W 2

2 (µ, η) = V (µ|ν). (3)

Moreover, there exists a convex function ψ : Rd → R of classC1 with∇ψ being 1-Lipschitz, such that
∇ψ#µ = η∗. Finally, the optimal coupling πµ,ν ∈ Π(µ, ν) verifies

∫
ydπµ,νx (y) = ∇ψ(x) µ-a.s.

The measurable map, or barycentric projection, Sνµ(x) :=
∫
Rd ydπµ,νx (y) associated to the plan

πµ,ν achieving the minimum in Eq. (2) is consequently uniquely defined and will be called optimal
barycentric projection. From this notation, we can write the OWT cost in terms of an OT cost
according to V (µ|ν) = W 2

2 (µ, Sνµ#µ). We emphasise that Sνµ is directly related to the optimisation
problem (2), whereas applied works such as [37, 35] make use of a barycentric projection constructed
from a transport plan solving an OT problem between µ and ν (often regularised) as a substitute for
the Monge map, which may not exist (more details on Sνµ are displayed in Appendix A.3).

Last, let us note that OWT is somehow also related to the martingale OT problem developed in
the stochastic finance community [12, 2, 26], which puts the focus on the optimal transfer of mass
between distributions assumed to be in convex order themselves.

Wasserstein barycenter. The classical Wasserstein barycenter problem for a set of probability
measures ν1, . . . , νn ∈ P2(Rd) with weights λ1, . . . , λn in the simplex (i.e. λi ≥ 0 and

∑n
i=1 λi =

1) is defined [1] by

arg min
µ∈P2(Rd)

n∑
i=1

λiW
2
2 (µ, νi). (4)

The Wasserstein barycenter has been extensively studied both theoretically and numerically [29, 43,
5, 14]. Regarding the numerical part, [38] focuses on the computation of Wasserstein barycenters for
a fixed number of measures and a stream of observations per measure; additionally, [31] proposed an
entropy-regularised alternative via stochastic optimisation for computing the Wasserstein barycenter
of a.c. distributions only from observations. Constrained by their assumption of a.c., [43] computes
the Wasserstein barycenter by smoothing the observed empirical distributions. Furthermore, [20]
compares the complexity of both the sample Wasserstein barycenter and a stochastic approximation to
estimate a population barycenter (discrete measures and entropic regularisation). Finally, the authors
of [3] recently proposed an algorithm to compute the barycenters in polynomial time.

3 Optimal weak transport barycenters and latent variable interpretation

3.1 Definition and basic properties

In a similar fashion, based on the weak transport cost in Eq. (2), we propose the following variant:

Definition 1. The set of weak barycenters of a finite family of measures {νi}i=1,...,n ∈ P2(Rd) with
weights {λi}i=1,...,n in the simplex is defined as

arg min
µ∈P2(Rd)

n∑
i=1

λiV (µ|νi). (5)

Thus, a weak barycenter averages, with respect to the Wasserstein metric, an optimally chosen set of
probability measures {η1, . . . , ηn} which are more concentrated than the corresponding νi, in the
sense that ηi ≤c νi for each 1 ≤ i ≤ n. The existence of a solution is established as follows:
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Proposition 1. The weak barycenter problem in Eq. (5) admits a minimiser µ ∈ P2(Rd).

See Sec. B of the Appendix for the proof of the above Proposition (which relies on Prokhorov’s
theorem) and all the proofs for this Section. Uniqueness is in general not granted: we next show
that the set of solutions is indeed an interval, with respect to the partial order of convex ordering of
probability measures.

In the following, we denote by X and Yi random variables with respective laws µ and νi, for
1 ≤ i ≤ n, and δa the Dirac measure supported on a ∈ Rd.
Lemma 1. If µ is a weak barycenter of {νi}i=1...,n and µ′ ≤c µ, then µ′ also is a weak barycenter.
In particular, the Dirac measure supported on Eµ(X) is always a weak barycenter. Moreover, a
Dirac distribution δω̄ is a weak barycenter if and only if ω̄ =

∑n
i=1 λiEνi(Yi).

A consequence of the above lemma is that for any weak barycenter µ,

Eµ(X) =

n∑
i=1

λiEνi(Yi) , (6)

and the value of the weak barycenter problem is given by

inf
µ∈P2(Rd)

n∑
i=1

λiV (µ|νi) =

n∑
i=1

λi‖E(Yi)‖2 − ‖
n∑
i=1

λiE(Yi)‖2. (7)

We can also derive the following characterisation on the set of weak barycenters:
Proposition 2. A measure µ ∈ P(Rd) is a weak barycenter of {νi}i=1...,n if and only if its mean
satisfies (6) and µ̂ ≤c ν̂i holds for all 1 ≤ i ≤ n, where ν̂ denotes the centered version of a law ν.

For instance, in the case of one dimensional Gaussian distributions νi = N (m,σ2
i ), the set of weak

barycenters includes {µ = N (m,σ2) | 0 ≤ σ2 ≤ min1≤i≤n σ
2
i }.

A natural question is whether a "maximal” weak barycenter exists, in the sense of convex ordering
(up to translation by the mean). For d = 1, the answer is affirmative. When the means E(Yi) are
equal, this follows from the complete lattice property of the set of probability measures with respect
to the convex ordering (see [28]); the general case can then be reduced to the latter using Proposition
2. For d ≥ 2, this property is in general not true and the answer depends on the family {νi}i=1...,n.

In the particular case of a.c. input measures, we can bound the distance between the Wasserstein and
weak barycenters by the variances of the distributions (νi)1≤i≤n. The barycenters are then closer the
more concentrated each νi is.
Lemma 2. Let ν1, . . . , νn ∈ P2(Rd) be a.c., at least one of them with bounded density. Let µ̄ and µ̃
respectively denote the weak and the Wasserstein barycenters. Then

W 2
2 (µ̄, µ̃) ≤ 2

n∑
i=1

λi
(
E‖Yi‖2 − ‖EYi‖2

)
.

3.2 Weak barycenters as latent variables

The weak barycenter encodes common geometric information present in all the input measures
considered, therefore, it can be intuitively and rigorously interpreted as being the distribution of a
latent variable underlying the realisations of random variables of laws νi for all 1 ≤ i ≤ n.
Theorem 3. Let µ be a weak barycenter of {νi}i=1...,n. Then, for each 1 ≤ i ≤ n, a random
variable Yi ∼ νi can be realised as

Yi = X + (EYi − EX) + Ȳi,

where X ∼ µ and Ȳi = Yi − E(Yi|X) is centered conditionally on X . Moreover, one has Sνµ(X) =
X + (EYi − EX) for all i = 1, . . . , n. Finally, we have E(Yi − EYi|X − EX) = X − EX or,
equivalently, µ̂ ≤c ν̂i, with µ̂ and ν̂i the laws of X − EX and Yi − EYi respectively.

That is to say, each Yi ∼ νi can be realised by sampling a random variable X common to all
i = 1, . . . , n and distributed according to the weak barycenter µ, translating that value by EYi − EX
and adding a cluster-specific component Ȳi or idiosyncratic noise, centered conditionally on X .
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Remark 1. The observations of each class (i.e. input measure) can be interpreted as outliers with
respect to the (translated) law of the weak barycenter, which are statistically different and are thus left
aside of its support. This way, the weak barycenter is robust to outliers, as it tends to discard them,
by construction. Furthermore, this "robustness" property results in the stability of weak barycenter
upon perturbation of a class with larger noise (or more scattered, outlying values). More precisely, if
a class is corrupted in such a way that their observations result in a stochastically larger distribution
than the original one, a weak barycenter computed in terms of the original (stochastically smaller)
class will still be a weak barycenter in the new corrupted setting. An intuitive and simple way to
illustrate this point follows by considering a weak barycenter µ of a one dimensional and centered
family of input distributions {νi}i=1,...,n. By Proposition 2, µmust verify µ ≤c νi for all i = 1, . . . , n.
In particular, from Theorem 3.A.1. in [36], we have that

∫∞
x

P(X > u)du ≤
∫∞
x

P(Yi > u)du for
all x ∈ R, where X ∼ µ and Yi ∼ νi. Therefore, µ is likely to avoid outliers. Another supportive
intuition in terms of robustness is that a maximal weak barycenter would be one that includes the
most possible points of all classes (or distributions) in its support (all this, after re-centering) and
leaves out only "outliers". A non-maximal weak barycenter is then more conservative, meaning that
it counts on fewer points and leaves out more possible outliers.

3.3 Extension for the population barycenter

The population Wasserstein barycenter introduced in [29] and [4] extends the definition of Wasserstein
barycenter for an infinite number of measures. This formulation is particularly relevant for the
construction of an iterative algorithm to compute the barycenter for the streaming case, that is, when
the measures are received online. The proofs are reported in Section C of the Appendix.

Let us consider a probability measure Q ∈ P2(P2(Rd)), meaning that Q is supported on a set of
measures with finite moments of order 2, such that for some (and thus all) µ ∈ P2(Rd), we have that∫
P2(Rd)

W 2
2 (µ, ν)dQ(ν) <∞.

Definition 2. We define the set of weak population barycenters of a distribution Q ∈ P2(P2(Rd)) as

arg min
µ∈P2(Rd)

∫
P2(Rd)

V (µ|ν)dQ(ν). (8)

The following lemma guarantees that the map (x, ν) 7→ Sνµ(x) appearing in Eq. (8) through V (µ|ν) =∫
‖x− Sνµ(x)‖2dµ(x) is well defined.

Lemma 3. The function (µ, ν) ∈ (P2(Rd))2 7→ πµ,ν ∈ P2(R2d) mapping (µ, ν) to the unique
optimal plan πµ,ν realising V (µ|ν) in Eq. (2) is continuous. As a consequence, for each µ ∈ P2(Rd)
the function (x, ν) ∈ Rd × P2(Rd) 7→ Sνµ(x) is measurable.

Using similar arguments as those of Proposition 1 and the fact that any probability measure can be
approximated by a sequence of probability measures with finite support, the following proposition
confirms that the weak population barycenter problem is also well defined.

Proposition 3. The minimisation problem in Eq. (8) admits a solution.

4 Algorithms via fixed-point representations

4.1 Weak barycenter

For the Wasserstein barycenter problem in Eq. (4), the authors in [1] proved that if at least one of
the measures ν1, . . . , νn is a.c., the Wasserstein barycenter is unique. Furthermore, if all the νi’s are
a.c., and at least one of them has a bounded density, then the unique Wasserstein barycenter is also
a.c. and verifies a fixed-point equation. This last property has been thoroughly studied by [5] and
[43] and leveraged to compute an approximation of the barycenter via an iterative algorithm based on
Monge maps, whose existence and uniqueness are guaranteed by the a.c. of the measures involved.

Akin to the fixed-point methodology in the classical Wasserstein scenario, we define an iterative
procedure based on the barycentric projection computed in the optimal weak transport problem in
Eq. (2), that is valid for arbitrary distributions. Therefore, we consider the following iterative rule for
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probability measures ν1, . . . , νn ∈ P2(Rd):

µk+1 = G(µk), with G(µ) =

(
n∑
i=1

λiS
νi
µ

)
#µ, (9)

where for each i = 1, . . . , n, the optimal barycentric projection is given by Sνiµ : x 7→
∫
ydπµ,νix (y),

for πµ,νi ∈ Π(µ, νi) achieving the minimum in the OWT problem in Eq. (2). The proposed iterative
procedure is presented in Algorithm 1.

A fundamental difference between the fixed-point computation of the Wasserstein barycenter [5] and
a weak barycenter is that the optimal Monge map T νµ in the OT problem verifies T νµ#µ = ν, whereas
the pushforward measure Sνµ#µ in the OWT setting still depends on µ. We will then prove that the
iterative algorithm in Eq. (9), based on the maps Sνiµ , admits converging subsequences. A convenient
result is the continuity of the functional G in Eq. (9), which can be proven using Arzela-Ascoli
theorem on a set of barycentric projections as well as the Skorohod’s representation theorem.
Theorem 4. The function µ 7→ G(µ) defined in Eq. (9) is W2-continuous from P2(Rd) to P2(Rd).

Using an approach similar to [5] for the Wasserstein barycenter, we can state the following results for
the proposed fixed-point procedure.
Proposition 4. If µ is a weak-barycenter, that is a solution of problem (5), then G(µ) = µ i.e.
x =

∑n
i=1 λiS

νi
µ (x), µ(x)-a.s.

The inverse implication of Proposition 4 is not necessarily true, that is, some fixed points may not
be weak barycenters. However, a Dirac delta δω, ω ∈ Rd, that meets the fixed-point condition
δω = G(δω), is a weak barycenter (see Lemma 1).
Proposition 5. Let (µk)k be the sequence defined by the iterative procedure µk+1 = G(µk) and
starting from µ0 ∈ P2(Rd). Then (µk)k is tight and every converging subsequence must converge to
a fixed point of G.

We observe that these results also hold for the classical Wasserstein barycenter of a.c. mea-
sures {νi}i=1...,n such that at least one of them has a bounded density. Moreover, the inverse
implication, namely if µ is a fixed-point then it is a barycenter, is not straightforward even
in the Wasserstein barycenter case, for which one considers the fixed-point equation given by
µ = (

∑n
i=1 λiT

νi
µ )#µ, with T νiµ the Monge map verifying νi = T νiµ #µ. Indeed, [1] prove that if µ

checks x =
∑n
i=1 λiT

νi
µ (x) for every x ∈ Rd, not only µ-almost everywhere, then µ is a Wasserstein

barycenter. Also, [43, Theorem 2] provide additional conditions for this to be true by essentially
invoking more smoothness on the distributions {νi}i=1...,n. Additionally, they only conjecture that
under the same assumptions, the fixed-point is unique. Our method, however, includes arbitrary
probability measures. Therefore, we do not expect to obtain similar results as in the Wasserstein
barycenter case, for which smoothness is required.

4.2 Weak population barycenter

Based on [34], we construct a stochastic iterative algorithm for computing the weak population
barycenter in Eq. (8). We clarify that [34] is constrained to probability measures Q supported on
distributions that are a.c., whereas in our setting these distributions only need to belong to P2(Rd).
Let us notice that our algorithms can be interpreted as geodesic gradient descent as in [34] and [16],
however, OWT is not a metric and its potential geodesic structure is so far unknown. Therefore, the
proposed algorithm only aims to mimic Riemmanian gradient descent. Our fixed-point result for the
weak population barycenter problem is stated in the following Lemma:
Lemma 4. If µ is a weak population barycenter of Q, then x =

∫
Sνµ(x)dQ(ν), µ(x)-a.s.

As in the finite case, the inverse implication is difficult to obtain. In particular, this has not been
proven for the classical population Wasserstein barycenter in [34], where it boils down to prove
the uniqueness of an absolutely continuous fixed point of µ 7→ (

∫
T νµ dQ(ν))#µ, where T νµ is the

Monge map between µ and ν. As explained in [34], the uniqueness of such fixed points has also
been studied under some strong assumptions in [14] by considering parametric classes of random
probability measures with compact support. Note that this result is expected to be true by again
invoking more smoothness on the distributions at hand. As our method focuses (in particular) on
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discrete probability measures, the conditions under which the inverse equality holds are beyond the
scope of our work. However, from the experimental results in Section 6, we believe our method
presents practical advantages.

We next develop an iterative procedure that converges towards a distribution µ verifying the fixed-
point equation x =

∫
Sνµ(x)dQ(ν), µ(x)-a.s. Our method is presented in the following definition and

illustrated in Algorithm 2.

Definition 3. Let µ0 ∈ P2(Rd), νk i.i.d.∼ Q and γk > 0. We define the following iterative procedure
for k ≥ 0 :

µk+1 =
[
(1− γk)id + γkS

νk

µk

]
#µk, (10)

where Sν
k

µk
is the optimal barycentric projection between µk and νk and id is the identity operator.

Assuming the following conditions on the steps γk:

∞∑
k=1

γ2
k <∞ and

∞∑
k=1

γk =∞, (11)

we are able to prove the convergence of the iterative scheme in a similar fashion as Theorem 4.7 in
[34]. The proof is to a large extent very similar to that of the classical Wasserstein case.

Theorem 5. Under the conditions in Eq. (11), the sequence (µk)k defined in Eq. (10) is a.s. relatively
compact in Wq for all q < 2 (in particular it is tight). Moreover, a limit point µ verifies x =∫
Sνµ(x)dQ(ν), µ(x)-a.s.

Note that we prove in Prop. 7 in Appendix that the function µ 7→ ‖
∫
SνµdQ− id‖2L2(µ) is continuous

w.r.t. W2. This result, however, was obtained under additional constraints for the OT case in [34].

Algorithm 1: Weak barycenter
Input: distributions ν1, . . . , νn, # steps K;
initialisation: µ0 = ν1;
for k = 0, 1, . . . ,K do

for i = 1, 2, . . . , n do
Solve the OWT problem between µk
and νi to obtain πµk,νi ;
Si =

∫
ydπµk,νix (y)

end
µk+1 = (

∑n
i=1 λiSi)#µk

end

Algorithm 2: Weak population barycenter
Input: number of steps K;
initialise distribution µ0 ∼ Q;
for k = 0, 1, . . . ,K do

Sample νk ∼ Q;
Update γk;
Solve the OWT problem to obtain πµk,ν

k

Sk =
∫
ydπµk,ν

k

x (y);
µk+1 = [(1− γk)id + γkSk] #µk;

end

5 Computational aspects

Setting and computation of OWTs. Both Algorithms 1 and 2 require the computation of the optimal
barycentric projection associated to the OWT problem in Eq. (2). For two discrete measures µ =∑r
i=1 aiδxi and ν =

∑m
j=1 bjδyj , this boils down to solving the following quadratic programming

problem

min
π∈Rr×m

{
r∑
i=1

ai

∥∥∥xi − (πy
a

)
i

∥∥∥2

, πij ≥ 0, π1 = a, πT1 = b

}
, (12)

which can be solved using a solver such as cvxpy. We also propose to solve the OWT problem in
Eq. (12) with a proximal algorithm. The optimal barycentric projection is then constructed as πy

a .
The details and examples are presented in Appendix E.1.

Comparison setting. In the next section, we compare our proposed computation for weak barycenters
in Definition 2 (Algorithm 2) to the classic Wasserstein barycenter in particular for a stream of
a.c. measures. Namely, we will run Algorithm 2 by, following [18, 35], replacing optimal barycentric
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Figure 1: (left) Empirical Gaussian distributions and their OWT (black) and OT (red) barycenters for
Gaussian observations (crosses) and corrupted observations (dots). (right) Empirical distributions
supported on two ellipses and their OWT (black) and OT (red) barycenters.

projections by the barycentric projections associated either to i) an optimal plan in the Kantorovich
problem (1), or ii) the optimal Sinkhorn plan in the entropy regularised OT problem [17] given by

arg min
π∈Π(µ,ν)

∫
‖x− y‖2dπ(x, y) + εKL(π|µ⊗ ν), (13)

where KL denotes the Kullback-Leibler divergence. The associated barycenters will be referred to as
OT barycenter and OT Sinkhorn barycenter respectively. The optimal plans for OT and regularised OT
problem were computed using POT toolbox [22]. Notice that what we call OT barycenter (resp. OT
Sinkhorn barycenter) is not solving a Wasserstein barycenter problem (resp. a regularised Wasserstein
barycenter problem). Therefore, our method for barycentric computation differs from previous ones
in the literature (see Section 2) in that it i) can process a stream of an unknown number of measures,
ii) does not require the measures to be a.c., and iii) does not appeal to additional regularisation of the
measures or the Wasserstein metric.

6 Experimental results

This section is devoted to the empirical validation of our proposal on both synthetic and real-world
data. We first focused on Algorithm 2 since multiple algorithms to compute a Wasserstein barycenter
for a fixed number of distributions are already available [18, 38]. We present two robustness to
outliers experiments, then we validate our OWT barycenter on synthetic dataset and real-world ones.
The overall conclusion of our experiments is that the weak barycenter is more likely to maintain
the common (or shared) geometric features of the measures involved, as expected from Theorem 3.
Additional experiments are presented in Appendix E.2, including the comparison of the energy for
the computed weak barycenter in Algorithm 1 against the approximated optimal energy (using Eq.(7)
and the plug-in estimator).

6.1 Robustness to outliers

OT’s sensitivity to outliers is a well-known problem that can be addressed e.g. with unbalanced OT
[10]. We observed that OWT also allows to deal with outliers, which is coherent with the latent
variable interpretation (see Remark 1). We illustrate this with two experiments. In Fig. 1 (left),
we consider 50 sets of 20 − 30 observations from different 2D Gaussian measures, where each
observation may be corrupted by random translations (Bernoulli p = 0.05) thus producing outliers.
We show the resulting barycenters (dots), and barycenters without outliers (crosses) for Wasserstein
barycenter (red) and weak barycenter (black), which shows robustness to outliers. In Fig. 1 (right),
we consider two distributions supported on pair-of-ellipses, and 120 observations per distribution.
Again, each observation may be corrupted by random translations (Bernoulli p = 0.05). The weak
barycenter (black) shows a better preservation of the shapes than the Wasserstein barycenter (red), in
particular, the red dots are more often located outside the ellipses.

6.2 Synthetic distributions

We implemented the proposed sequential computation of weak barycenters (Algorithm 2) on two
examples of synthetic distributions: Gaussians and spirals. In each case, we sampled r observations
from a random distribution at each step, and considered K steps (and thus K measures for each case).

8



2D Gaussians (r = 100 & K = 15). We considered distributions N (m, I), with m uniformly
distributed on (−3, 3) × (−5,−5) and I the identity matrix. Fig. 2 (left) shows the empirical
distributions together with the OWT and OT barycenters, the weak barycenter being the less spread
out as expected. The three remaining plots illustrate the behaviour of the barycenters constructed
as stated in Sec. 5. For a small regularisation parameter ε in Eq. (13), the OT and OT Sinkhorn
barycenters are similar, however, as ε increases the OT Sinkhorn (OTS) barycenter becomes closer to
the weak barycenter and thus even more concentrated, meaning that its samples tend to be closer to
each other. Critically, for a very large ε, as the entropy tends to spread the mass in the regularised
optimal plan, the associated barycentric projection will roughly move the mass to the spatial mean of
the target distribution’s support.
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Figure 2: (left) Empirical Gaussian distributions and their OWT (black) and OT (red) barycenters
computed with Algorithm 2. Illustration of the weak (black), OT (red) and OT Sinkhorn (blue)
barycenters for different values of ε = 0.1, 1, 5.
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Figure 3: (left) Distributions supported on spiral. (right)
OWT (black) and OT (red) barycenters computed with
Algorithm 2.

Spiral distributions. (r ∈ (200, 225) &
K = 10). In this experiment, we consid-
ered distributions supported on a spiral—
see Fig. 3 (left), with random ratio in
(0, 3). The OT and OWT barycenters
are presented in Fig. 3 (right). Again,
the weak barycenter seems to better pre-
serve the shape of the spiral than the OT
barycenter.

6.3 Real-world dataset

MNIST dataset. We considered the well-known MNIST dataset [30] of grayscale images of hand-
written digits. The images, of size 28 × 28 pixels, can be normalised and thus be interpreted as
discrete probability measures supported on a two-dimensional grid of size 28× 28. We computed
the barycenters with 30 steps of Algorithm 1 between two digits "8", that are noisy versions of the
same digit with the aim to produce a more stable barycenter. To produce noisy data, we randomly
(Bernoulli p = 0.1) move pixels of the prototype digit displayed in Fig. 4 (left). Fig. 4 (right) shows
the barycenters using the OWT, OT, and entropic-OT (for ε = 1). This example illustrates how OWT
reduces dispersion, so that weak barycenter provides the best uniformly spread results among the
barycenters considered, with the two loops of the "8" well shaped.

Cytometry dataset. In biotechnology, flow cytometry is measured through intracellular markers of
single cells in a biological sample with the objective of recognising common features across patients.
However, these measurements are often disrupted by acquisition, rather than biological artefacts [27],
thus hindering the identification of common features. To address this challenge, we compute the weak
barycenter for the forward-scattered light (FSC) and side-scattered light (SSC) cell’s markers (using
the flowStats package of Bioconductor [23]). We considered K = 15 patients and a variable number
of cells per patient between 88 and 2185. Fig. 5 shows the 15 distributions (left) and the computed
barycenters (right), thus confirming the ability of the weak barycenter to resolve the alignment of the
dataset, while maintaining the expected diamond-shape. Moreover, the advantage of our proposed
streaming procedure is fully exploited in this setting, since data from one or several patient can arrive
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Prototype "8" 1st noisy "8" 2nd noisy "8" OWT OT Regularised
OT

Figure 4: Digit "8" (MNIST). From left to right: Prototype "8", first and second noisy versions of
the prototype by randomly (Bernoulli p = 0.1) moving pixels, three barycenters constructed with
Algorithm 1 associted to the OWT plan, an OT plan and the entropy regularised OT plan for ε = 1.

sequentially. Though this setting has been addressed with the Wasserstein barycenter in [13], also in
Fig. 5, such method required a fixed grid to compute the barycenter unlike our method, thus revealing
the computational simplicity of the weak barycenter.

5 10 15 20 25 30

2
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6

8

10

12
OT
Weak barycenter

Figure 5: (left) Cytometry dataset for n = 15 patients and FSC vs. SSC cell’s marker. (right) The
weak-barycenter (black) computed with Algorithm 2 and the OT barycenter (red). The data are
represented with the same axis as the figure of barycenters.

7 Discussion

We have introduced the weak barycenter, which extracts common geometric information of probability
measures on Rd based on optimal weak transport, and showed that it can be interpreted as a latent
variable model. From the fixed-point formulation defined in terms of optimal weak transport
maps, irrespective of the regularity assumptions on the measures involved, we developed practical
computation via an iterative algorithm with guaranteed convergence. In particular, the proposed
algorithms do not require a common grid on the sample space, when processing either observed
data or samples from distributions. We have also proposed weak barycenters of a possibly infinite
population of measures and developed a stochastic procedure for computing it in the streaming data
regime where distributions are processes into the weak barycenter as they arrive. This has critical
implications for continual-learning methods in the ML community.

Additional studies will focus on deepen the latent variable interpretation of weak barycenters, and
its relationship to the aggregate information represented by the Wasserstein barycenter. Also, we
identify two relevant theoretical aspects for further research: i) to exhibit general conditions on the
family of input measures (or on the law of the population) for the existence of weak barycenters that
are not Dirac masses; and ii) to provide conditions on those input measures for a "maximal” weak
barycenter (in terms of convex ordering) to exist when d ≥ 2, among all the solutions of the weak
barycenter problem (and, if possible, a way of constructing it by regularisation most probably). The
statistical behaviour of the weak barycenter can also be investigated, in particular when constructed
from large empirical random samples of given distributions. Lastly, the weak population barycenter
could also be used to construct a predictive posterior in the context of Bayesian learning, as was done
for Wasserstein barycenters in [34].

Acknowledgments. We thank Julio Backhoff-Veraguas for his valuable insight during the writing of
this paper. This work was funded by ANID grants: AFB170001 & ACE210010 (CMM), FB0008
(AC3E), Fondecyt-Postdoctorado #3190926 and Fondecyt-Iniciación #1210606.
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A Additional mathematical background

A.1 p-Wasserstein distance

For p = 2 and µ, ν ∈ P2(Rd) such that µ is absolutely continuous (a.c.) with respect to Lebesgue
measure, the unique optimal plan is concentrated on the graph of a measurable map and Eq. (1) boils
down to Monge’s problem:

W2(µ, ν) =

(
min

T∈T(µ,ν)

∫
Rd×Rd

‖x− T (x)‖2dµ(x)

)1/2

, (14)

where T(µ, ν) is the set of measurable functions T : Rd → Rd such that ν = T#µ. The pushforward
operator # is defined such that for any measurable set B ⊂ Rd, we have ν(B) = µ(T−1(B)). In
such a case, the optimal measurable map T in Eq. (14) is uniquely defined (see e.g. Th. 9.4 in [41])
and called Monge map.

A.2 Continuity of V

Theorem 6 ([9], Theorem 1.5). Let (µn)n ⊂ P2(Rd) and (νn)n ⊂ P1(Rd). Then{
µn → µ in W2

νn → ν in W1
=⇒ lim

n
V (µn|νn) = V (µ|ν).

A.3 On the barycentric projection

For a given transport plan π ∈ Π(µ, ν), with µ, ν ∈ P2(Rd), the associated barycentric projection is
given by

S : x 7→
∫
Rd
ydπx(y).

First, for each x ∈ Rd, S(x) realises minz EY∼πx(‖z − Y ‖2). Second, this barycentric map S is
actually optimal for the Monge’s problem Eq. (14) between µ and S#µ, by Theorem 2.
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Figure 6: Example of pushforward measures constructed from barycentric projections for two
measures µ and ν in two dimensions (left) and one dimension (right).

We next illustrate the differences between the optimal barycentric map and a barycentric map
constructed from an OT plan in the classical Kantorovich formulation in Eq. (1). We sampled
r = 50 observations Xi and m = 60 observations Yi, each sets from a 2D Gaussian. We then
defined the source and target distributions as µ = 1

r

∑
δXi and ν = 1

m

∑
δYi respectively. Figure

6(left), shows these discrete distributions together with the pushforward measures SOWT#µ and
SOT#µ constructed from the optimal weak plan πOWT and an optimal plan πOT respectively. The
measure SOT#µ reasonably fits the target distribution ν, since when µ is a.c., SOT#µ = ν. In
particular, if µ and ν had the same number of points, SOT#µ would have matched ν. Regarding the
measure SOWT#µ, recall that V (µ|ν) = infη≤cνW

2
2 (µ, η) = W 2

2 (µ, SOWT#µ), and therefore
SOWT#µ ≤c ν. Lastly, we have W 2

2 (µ, ν) = 0.85, and V (µ|ν) = 0.52 ≤W 2
2 (µ, SOT#µ) = 0.81

as expected.
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In Figure 6(right), we present an example in one dimension, where we sample 4000 observations
from N (0, 2) (resp. N (14, 1.4)) to construct the empirical source measure µ (resp. empirical target
measure ν). The distributions µ and ν are presented in the form of histograms. The distribution
resulting from the optimal weak transport map Sνµ#µ is in convex order with ν.

B Proofs of Section 3

Proof of Proposition 1. Let (µm)m ⊂ P2(Rd) be a minimising sequence of F (µ) :=∑n
i=1 λiV (µ|νi) and let M < ∞ be such that F (µm) ≤ M for all m. Then (µm)m is tight.

Indeed,∫
‖x‖2dµm(x) ≤ 2

n∑
i=1

λi inf
π∈Π(µm,νi)

[∫
‖x−

∫
ydπx(y)‖2dµm(x) +

∫
‖
∫
ydπx(y)‖2dµm(x)

]

≤ 2M + 2

∫∫
‖y‖2dπx(y)dµm(x) ≤ 2M + 2

n∑
i=1

λi

∫
‖y‖2dνi(y),

where the second inequality comes from Jensen’s inequality. By Prokhorov’s theorem, there exists a
subsequence still denoted (µm)m that weakly converges toward a probability measure µ∗. Recall that
µ belongs toP2(Rd) since ‖·‖2 is a l.s.c. function bounded from below and therefore

∫
‖x‖2dµ(x) ≤

lim infm
∫
‖x‖2dµm(x) <∞. By Theorem 6, we have that

F (µ∗) =

n∑
i=1

λi lim
m
V (µm|νi) = lim

m
F (µm) = min

µ∈P2(Rd)
F (µ),

thus F admits at least a minimiser.

Proof of Lemma 1. By Strassen’s theorem, we can build X ′ ∼ µ′ and X ∼ µ in the same probability
space, in such a way that E(X|X ′) = X ′. Denote by η∗ the law η attaining infη≤cνW

2
2 (µ, η), and

let (X,Z) = (X,Sνµ(X)) be the realisation of the optimal coupling for W2 of µ and η∗, which can
also be constructed in the same probability space due to its specific form. Then, by (the conditional
version of) Jensen’s inequality we have

V (µ|ν) = W 2
2 (µ, η∗) = E

[
E
(
‖X − Sνµ(X)‖2|X ′

)]
≥ E‖X ′ − E(Sνµ(X)|X ′)‖2.

Recall now that Sνµ(X) = E(Y |X), where the conditional expectation is a measurable function
only of X , constructed from the joint law πµ,ν . Thus, for every nonnegative convex function φ, by
applying twice Jensen’s inequality we get

Eφ(E(Sνµ(X)|X ′)) ≤ Eφ(Sνµ(X)) = Eφ(E(Y |X)) ≤ Eφ(Y ),

where Y ∼ ν. That is to say, the law η of the r.v. E(Sνµ(X)|X ′) satisfies η ≤c ν. It follows that

V (µ|ν) ≥W 2
2 (µ′, η) ≥ inf

η̃≤cν
W 2

2 (µ′, η̃) = V (µ′|ν).

This immediately implies that µ′ is a weak barycenter whenever µ is. In particular, if µ is a weak
barycenter, then so is the Dirac mass supported on its mean. We then deduce that the set of minimisers
of
∑
i λiV (µ|νi) admits at least a Dirac mass δω and

V (δω|νi) =

∫
‖x−

∫
ydπx(y)‖2dδω(x) = ‖ω − EYi‖2.

This implies that infω
∑
λiV (δω|νi) is uniquely attained for ω̄ =

∑
λiEYi.

Proof of Proposition 2. A probability measure µ is a weak barycenter if and only if
∑n
i=1 λiV (µ|νi)

is equal to the r.h.s. of (7). Let us suppose first that EYi = m for all 1 ≤ i ≤ n, in which case the
infimum in (5) is equal to 0. Then, µ is a weak barycenter if and only if µ ≤c νi for all 1 ≤ i ≤ n
by definition of weak optimal transport (2), since in this case V (µ|νi) = 0. The general case can be
reduced to the previous one, noting that

V (µ|νi) = inf
η≤cνi

W 2
2 (µ, η)

= inf
η≤cν̂i

W 2
2 (µ̂, η) + ‖Eµ(X)− Eνi(Yi)‖2

= V (µ̂|ν̂i) + ‖Eµ(X)− Eνi(Yi)‖2,
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so that minimising
∑n
i=1 λiV (µ|νi) over µ ∈ P(Rd) is equivalent to minimising

∑n
i=1 λiV (µ′|ν̂i)+∑n

i=1 λi‖ω − EνiYi‖2 over the two independent parameters (ω, µ′), with ω ∈ Rd and µ′ ∈ P(Rd)
centered, taking µ as the law of X = X ′ + ω with X ′ ∼ µ′.

Proof of Lemma 2. Thanks to Prop. 3.3 in [5], we have that the (unique) Wasserstein barycenter
verifies µ̃ =

(∑n
i=1 λiT

νi
µ̃

)
#µ̃ where T νiµ̃ is the optimal Monge map between µ̃ and νi (see (14)).

Moreover, from Proposition 4, a weak barycenter µ̄ also checks µ̄ =
(∑n

i=1 λiS
νi
µ̄

)
#µ̄, where Sνiµ̄

is the optimal barycentric projection associated to π̄i for V (µ̄|νi). Therefore, by Jensen’s inequality
applied twice,

W 2
2 (µ̄, µ̃) ≤

∫∫
‖x− y‖2dµ̄(x)dµ̃(y) =

∫∫
‖

n∑
i=1

λiS
i
µ̄(x)−

n∑
i=1

λiT
i
µ̃(y)‖2dµ̄(x)dµ̃(y)

≤
n∑
i=1

λi

∫∫∫
‖T iµ̃(y)− z‖2dπ̄ix(z)dµ̄(x)dµ̃(y) =

n∑
i=1

λi

∫∫
‖T iµ̃(y)− z‖2dµ̃(y)dπ̄i(x, z)

=

n∑
i=1

λi

∫∫
‖y − z‖2dνi(y)dνi(z) = 2

n∑
i=1

λi

∫∫ (
E‖Yi‖2 − ‖EYi‖2

)
.

Proof of Theorem 3. Observe first that, by Theorem 2 and Strassen’s theorem, solving the OWT
problem (2) provides a unique (in law) coupling of three random variables (X,Y, Z) such that:

i) (X,Y ) has joint law πµ,ν ; in particular X and Y have the laws µ and ν respectively,

ii) Z = Sνµ(X) = E(Y |X) a.s., it has law η∗ and it is optimally coupled to X in the sense of
the optimal transport problem (1),

iii) (Z, Y ) is a martingale, that is E(Y |Z) = Z a.s..

Bringing all together we get the decomposition:

Y = Z + Y − Z = Sνµ(X) + Y − E(Y |X). (15)

Now, by Lemma 1, if X ∼ µ then the Dirac mass δEX is a weak barycenter too. Thus we have on
one hand:

n∑
i=1

λiV (µ|νi) =

n∑
i=1

λiV (δEX |νi). (16)

Using Jensen’s inequality, we see on the other hand that

V (µ|νi) = inf
η≤cνi

W 2
2 (µ, η)

= inf
η≤cνi

E‖X − Z‖2, with (X,Z) an optimal coupling for W 2
2 of µ and η

≥ inf
η≤cνi

‖EX − EZ‖2 = inf
η≤cνi

W 2
2 (δEX , δEZ)

≥ inf
η̃≤cνi

W 2
2 (δEX , η̃) = V (δEX |νi).

Identity (16) thus implies V (µ|νi) = V (δEX |νi) for all i. Denoting by ηi the law η attaining
infη≤cνiW

2
2 (µ, η), and by (X,Zi) the optimal coupling forW2 of µ and ηi, we see that the latter can

only occur if the equality case E‖X−Zi‖2 = ‖EX−EZi‖2 in Jensen’s inequality holds. This implies
that X − Zi is deterministic for each i. Since EZi = EYi, we thus must have X − Zi = EX − EYi.
Taking Z = Zi and Y = Yi in Eq. (15), and noting that Sνiµ (X) = Zi = X − (EX − EYi) the
statement follows.
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C Proofs of Section 3.3

Proof of Lemma 3. Let (µm) and (νm),m ∈ N, be two sequences in P2(Rd) respectively converging
to µ and ν w.r.t. W2. Then, (µm) and (νm) are tight and thus the sequence (πm) := (πµm,νm) is
tight too. Let πmk be a weakly convergent subsequence and π its limit. By Proposition 2.8 in [8] we
have

lim inf
m

V (µm|νm) = lim inf
m

∫
‖x−

∫
ydπmkx ‖2dµmk(x) ≥

∫
‖x−

∫
ydπx‖2dµ(x) ≥ V (µ|ν).

However, we have limm V (µm|νm) = V (µ|ν) thanks to Theorem 6, hence
∫
‖x−

∫
ydπx‖2dµ(x) =

V (µ|ν). By uniqueness of the optimum for problem (2) we deduce that π = πµ,ν . Since the same
holds true for any weak limiting point of (πm), it follows that πm weakly converges to πµ,ν . Last,
since

∫
‖x‖2 + ‖y‖2 dπm(x, y) =

∫
‖x‖2dµm(x) +

∫
‖y‖2dνm(y), this quantity converges to∫

‖x‖2dµ(x) +
∫
‖y‖2dν(y) =

∫
‖x‖2 + ‖y‖2 dπ(x, y), whence W2(πn, π) → 0, and (µ, ν) ∈

(P2(Rd))2 7→ πµ,ν ∈ P2(Rd × Rd) is continuous, as required (hence measurable).

We now establish the joint measurability of (x, ν) ∈ Rd ×P2(Rd) 7→ Sνµ(x) for fixed µ. Notice this
is a stronger statement than just measurability in the x variable, for each (µ, ν). Write B̄(x, r) for
the closed ball of radius r > 0 centered at x. One easily checks that the function

(x, π) 7→ Ψr(x, π) :=

∫
y1{(y,z):z∈B̄(x,r)}dπ(z, y)∫
1{(y,z):z∈B̄(x,r)}dπ(z, y)

is measurable w.r.t. the pair (x, π), the two integrals being limits of integrals with respect to dπ(z, y),
of some bounded continuous functions of (x, y, z). Thus, lim supr→0 Ψr(x, π), lim infr→0 Ψr(x, π)
and the function Φ(x, π) := lim supr→0 Ψr(x, π)1{lim supr→0 Ψr(x,π)=lim infr→0 Ψr(x,π)} depend in
a measurable way on (x, π). It follows that (x, µ, ν) 7→ Φ(x, πµ,ν) is measurable as the composition
of two measurable functions. But notice that for each fixed µ ∈ P2(Rd) one has Ψr(x, π

µ,ν) =∫
B̄(x,r)

[
∫
ydπz(y)]dµ(z)

µ(B̄(x,r))
which, by the Lebesgue derivation theorem for Radon measures (see e.g. [15]),

converges dµ(x) a.s. in x, to
∫
ydπx(y) = Sνµ(x). Thus, for each µ ∈ P2(Rd),

Sνµ(x) = Φ(x, πµ,ν) for all ν ∈ P2(Rd) and dµ(x) a.e. x,

with (x, ν) 7→ Φ(x, πµ,ν) a measurable function. The conclusion follows.

Proof of Proposition 3. By Theorem 6.16 in [41], we know that their exists a sequence of discretely
supported distributions (Qn)n ⊂ P2(P2(Rd)) of the form Qn =

∑n
i=1 λiδνi , with (λi)1≤i≤n in the

simplex, and such that W 2
2 (Q,Qn) := infπ∈Π(Q,Qn)

∫
W 2

2 (ν, ν̃)dπ(ν, ν̃)→ 0. We set

Ln(µ) :=

∫
P2(Rd)

V (µ|ν)dQn(ν) =

n∑
i=1

λiV (µ|νi).

We denote µn ∈ P2(Rd) the minimiser of Ln. Let us prove that (µn)n is tight. First, µn admits
moments of order 2 thanks to Jensen’s inequality:∫
‖x‖2dµn(x) ≤

n∑
i=1

λi

[∫
‖x− Sνiµn(x)‖2dµn(x) +

∫
‖Sνiµn(x)‖2dµn(x)

]

≤
n∑
i=1

λiV (µn|νi) +

n∑
i=1

λi

∫
‖y‖2dνi(y)

≤
n∑
i=1

λiV (µ|νi) +

n∑
i=1

λi

∫
‖y‖2dνi(y) for some µ ∈ P2(Rd) since µn minimises Ln

≤ 2

∫
‖x‖2dµ(x) + 3

n∑
i=1

λi

∫
‖y‖2dνi(y),
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where the last inequality comes from V (µ|νi) =
∫
‖x − Sνiµ (x)‖2dµ(x) ≤ 2

∫
‖x‖2dµ(x) +

2
∫
‖Sνiµ (x)‖2dµ(x). Moreover, since W 2

2 (Q,Qn) → 0, we have (Lemma 5.1.7 in [6]) that∫
ψ(ν)dQn(ν) →

∫
ψ(ν)dQ(ν) for any function ψ such that |ψ(ν)| ≤ a + bW 2

2 (ν, ν0), a, b ≥ 0.
In particular, choosing ψ(ν) = W 2

2 (ν, δ0) =
∫
‖y‖2dν(y), it implies that

∑n
i=1 λi

∫
‖y‖2dνi(y)→∫ ∫

‖y‖2dν(y)dQ(ν) < ∞. Therefore
(∑n

i=1 λi
∫
‖y‖2dνi(y)

)
n

is bounded and (µn)n is tight.
Thus by Prokhorov’s theorem, there exists a subsequence, still denoted (µn)n, that converges towards
µ̄.

Let us now prove that this particular µ̄ minimises the function L : µ 7→
∫
P2(Rd)

V (µ|ν)dQ(ν).
First, let η ∈ P2(Rd), still by Lemma 5.1.7 in [6] and since V (η|ν) ≤ W 2

2 (η, ν), we get that
L(η) =

∫
V (η|ν)dQ(ν) ≥ lim infn→∞

∫
V (η|ν)dQn(ν). Since for each n, the distribution µn

minimises Ln, we have

lim inf
n→∞

∫
V (η|ν)dQn(ν) ≥ lim inf

n→∞

∫
V (µn|ν)dQn(ν). (17)

Thanks to Fatou’s Lemma for sequences of measures (Q)n (see [21]), we have that

lim inf
n→∞

∫
V (µn|ν)dQn(ν) ≥

∫
lim inf
n→∞

V (µn|ν)dQ(ν) =

∫
V (µ̄|ν)dQ(ν),

where the last equality comes from the lower semi-continuity of V (Theorem 2.9 in [8]). This proves
that µ̄ minimises L.

D Proofs of Section 4

The proof of Theorem 4, on the continuity of G : µ 7→
(∑n

i=1 λiS
νi
µ

)
#µ, leans on the two following

technical lemmas.

Lemma 5. Let (ρm)m be a given sequence and ν be a fixed law in P2(Rd). For each m, let
Sm := Sνρm denote the barycenter map associated with the optimal coupling πρm,ν for (2). Then, the
sequence of laws (Sm#ρm)m has uniformly integrable second moments.

Proof of Lemma 5. Let (Xm, Ym) be a pair of random variables (r.v.) with joint law πµm,ν , defined
on some probability space (Ω,F ,P). Notice that Sm#ρm is the law of the r.v. E(Ym|Xm). Then,
for each M,K ≥ 0 we have∫

{‖x‖2≥M}
‖x‖2dSm#ρm(x) =E(‖E(Ym|Xm)‖21{‖E(Ym|Xm)‖2≥M})

≤E(E(‖Ym‖2|Xm)1{‖E(Ym|Xm)‖2≥M})

=E(‖Ym‖21{‖E(Ym|Xm)‖2≥M,‖Ym‖2≥K})

+ E(‖Ym‖21{‖E(Ym|Xm)‖2≥M,‖Ym‖2<K})

≤E(‖Ym‖21‖Ym‖2≥K}) +
K

M
E(‖E(Ym|Xm)‖2),

where we have used Jensen’s inequality and the fact that E(Ym|Xm) is measurable w.r.t. the σ-field
generated by Xm. Applying Jensen’s inequality to the last term again, and recalling that Ym has law
ν ∈ P2(Rd), we deduce that

sup
m

∫
{‖x‖2≥M}

‖x‖2dSm#ρm(x) ≤
∫
{‖x‖2≥K}

‖x‖2dν(x) +
K

M

∫
‖x‖2dν(x), (18)

which is smaller than a given ε > 0, by choosing K > 0 and then M > 0 large enough.

Lemma 6. Let (ρm)n, ρ in P2(Rd) be such that W2(ρm, ρ)→ 0. We have:

i) For each ν ∈ P2(Rd) the sequence of laws ((id, Sνρm)#ρm)m converges w.r.t. W2 in
P2(Rd × Rd) to (id, Sνρ )#ρ .
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ii) There exists in some probability space (Ω,F ,P), a sequence of r.v. (Xm)m of laws (ρm)m
and a r.v. X of law ρ such that, for each ν ∈ P2(Rd), the sequence (Xm, S

ν
ρm(Xm))m (with

laws ((id, Sνρm)#ρm)m) converges in L2(Ω,F ,P) to (X,Sνρ (X)) (with law (id, Sνρ )#ρ).

Proof of Lemma 6. For the entire proof, we fix a ν ∈ P2(Rd) and we write Sm := Sνρm and S := Sνρ
for simplicity.

i) By Theorem 2 and Part 1. of Theorem 1.5 in [9], (Sm#ρm)m converges to S#ρ w.r.t. W1 and, by
Lemma 5, also with respect to W2. In particular, the sequence ((id, Sm)#ρm)m has tight marginals,
and therefore it is tight too.

Let us identify its weak limiting points. For simplicity we rename ((id, Sm)#ρm)m a weakly
convergent subsequence. By the previous discussion, its weak limit dρ̂(x, z) clearly has first
and second marginal laws equal to dρ(x) and dS#ρ(z) respectively. Moreover,

∫
‖x‖2dρm(x) +∫

‖z‖2dSm#ρm(z)→
∫
‖x‖2 + ‖z‖2dρ̂(x, z), hence ((id, Sm)#ρm)m converges to some π̂ with

respect to W2 in P2(Rd × Rd).

Now, by the characterisation of optimisers in Theorem 2, we have V (ρm|ν) = W 2
2 (ρm, Sm#ρm) =∫

‖x− Sm(x)‖2dρm(x). Taking m→∞, and thanks to Theorem 6, we finally obtain

V (ρ|ν) = W 2
2 (ρ, S#ρ) =

∫
‖x− z‖2dπ̂(x, z).

In particular, using again Theorem 2, we conclude that dπ̂(x, z) must be of the form (id, S)#ρ.

ii) By Skorohod’s representation theorem, one can construct simultaneously in some probability
space (Ω,F ,P), a sequence of r.v. (Xm)m of laws (ρm)m and a r.v. X of law ρ such that (Xm)m
converges P− a.s. to X . Moreover, since the sequence (ρm)m converges w.r.t. W2 in P2(Rd), it
has uniformly integrable second order moments. It follows that the sequence of r.v. (|Xm|2)m is
uniformly integrable and, by the Vitali convergence theorem, that (Xm)m also converges to X in
L2(Ω,F ,P).

Now, by Lemma 5, the sequence of r.v. (|Sm(Xm)|2)n is uniformly integrable too. Thus, by the Vitali
convergence theorem, the statement will follow by proving that Sm(Xm) converges in P−probability
to S(X).

For each N ∈ N, let y 7→ (y)N denote the truncation of a vector y ∈ Rd obtained by projecting it
onto the centered ball of radius N , (y)N := (1 ∧ N

|y| )y, which is a 1−Lipschitz function bounded
by N . By Theorem 2, the functions SNm := (Sm)N are then 1−Lipschitz and bounded uniformly in
m ∈ N. Therefore, by the Arzela-Ascoli theorem, their restrictions to each compact cylinder set R of
Rd defines a relatively compact set of functions, with respect to the uniform topology in C(R,Rd).
It follows by a diagonal argument that some subsequence (SNmk)k converges, uniformly on compact
sets, to some continuous function S̃ on Rd. Since Xn converges a.s. to the finite value X , we deduce
that P−a.s. as k →∞,

(Xmk , S
N
mk

(Xmk))→ (X, S̃(X)).

Notice now that (Xmk , S
N
mk

(Xmk)) has the law (id, (·)N ◦Smk)#ρmk for each k and thus, by part a)
and continuity of the mapping (x, y) 7→ (x, (y)N ), the r.v. (X, S̃(X)) has the law (id, (·)N ◦ S)#ρ.
Hence we deduce that

(X, S̃(X)) = (X, (S(X))N )

P− almost surely. The previous arguments can be applied not just to (Xm)m but to any subsequence
of it. That is, we can similarly prove that any subsequence of (Xm, (Sm(Xm))N )m has a subsequence
that a.s. converges to (X, (S(X))N ). This means that, for each N ∈ N

(Xm, (Sm(Xm))N )→ (X, (S(X))N )

in P− probability when n→∞. To conclude, by tightness we can find for each η > 0 some N ∈ N
large enough so that P(|S(X)| ≥ N) ≤ η and P(|Sm(Xm)| ≥ N) ≤ η for all m ∈ N, which yields
for each ε > 0,

P(|Sm(Xm)− S(X)| ≥ ε) ≤ 2η + P(|(Sm(Xm))N − (S(X))N | ≥ ε).
Thus lim supm P(|Sm(Xm)−S(X)| ≥ ε) ≤ 2η for arbitrary η > 0 or, equivalently, P(|Sm(Xm)−
S(X)| ≥ ε)→ 0 as m→∞, which concludes the proof of b).
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We can now proceed to the proof of continuity of G : µ 7→
(∑n

i=1 λiS
νi
µ

)
#µ.

Proof of Theorem 4. Let (ρm)m, ρ in P2(Rd) such that W2(ρm, ρ) → 0. We need to prove that
W 2

2 (G(ρm), G(ρ))→ 0. For each m, we write Sim := Sνiρm and Si := Sνiρ .

By Lemma 6.ii), there exists in some probability space a sequence (Xm)m of laws (ρm)m and a r.v.
X of law ρ such that

(S1
m(Xm), ..., Snm(Xm))→ (S1(X), ..., Sn(X)) in L2(P).

Therefore,
∑n
i=1 λiS

i
m(Xm) converges to

∑n
i=1 λiS

i(X) in L2(P). Since
∑n
i=1 λiS

i
m(Xm) has

law G(ρm) and
∑n
i=1 λiS

i(X) has law G(ρ), the proof is complete.

Proof of Proposition 4. As in [5], we easily see that
n∑
i=1

λi

∫
‖x− Sνiµ (x)‖2dµ(x) =

n∑
i=1

λi

∫
‖S̄(x)− Sνiµ (x)‖2dµ(x) +

∫
‖x− S̄(x)‖2dµ(x).

But
∫
‖x − Sνiµ (x)‖2dµ(x) = W 2

2 (µ, Sνiµ #µ) since from Thm 1.4 in [8] the barycentric map
Sνiµ is an optimal map for the Monge problem between µ and Sνiµ #µ. Moreover, by definition
G(µ) = S̄#µ, therefore

∫
‖x − S̄(x)‖2dµ(x) ≥ W 2

2 (µ,G(µ)). Finally, since Sνiµ #µ ≤c νi, we
have that

∫
‖S̄(x)−Sνiµ (x)‖2dµ(x) ≥ V (G(µ)|νi). This , recalling that V (µ|νi) = W 2

2 (µ, Sνiµ #µ),
yields

n∑
i=1

λiV (µ|νi) ≥
n∑
i=1

λiV (G(µ)|νi) +W 2
2 (µ,G(µ)). (19)

Therefore, if µ is a weak barycenter, we readily get that µ = G(µ).

Proof of Proposition 5. As in the proof of Theorem 4, we denote Sik the optimal barycentric projec-
tion associated to πk,i ∈ Π(µk, νi). First, we easily have that µk+1 ∈ P2(Rd), indeed by Jensen’s
inequality∫

‖x‖2dµk+1(x) =

∫∫
‖

n∑
i=1

λiS
i
k(x)‖2dµk(x) ≤

n∑
i=1

λi

∫
‖y‖2dνi(y) <∞.

Then (µk)k is tight, with uniformly integrable 2-moments by Lemma 5. Therefore (µk)k admits a
convergent subsequence in W2. Let µ̃ be a weak limit of a subsequence (µkj )j , then we have
W2(µkj , µ̃) −−−→

j→∞
0. By continuity of G in Theorem 4, we get W2(µkj+1, G(µ̃)) −−−→

j→∞
0.

Moreover, by Theorem 6 we have for F (µ) :=
∑n
i=1 λiV (µ|νi) that F (µkj ) → F (µ̃) and

F (µkj+1) → F (G(µ̃)) as j → ∞ . Let us prove that these two limits coincide. From (19),
we have

F (µkj ) ≥
n∑
i=1

λiV (G(µkj )|νi) =

n∑
i=1

λiV (µkj+1|νi) = F (µkj+1).

Iterating this inequality leads to F (µkj ) ≥ F (µkj+1) ≥ F (µkj+1) which yields F (µ̃) = F (G(µ̃))
and then µ̃ = G(µ̃), using inequality (19). Thus (µkj )j converges w.r.t. W2 to a probability
distribution µ̃ which is a fixed point of G.

Proof of Lemma 4. The proof is similar to that of [34, Lemma 3.8]. For the sake of clarity, we rewrite
it in our setting. We assume that x =

∫
Sνµ̄(x)dQ(ν), µ̄(x)-a.s. is not true, then

0 <

∫
‖x−

∫
Sνµ̄(x)dQ(ν)‖2dµ̄(x)

=

∫
‖x‖2dµ̄(x)− 2

∫∫
〈x, Sνµ̄(x)〉dQ(ν)dµ̄(x) +

∫
‖
∫
Sνµ̄(x)dQ(ν)‖2dµ̄(x).
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Moreover, Sµµ̄#µ̄ ≤c µ, therefore by Theorem 1.4 in [8], we get∫
V

([∫
Sνµ̄dQ(ν)

]
#µ̄|µ

)
dQ(µ) ≤

∫
‖
∫
Sνµ̄dQ(ν)− Sµµ̄‖2L2(µ̄)dQ(µ)

=

∫∫
‖Sνµ̄(x)‖2dµ̄(x)dQ(ν)−

∫
‖
∫
Sνµ̄dQ(ν)‖2dµ̄(x).

Finally, noticing that
∫∫
‖x− Sνµ̄(x)‖2dµ̄(x)dQ(ν) =

∫
V (µ̄|ν)dQ(ν), we hence get∫

V

([∫
Sνµ̄dQ(ν)

]
#µ̄|µ

)
dQ(µ) <

∫
V (µ̄|ν)dQ(ν),

which is in contradiction with µ̄ weak barycenter of Q.

In order to study the convergence of the iterative scheme in (10), we define the following objects:

L(µ) :=
1

2

∫
V (µ|ν)dQ(ν) (20)

H(µ)(x) := −
∫

(Sνµ − id)dQ(ν)(x) x ∈ Rd. (21)

Moreover, we denote by {Fk}k the filtration of the i.i.d. sample νk ∼ Q, namely F−1 is the trivial
sigma-algebra and Fk+1 is the sigma-algebra generated by ν0, . . . , νk and therefore µk in (10) is
Fk-measurable.

The next Proposition is needed to prove Theorem 5.
Proposition 6. For the sequence (µk)k defined in (10), we have

E(L(µk+1)− L(µk)|Fk) ≤ γ2
kL(µk)− γk‖H(µk)‖2L2(µk). (22)

Proof. The arguments are similar to the ones used for the population Wasserstein barycenter iterative
scheme in the proof of Proposition 4.6 in [34]. Let us set them for the present problem. Let
ν ∈ supp(Q), then ([(1 − γk)id + γkS

νk

µk
], Sνµk ]#µk belongs to Π(µk+1, S

ν
µk

#µk). Therefore we
have

V (µk+1|ν) ≤W 2
2 (µk+1, S

ν
µk

#µk) since Sνµk#µk ≤c ν

≤
∫
‖(1− γk)x+ γkS

νk

µk
(x)− Sνµk(x)‖2dµk(x)

=

∫
‖x− Sνµk(x)‖2dµk(x)− 2γk

∫
〈x− Sνµk(x), x− Sν

k

µk
(x)〉dµk(x)

+ γ2
k

∫
‖x− Sν

k

µk
(x)‖2dµk(x)

= V (µk|ν) + γ2
kV (µk|νk)− 2γk

∫
〈x− Sνµk(x), x− Sν

k

µk
(x)〉dµk(x).

Integrating with respect to ν, and divided by 2 we get

L(µk+1) ≤ L(µk) +
γ2
k

2
V (µk|νk)− γk

∫
〈H(µk)(x), x− Sν

k

µk
(x)〉dµk(x).

We can then take the conditional expectation with respect to the filtration Fk, knowing that µk is
Fk-measurable and that νk is independently sampled from Fk, we have

E(L(µk+1)|Fk) ≤ L(µk) +
γ2
k

2

∫
V (µk|ν)dQ(ν)− γk

∫
〈H(µk)(x),

∫
x− Sνµk(x)dQ(ν)〉dµk(x)

= L(µk) + γ2
kL(µk)− γk

∫
〈H(µk)(x), H(µk)(x)〉dµk(x)

= (1 + γ2
k)L(µk)− γk‖H(µk)‖2µk .
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Proof of Theorem 5. Having Lemma 4 and Proposition 6, we can proceed in a similar way as in the
proof of [34, Theorem 4.7]. Let us first check that the second moments of (µk)k are a.s. bounded
by some constant. Let µ̄ be a weak population barycenter, i.e. µ̄ minimises L defined in (20). We
introduce the sequences

hk := L(µk)− L(µ̄) and αk :=

k−1∏
i=1

1

1 + γ2
k

.

We first notice that hk ≥ 0 for all k. From condition (11), the sequence (αk)k converges to some
α∞ > 0. By Proposition 6, we have

E(hk+1 − (1 + γ2
k)hk|Fk) ≤ γ2

kL(µ̄)− γk‖H(µk)‖2µk ≤ γ
2
kL(µ̄)

⇒E(αk+1hk+1 − αkhk|Fk) ≤ αk+1γ
2
kL(µ̄) by multiplying by αk+1. (23)

We define

δk :=

{
1 if E(αk+1hk+1 − αkhk|Fk) > 0
0 otherwise.

Therefore
∞∑
k=1

E(δk(αk+1hk+1 − αkhk)) =

∞∑
k=1

E(δkE(αk+1hk+1 − αkhk|Fk))

≤ L(µ̄)

∞∑
k=1

αk+1γ
2
k ≤ L(µ̄)

∞∑
k=1

γ2
k <∞.

Since hkαk ≥ 0, by the quasi-martingale convergence theorem (hkαk)k converges almost surely,
but as (αk)k converges to α∞, then (hk)k also converges almost surely to some h∞ ≥ 0. Taking
expectations in Eq. (23) and summing in k, we get

E(αk+1hk+1) ≤ α0h0 + L(µ̄)

k∑
m=1

αm+1γ
2
m ≤ C.

We then obtain by Fatou’s Lemma lim infk→∞ E(αk+1hk+1) ≥ E(lim infk→∞ αk+1hk+1) =
E(α∞h∞), and since α∞ < ∞, we have that E(h∞) < ∞, so h∞ is almost surely finite. This
implies that L(µk) has a finite a.s. limit, that we call `. Therefore by convexity ofW2 in [41, Theorem
4.8],

1

2
W 2

2 (µk,

∫
Sνµk#µkdQ(ν)) ≤ 1

2

∫
W 2

2 (µk, S
ν
µk

#µk)dQ(ν) = L(µk) ≤ `+ 1

for k large enough. Since Q ∈ P2(P2(Rd)), we have that that
∫
Sνµk#µkdQ(ν) ∈ P2(Rd), and the

second moments of (µk)k are a.s. bounded by some constant M . By Markov’s inequality, and since
closed balls in Rd are compact, the sequence (µk)k is a.s. tight. Also, for q < 2, we have by Hölder
and Chebyshev inequalities∫

‖x‖>R
‖x‖2dµk(x) ≤ 1

R1−q/2

∫
‖x‖2dµk(x) ≤ M

R1−q/2 ,

so (µk)k is a.s. relatively compact in Wq thanks to [40, Theorem 7.12] and

lim
R→∞

lim sup
k→∞

∫
‖x‖>R

‖x‖2dµk(x) ≤ lim
R→∞

lim sup
k→∞

M

R1−q/2 = 0.

From (23), we take the expectation and sum over k, then

E(αk+1hk+1)− α0h0 ≤ L(µ̄)

k∑
m=1

αm+1γ
2
m −

k∑
m=1

αm+1γmE
(
‖H(µm)‖2L2(µm)

)
.

Taking limit inferior on k, we have by Fatou on the l.h.s. and monotone convergence on the r.h.s.

−∞ < E(α∞h∞)− α0h0 ≤ C − E

( ∞∑
m=1

αm+1γm‖H(µm)‖2L2(µm)

)
.
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In particular, we have
∞∑
k=1

γk‖H(µk)‖2L2(µk) < +∞ a.s.

Since we assume that
∑∞
k=1 γk = ∞, we can follow the arguments in the proof of [34, Theorem

4.7] to conclude the proof, taking also advantage of Proposition 7 hereinafter, which in particular
establishes the continuity of the function µ 7→ ‖H(µ)‖2L2(µ).

Proposition 7. The function µ ∈ P2(Rd) 7→ ‖H(µ)‖2L2(µ) is continuous w.r.t W2. Moreover, if
(ρm)m in P2(Rd) are uniformly bounded w.r.t W2 and converges to ρ ∈ P(Rd) w.r.t Wq with
q ∈ [1, 2), we have ρ ∈ P2(Rd) and lim infm→∞ ‖H(ρm)‖2L2(ρm) ≥ ‖H(ρ)‖2L2(ρ).

Proof. Let us first assume that (ρm)m, ρ in P2(Rd) are such that W2(ρm, ρ)→ 0. We want to prove
that

‖H(ρm)‖2L2(ρm) → ‖H(ρ)‖2L2(ρ) (24)

when m → ∞. Consider the probability space (Ω,F ,P) and r.v.’s (Xm)m and X constructed in
Lemma 6.ii), and recall that, for each ν ∈ P2(Rd), the r.v.’s (Xm, S

ν
ρm(Xm)) have law (id, Sνρm)#ρm

for each m and converge in L2(Ω,F ,P) to the r.v. (X,Sνρ (X)), which has the law (id, Sνρ )#ρ. We
next extend this construction in order to suitably randomise ν. More precisely, we enlarge the
probability space (Ω,F ,P) to the product space (Ω̄, F̄ , P̄) = (Ω×P2(Rd),F ⊗B(P2(Rd)),P⊗Q),
that is, we add an independent random variable, called ν, taking values in P2(Rd) and which has
distribution Q.

Thanks to the measurability of the mappings (x, ν) 7→ Sνρm and (x, ν) 7→ Sνρ proven in Lemma 3, by
replacing ν by ν in the previous objects we obtain random vectors (Xm, S

ν
ρm(Xm)) and (X,Sν

ρ (X))

defined in (Ω̄, F̄ , P̄) which have, conditionally on {ν = ν}, the laws (id, Sνρm)#ρm and (id, Sνρ )#ρ

respectively. Moreover, ν is independent of the r.v. X,X1, . . . Xm under P̄.

Now, by conditioning on {ν = ν}, using the convergence result in Lemma 6.ii) and the dominated
convergence Theorem, we can easily check that ((Xm, S

ν
ρm(Xm)))m converges to (X,Sν

ρ (X)) in
P̄−probability. Furthermore, one can integrate w.r.t. Q the bound (18) obtained for fixed ν in the
proof of Lemma 5 and, denoting Ē the expectation with respect to P̄, deduce that

sup
m

Ē
(
‖Sν

ρm(Xm)‖21{‖Sν
ρm

(Xm)‖2≥M}

)
≤
∫ ∫

{‖x‖2≥K}
‖x‖2dν(x)Q(dν)

+
K

M

∫ ∫
‖x‖2dν(x)Q(dν),

for each M,K ≥ 0, where the r.h.s. is finite since Q ∈ P2(P2(Rd)). It follows that the sequence
((Xm, S

ν
ρm(Xm)))m has uniformly integrable second moments, and therefore converges also in

L2(Ω̄, F̄ , P̄) to (X,Sν
ρ (X)), thanks to the Vitali convergence theorem.

We observe now that Ē
(
Sν
ρm(Xm)|Xm

)
=

∫
Sνρm(Xm)dQ(ν) and Ē

(
Sν
ρ (X)|X

)
=∫

Sνρ (X)dQ(ν), P̄− a.s., Moreover, if F∞ denotes the σ-algebra generated by (X1, X2, . . .), one
has Ē

(
Sν
ρm(Xm)|F∞

)
= Ē

(
Sν
ρm(Xm)|Xm

)
and Ē

(
Sν
ρ (X)|F∞

)
= Ē

(
Sν
ρ (X)|X

)
. Using the

continuity in L2(Ω̄, F̄ , P̄) of the conditional expectation with respect to F∞, we deduce that

Xm − Ē
(
Sν
ρm(Xm)|Xm

)
→ X − Ē

(
Sν
ρ (X)|X

)
(25)

in L2(Ω̄, F̄ , P̄). We conclude that Ē‖Xm − Ē(Sν
ρm(Xm)|Xm)‖2 → Ē‖X − ĒSν

ρ (X)|X)‖2 as
m→∞, which is exactly the required convergence (24).

Let us now assume that (ρm)m inP2(Rd) are uniformly bounded w.r.tW2 and converge to ρ ∈ P(Rd)
w.r.t Wq with q ∈ [1, 2). The previous arguments can be easily adapted to show that convergence
(25) holds in Lq(Ω̄, F̄ , P̄). Moreover, it can be easily checked that for every M > 0, the mapping
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Y 7→ Ē(‖Y ‖2 ∧M) is continuous in Lq(Ω̄, F̄ , P̄). It follows that

lim inf
m→∞

Ē
(
‖Xm − Ē(Sν

ρm(Xm)|Xm)‖2
)
≥ lim inf

m→∞
Ē
(
‖Xm − Ē(Sν

ρm(Xm)|Xm)‖2 ∧M
)

= Ē
(
‖X − ĒSν

ρ (X)|X)‖2 ∧M
)

Letting M →∞ and using monotone convergence in the last term, the stated property follows.

E Numerical results

E.1 Proximal algorithm for the computation of the OWT plan

This section is dedicated to the resolution of the OWT problem. Let µ =
∑r
i=1 aiδxi and ν =∑m

j=1 biδyj , be two discrete measures, the OWT problem boils down to solving

min
π∈Rr×m

r∑
i=1

ai‖xi −
(πy

a

)
i
‖2︸ ︷︷ ︸

f(π)

+ 1Π(µ,ν)(π)︸ ︷︷ ︸
g(π)

, (26)

where 1C is the indicator function of the set C i.e.

1C(π) =

{
π if π ∈ C
∞ otherwise.

The proximal algorithm to solve Eq. (26) then reads:

π`+1 = proxθ`g(π
` − θ`∇f(π`)). (27)

As Π(µ, ν) is a closed non-empty convex set, the proximal operator of g reduces to the Euclidean
projection onto Π(µ, ν):

projΠ(µ,ν)(P ) = arg min
π∈Rr×m

‖P − π‖2 = arg min
π∈Rr×m

〈π,−P 〉+
1

2
‖π‖2

where ‖ · ‖ is the Frobenius norm. This projection problem can be solved by Dykstra’s algorithm
with alternate Bregman projections [19] or by stochastic dual approaches of OT regularised by an L2

norm [35]. This method is summarised in Algorithm 3. In particular, we used an accelerated version
of Eq. (27) via FISTA [11] (with ω` ∈ [0, 1) an extrapolation parameter and θ` the usual stepsize
chosen by a line search) in order to compute the optimal plan πνµ in the weak transport problem.

The optimal barycentric projection is then given by Sνµ =
πνµy

a . We initialised the algorithm with a
random matrix whose elements sum to 1. Observe that, from Algorithm 1, the K optimal barycentric
projection computations can be parallelised for each step n.

Algorithm 3: Computation of the optimal weak plan
Output: πνµ;
Input: µ =

∑r
i=1 aiδxi and ν =

∑m
j=1 bjδyj ;

Initialise π0 random matrix;
while not converge do

P`+1 := π` + ω`(π` − π`−1);
π`+1 := projΠ(µ,ν)(P`+1 − θ`∇f(P`+1));

end

With respect to the efficiency of this algorithm, Figure 7 shows a comparison of different settings
for Eq. (27) in order to compute an optimal weak transport plan. For that purpose, we considered
two discrete distributions µ and ν each constructed from r = m = 10, 100 and 250 samples of two
dimensional Gaussian measures. We illustrate the convergence for both the standard and accelerated
versions of the proximal algorithm, as well as for the projection into Π(µ, ν) via Dykstra’s algorithm
or the stochastic dual approach. As expected, the accelerated version of Eq. (27) converges faster
than the classical proximal algorithm, and the projection step in more stable with Dykstra’s algorithm.
Moreover, the smaller the number of support points, the faster the convergence. We have also noted
that the random initialisation does not affect the convergence towards the minimiser of Eq. (26).
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Figure 7: Convergence of the algorithm (3) in several settings for measures µ and ν supported on
r = m points.

E.2 Additional experiments

Gaussian distributions As in Section 5 of [5], we computed a weak barycenter between two 2D
centered ellipses E(Σi) = {s ∈ R2 : xtΣ−1

i x = 1} with covariances matrices

Σ1 =

(
2 0
0 1

)
and Σ2 =

(
1 0
0 2

)
,

by considering 300 random observations foe each ellipse. We then executed the iterations of
Algorithm 1 until the difference of the objective function (i.e., the sum in Eq. (5)) between two
successive iterations was smaller than 1e− 5. This occurred at the 8th iteration, and the resulting
weak barycenter was a circle within both ellipses. As we have access to the value of the weak
barycenter problem (see Eq. (7)), we also compared the value of the objective function at the 8th
iteration (that is 3.62e− 4) to 1

2

∑2
i=1 ‖E(Yi)‖2 − ‖ 1

2

∑2
i=1 E(Yi)‖2, with a plug-in estimator for

E(Yi). The approximated objective was equal to 3.21e− 4, therefore, Algorithm 1 gave a satisfactory
optimised weak barycenter.

Ellipse distributions (r = 100 & K = 15). We considered ellipse distributions with random center
in (−5, 5), random semi-major and semi-minor axes in (6, 14). The results are presented in Fig. 8,
where the same conclusions as in the Gaussian examples hold.
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Figure 8: (left) Ellipse distributions and their OWT (black) and OT (red) barycenters computed with
Algorithm 2. (center & right) Illustration of the weak (black), OT (red) and OT Sinkhorn (blue)
barycenters for different values of ε = 1, 50.

Pair-of-ellipses (r ∈ (200, 300) & K = 10). In the same fashion, we considered distributions
supported on two ellipses with random centers in (−5, 5), random semi-major and semi-minor axes
in (1, 7) and (7, 13) respectively. Fig. 9 shows the distributions (left) as well as the OT and OWT
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barycenters (right) computed from random samples of the distributions. Observe that, once again, the
weak barycenter better preserved the structure of the distributions when computing Algorithm 2.
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Figure 9: (left) Distributions supported on a pair-of-squares. (right) OWT (black), OT (red) and OT
Sinkhorn for ε = 1 (blue) barycenters computed with Algorithm 2.
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