Supplementary Information

New particle formation from agricultural recycling of organic waste products

R Ciuraru^{1*}, J Kammer¹, C Decuq¹, M Vojkovic², K Haider^{1, 2}, Y Carpentier², F Lafouge¹, C Berger¹, M Bourdat-Deschamps¹, I K. Ortega³, F Levavasseur¹, S Houot¹, B Loubet¹, D Petitprez⁴, C Focsa²

¹INRAE, Université Paris-Saclay, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France ²Univ. Lille, CNRS, UMR 8523, PhLAM – Laboratoire de Physique des Lasers Atomes et Molécules, F-59000 Lille, France

³Multi-physics for Energetics Department, ONERA Université Paris Saclay, F-91123, Palaiseau, France ⁴Univ. Lille, CNRS, UMR 8522, PC2A – Laboratoire de Physico-Chimie des Processus de Combustion de l'Atmosphère, F-59000 Lille, France

raluca.ciuraru@inrae.fr

Supplementary Figure 1. Schematic representation of the experimental setup

Supplementary Figure 2. Typical blank chamber experiment with added O_3 and SO_2 . (a) Temporal evolution of particle number and size distribution. The ordinate represents the electrical mobility diameter (nm) and the color scale the particle number concentration. (b) Temporal evolution of O_3 entering the chamber (black line, O_3 in), O_3 measured at the exit of the chamber (black dotted line, O_3 out) and SO_2 (grey line). (c) Temporal evolution of m/z 132.080 C₉H₉NH⁺ (black line, left axis), m/z 136.075 C₈H₉NOH⁺ (red line, right axis), m/z 146.060 C₈H₇NOH⁺ (orange line, right axis) and m/z 164.070 C₉H₉NO₂H⁺ (blue line, right axis)

Supplementary Figure 3. Skatole ozonolysis experiment with NH3 introduction. (a) Temporal evolution of particle number concentration and size distribution. The ordinate represents the electrical mobility diameter (nm) and the color scale the particle number concentration. (b) Temporal evolution of O₃ entering the chamber (black dotted line, O₃), NH₃ (black line, O₃ out) and SO₂ (grey line). (c) Temporal evolution of m/z 132.080 C₉H₉NH⁺ (black line, left axis), m/z 136.075 C₈H₉NOH⁺ (red line, right axis), 146.060 C₉H₇NOH⁺ (yellow line, right axis) and m/z 164.070 C₉H₉NO₂H⁺ (blue line, right axis).

Parameter	Bulk sewage sludge	Dry weight basis (dry sewage sludge)
Dry matter	17.2 %	-
pH	8.4	-
Total nitrogen	9.49 g/kg	55.1 g/kg
Ammoniacal nitrogen (N-NH4)	< 0.05 g/kg	< 0.05 g/kg
Nitric azote (N-NO3)	< 0.01 g/kg	0.03 g/kg
Urea nitrogen (N)	< 1 g/kg	4.68 g/kg
Organic carbon (C)	68.3 g/kg	396 g/kg

Supplementary Table 1. Properties of the sewage sludge samples

Skatole emission calculation

The flux of skatole was calculated as follows:

 $F_{skatole} = C_{skatole} \times Q/A$

where F is the skatole emission flux ($\mu g \min^{-1} m^{-2}$), C_{skatole} is the concentration of skatole measured into the chamber prior to ozone injection ($\mu g m^{-3}$), Q is the air flowrate through the chamber ($m^3 \min^{-1}$), and A is the surface area of the sample (m^2).

The estimation of the annual total mass of particles possibly emitted by sewage sludge agricultural use in France was calculated as follows:

M= F_{particles} x A x T

where F is the particle emission flux (μ g min⁻¹ m⁻²), A is the sewage sludge spread surface area in France (2.86x10⁹ m², https://amorce.asso.fr/actualite/epandage-des-boues-d-epuration-eclairages-sur-la-reglementation-relative-au-retour-au-sol) and T is the time before sewage sludge incorporation into the soil (48 h, regulated by French legislation).

Supplementary Figure 4. Negative SIMS spectrum of the material sampled from the reaction chamber flow and deposited on quartz-fiber filters. The spectrum of a neat filter (b) is given for comparison.

Supplementary Figure 5. SIMS spectra of sewage sludge in positive (a) and negative (b) polarities. $C_9H_8N^+$ corresponds to a skatole fragment and is detected along with other nitrogenated fragment ions. Sulfate and phosphate ions characterize the spectra in negative polarity.

Supplementary Figure 6. L2MS spectrum of the newly formed particles. The stars mark the peaks used for the calibration.