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Abstract 

Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of 

melanin. This property means melanin can be considered as a target for monitoring melanoma patients 

using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have 

shown that specific molecules can interfere with melanin. This paper reviews some such molecules: 

benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe 

the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part 

summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT 

results from ongoing protocols and discusses combinations with other therapies as an opportunity for 

melanoma non-responders or patients resistant to treatments.  

1. Introduction 

Cutaneous melanoma is the malignant skin tumor caused by melanocytes (Liu et al., 2014; Miller & 

Mihm, 2006; Paluncic et al., 2016; Shain et al., 2015). These cells, located in the basal layer of the epidermis 

and the hair follicle, produce melanin, the pigment that protects the skin from DNA damage due to 

ultraviolet (UV) radiation and is responsible for tanning. Another hypothesis for the origin of primary tumor 

formation suggests that melanoma could arise from melanocyte stem cells residing in the bulge of the hair 

follicle, rather than differentiated melanocytes in the basal layer (Diener & Sommer, 2020; Moon et al., 

2017; Sun et al., 2019). Cutaneous melanomas account for 10% of skin cancers with an incidence of 3.1 per 

100,000 worldwide in 2018 and causing 47,200 deaths (Ferlay et al., 2019). They can appear on healthy skin 

(70-80% of cases) or as a result of the malignant transformation of a naevus (Liu et al., 2014; Miller & 

Mihm, 2006; Paluncic et al., 2016; Shain et al., 2015). Cutaneous melanoma is a term that covers different 

histological subtypes: superficial spreading melanoma, nodular melanoma, acral lentiginous melanoma and 

lentigo melanoma. Around eight percent of cutaneous melanomas are amelanotic (Thomas et al., 2014). 

Acral melanomas, usually located in the plantar and palmar areas and in sublingual zones, represent 2-3% 

of all melanomas (Saida et al., 2011). Their formation and progression are independent of UV exposure and 

have been associated with c-kit mutations (Rawson et al., 2017). Acral melanoma is often dramatic because 

diagnosed after the occurrence of metastases that did not respond well to current targeted therapies. 
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Other types of malignant melanocytic proliferation and pigmented tumors also exist in the mucosa (lips, 

oral and nasal cavities, vulva, vagina, uterus, etc.) and eyes, leading to mucosal and ocular (or uveal) 

melanomas, respectively. These cancers, characterized by specific oncogenic mechanisms, are less frequent 

than cutaneous melanoma (Goldemberg et al., 2019; M.-Y. Wu et al., 2020) and respond differently to 

treatments (Rossi et al., 2020). The prognosis is good for cutaneous melanoma detected early enough, i.e. 

with a thickness of less than 1 mm (Breslow index) and no identified metastases, allowing surgical removal. 

Delayed diagnosis reduces the survival rate considerably because of the high metastatic potential of this 

type of cancer.  

A wide range of treatments is now available, metastasis surgery, radiation therapy and 

chemotherapy being the oldest. Indeed, until the early 2010s, the only systemic treatments available for 

metastatic melanoma were chemotherapy (Hodi et al., 2010) (dacarbazine) or immunotherapy (IL-2), with 

poor efficacy (5-10% survival at 5 years). Since then, the management of metastatic melanoma has seen 

significant therapeutic progress with therapies targeting the MAPK pathway, including BRAF V600E 

(Flaherty et al., 2010) and MEK-activated proteins (Long et al., 2015), as well as immunotherapy (Larkin et 

al., 2015) to eliminate the inhibition and escape mechanisms of the antitumor immune response. These 

antibodies are directed against immune checkpoint inhibitors, such as CTLA-4 (Hodi et al., 2010), PD-1 and 

its ligand PD-L1 (Robert et al., 2015). For more details, see reviews (Mason et al., 2019). Median overall 

survival has thus increased to 2 years (Luke et al., 2017), although more time is required to be able to 

confirm with any accuracy the encouraging increase in the number of long-term survivors (> 2 years). 

Furthermore, various protocols combining immunotherapy (Postow et al., 2015), targeted therapies (Long 

et al., 2015) and stereotactic radiotherapy (Williams et al., 2017) are in routine use or in the first or second 

phases of clinical trials. Although these new treatments have significantly improved the prognosis of 

metastatic melanoma, some melanomas do not respond or become resistant to treatment after just a few 

months. 

Nuclear medicine can benefit cancer therapeutics through theranostics, i.e. the combined use of 

radiolabeled drugs for target identification (via imaging) and treatment delivery using dedicated 

radionuclides (Langbein et al., 2019). Another advantage of nuclear therapy relies on off-target effects, i.e. 
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bystander and abscopal effects (Pouget et al., 2015, 2018). Both nuclear imaging and targeted radionuclide 

therapy (TRT) involve the delivery of radiopharmaceuticals to melanomas using a specific vector coupled 

with a dedicated radionuclide. In addition to the small melanin radiotracers reviewed herein, there are a 

number of other vectors available for melanoma nuclear imaging and TRT, briefly discussed below. A recent 

review presents research on additional imaging tracers, such as the peptide ligands of integrin, (Wei et al., 

2018). Peptide analogs of the α-melanocyte-stimulating hormone (α-MSH) targeting melanocortin 

receptor-1 (MC1-R) (Miao, Benwell, et al., 2007; Miao & Quinn, 2007) allowed imaging in preclinical models 

of murine melanomas and provided promising preclinical results in systemic TRT (Miao, Hylarides, et al., 

2005; Miao, Owen, et al., 2005; Miao, Shelton, et al., 2007). However, their high renal concentration will 

result in renal toxicity, thus impairing their clinical use. Integrin targeting has also been proposed in a phase 

1 clinical trial for melanoma imaging (Phillips et al., 2014) with RGD-functionalized nanoparticles, 

radiolabeled with Iodine-124. These nanoparticles were functionalized with α-MSH peptides in a Lutetium-

177 TRT preclinical study with promising results for a future translational clinical study (Zhang et al., 2020). 

The melanin pigment itself may also be a specific target for antibodies or peptides, as demonstrated 

in melanomas (Norain & Dadachova, 2016). Dadachova et al. successfully tested some TRT strategies in 

preclinical models with different radiolabeled melanin-binding antibodies ([188Re]6D2, [166Ho]6D2, [90Y]6D2, 

[188Re]8C3, [213Bi]8C3, [177Lu]8C3) (Dadachova et al., 2008; Klein et al., 2013; Revskaya et al., 2009; 

Thompson et al., 2014) and a melanin-binding decapeptide ([188Re]4B4,[177Lu]4B4, [166Ho]4B4, [153Sm]4B4) 

(Ballard et al., 2011; Dadachova et al., 2006). [188Re]6D2 mAb was also tested in one phase I clinical trial 

(Klein et al., 2013) and has shown good tolerance, localization in melanoma metastases and antitumor 

activity. Despite these promising results, this work did not lead to phase II trials.  

Back in 1972, the first molecules reported to bind melanin were chlorpromazine (an anti-psychotic 

derivative of phenothiazine) and chloroquine (anti-malaria drug) (Lindquist & Ullberg, 1972). Our group 

came into the melanin ligand research field with a study on adiphenin, an inhibitor of nicotinic receptors 

showing high retention in pigmented tissues (eyes and skin) (Meyniel et al., 1990). Other compounds are 

also known to bind with melanin, such as methylene blue (MB) or acridine orange drugs (Mårs & Larsson, 

1999). Comparison of these molecule structures reveals a common pattern of aromatic rings and a “tertiary 
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amino group” (Figure 1). The next step was to synthesize and select the best structures exhibiting these 

characteristics and a radiolabeling site, usually an iodine atom. This review starts by describing the key 

features of melanin and then recapitulates the benzamides and derivatives that have been tested in clinical 

trials, focusing on their radiosynthesis. The last part will be dedicated to therapeutic approaches in 

preclinical experiments and clinical trials with a specific focus on some promising combination strategies.  

2. Melanin pigment 

2.1. Localization and melanogenesis 

Melanin is synthesized inside specialized melanocyte organelles called melanosomes under genetic 

and biochemical regulation (for reviews on pigmentation genes, see (Pavan & Sturm, 2019; Rocha, 2020; 

Sturm, 2009)). After maturation, the melanosomes are transferred to other cells, mainly to surrounding 

keratinocytes (Figure 2A). In the epidermis, melanocytes and keratinocytes form a melanin unit, by 

associating one melanocyte and around 36 keratinocytes (Haass et al., 2005). This pigment transfer is 

responsible for skin pigmentation and plays a central role in protecting the cells against ultraviolet (UV) 

radiation damage. Melanin is also responsible for the pigmentation of the hair, eyes, and mucosa. Melanin 

itself is a complex biopolymer made up of two chemically different melanins, called eumelanin (EM) and 

pheomelanin (PM). Eumelanin is a brown-black pigment, while PM has a yellow to reddish-brown color, 

ascribed to the cysteine. EM is constituted of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-

carboxylic acid (DHICA) monomers, while benzothiazine and benzothiazole are the PM monomers produced 

by the melanogenesis pathway (Figure 2B). Considering the diversity of the DHI/DHICA ratio in EM, the 

degree of polymerization, and the availability of cysteine that governs PM synthesis, natural melanin 

constitutes a complex, heterogeneous, high molecular weight structure. 

2.2. Functions: photo-protection vs photo-toxicity  

The close association between UV exposure and its genotoxic effects that lead to the development of 

skin cancer, notably melanoma, is well established (Erdmann et al., 2013). Melanin photo-protection 

against UVB (290-320 nm) and UVA (320-400 nm) radiation has been demonstrated in vitro (human 

melanocytes) (Barker et al., 1995; Smit et al., 2001) and in situ (skin biopsies of healthy donors) (Tadokoro 
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et al., 2003; Yamaguchi et al., 2006; Mouret et al., 2006). The most studied pigment, EM, shows an 

exceptionally broad spectrum of UV-Vis absorption, with a decreasing exponential profile (Figure 2C) as 

well as an absorbed radiation dissipation capacity that supports its natural photo-protection action (for a 

review, see Meredith & Sarna, 2006). Melanin radioprotection is also mediated by radical scavenging and 

oxygen depletion throughout melanogenesis. Notwithstanding its photo-protective actions, melanin 

exhibits potential toxicity. In the presence of UVA irradiation, both pigments undergo oxidative degradation 

(Wakamatsu et al., 2012). However, the antagonistic effect of melanin on radiation protection is mainly 

attributed to PM. Among the main causes of cell oxidative stress mediated by PM are the antioxidant 

depletion (i.e. glutathione (GSH) and NADH) and the production of reactive oxygen species (ROS) and the 

formation of cyclobutane pyrimidine dimers (CPD) leading to DNA damage (Chedekel et al., 1978; H. Z. Hill 

et al., 1997; Helene Z. Hill & Hill, 2000; Panzella et al., 2014; Premi et al., 2015). In vivo demonstration of 

the spontaneous development of melanomas by BRAFv600E mutant mice that produce PM when not 

exposed to UV provides a link with the pro-oxidant potential of PM (Mitra et al., 2012).  

2.3. Melanin and melanoma 

Melanoma incidence is lower in dark-skinned than in light-skinned individuals (Bertrand et al., 2020; 

Erdmann et al., 2013; MacKie et al., 2009). Melanin is present in most primary melanoma tumors since only 

1.8 to 8.1% are amelanotic (Koch & Lange, 2000). Amelanotic melanomas usually present a thicker Breslow 

index, a higher mitotic rate, and are associated with a lower survival rate than pigmented melanomas (Wee 

et al., 2018). It has been reported that melanoma cells lose their melanogenesis ability during metastatic 

dissemination, and it is assumed that about 50% of melanoma-derived metastases are pigmented (Cachin 

et al., 2014). The loss of pigmentation is usually considered as a loss of differentiation and a marker of 

disease progression (Miller & Mihm, 2006).  

However, the presence of melanin in tumors can be deleterious to patients undergoing 

chemotherapy (Chen et al., 2006, 2009) or radiotherapy (Brożyna et al., 2013, 2016), related to intrinsic 

melanin trapping and radiation-protection abilities. Conversely, a beneficial role of melanin on melanomas 

has been also demonstrated in vitro (Sarna et al., 2013, 2014, 2018) and in vivo (Sarna et al., 2019) due to 

reduced cell elasticity. Interestingly, near-infrared pump-probe imaging showed structural changes to the 
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pigments in melanoma biopsies and pointed to DHICA EM fragmentation as a marker of melanoma 

metabolic activity and metastatic potential (Matthews et al., 2011; Ju et al., 2019). The relationship 

between structure, melanin function and changes depending on the melanoma stage deserves further 

investigation to understand its significance in biological terms.  

As described above, melanin is an obstacle to external radiotherapy and chemotherapy for 

melanoma because of its photo-protection and scavenging properties. However, its presence in melanomas 

and the discovery of melanin drug affinities have promoted studies on radionuclide-labeled compounds to 

enable specific tumor targeting. 

3. Radiotracers binding to melanin  

3.1. Discovery of strong affinities between certain drugs and melanin 

Ocular toxicology cases associated with a drug affinity for melanin were first reported in the middle 

of the 20th century, with a phenothiazine compound (Verrey, 1956) and chloroquine (Hobbs et al., 1959). In 

1972, a biodistribution study on mice and monkeys confirmed the accumulation of radiolabeled 

chloroquine and chlorpromazine in pigmented tissues (Lindquist & Ullberg, 1972). These observations led 

to studies of the drug-melanin interaction mechanisms, mainly for the toxicological studies required for 

drug development (for a review, see Ings, 1984). The compounds with the highest affinity for melanin have 

two chemical structural similarities: firstly, an aromatic or heteroaromatic ring and, secondly, a protonated 

amine function at physiological pH (Figure 1). Early on, an analogue of chloroquine radiolabeled with 

iodine-125 was investigated for visualizing malignant melanomas and metastases in humans (Beierwaltes et 

al., 1968). Unfortunately, the physical properties of iodine-125 (half-life 59 days, main gamma emission 

energy 27 keV) are not suitable for low patient dosimetry and do not enable resolution sufficient for 

nuclear medicine imaging applications. In the late 1980s, our team worked on aromatic iodinated amino 

compounds, including adiphenine, to explore the central nervous system. Unexpectedly, an accumulation 

of radioactivity was observed in richly pigmented tissues, leading to the first radiotracer N-(2-

diethylaminoethyl)-4-iodobenzamide (BZA), specifically designed to diagnose malignant melanoma 

(Michelot et al., 1991).  
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3.2. BZA and benzamide derivatives with a high affinity for melanin 

BZA, like many benzamide structures, is known for its affinity for σ-receptors (Schmidt & Kruse, 

2019). σ-Receptors are cellular receptors found in various organs and expressed by melanoma cells 

(Georgiadis et al., 2017; John et al., 1993). They were first identified as targets of benzamides. However, it 

is now assumed that BZA directly binds with melanin for three main reasons: 1) BZA fixation is independent 

of its molar activity, suggesting a non-saturable mechanism different from the receptor-ligand interaction 

(Dittmann et al., 1999). 2) In vitro BZA uptake in melanoma is not correlated with the presence of σ-

receptors (M. Eisenhut et al., 2000; Oltmanns et al., 2009), but correlation was found between melanin and 

benzamide uptake (Labarre et al., 2002). 3) Secondary ion mass spectrometry showed that BZA co-localized 

with intracytoplasmic melanin (Guerquin-Kern et al., 2004; Chéhadé et al., 2005). However, the reversible 

interaction between BZA and melanin excludes a covalent bond (Labarre et al., 2002). The presence of the 

protonated cation on tertiary amine favors ionic interaction with carboxylates on one side, and a π-

interaction between the aromatic ring and the heteroaromatic ring (indole) on the other (Figure 3). 

This specific non-saturable interaction leads to significant pharmacomodulation for nuclear medicine. 

In the 1990s, various teams performed pharmacomodulation, mainly to investigate the position of iodine 

(Brandau et al., 1996; Nicholl et al., 1997), the length of the carbon chain between the two nitrogen atoms, 

and the terminal amine function (Dittmann et al., 1999; John et al., 1993; Labarre et al., 1999; N. Moins et 

al., 2001; Moreau et al., 1995; Nicholl et al., 1997). Almost all these molecules maintained strong affinity for 

melanoma in preclinical studies. More recently, the aromatic ring has been modified by adding phenyl 

substituents (M. Eisenhut et al., 2000; Nicholl et al., 1997), and using new heteroaromatic analogs (Chezal 

et al., 2008; Greguric et al., 2009).  

Many of these structures have shown good potential as melanoma radiotracers in preclinical studies 

and have been reviewed elsewhere (Oltmanns et al., 2009; Wei et al., 2018).  

3.3. Radiotracers binding with melanin polymers for clinical applications 

3.3.1. Radioisotope selection 
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In parallel to chemical BZA pharmacomodulation, a number of attempts has been made to find a 

radionuclide replacement for iodine-123/131. For SPECT diagnosis, the more available technetium-99m has 

been extensively investigated with moderate success (Auzeloux et al., 1999; Auzeloux et al., 2000; Auzeloux 

et al., 1999; Auzeloux et al., 2001; Friebe et al., 2000, 2001; Michael Eisenhut et al., 2002; N’Dongo et al., 

2010; Moura et al., 2012). The metallic nature of technetium requires the presence of a chelator group, 

resulting in partial loss of the melanin affinity. For PET imaging, fluorine-18 (S.-Y. Wu et al., 2014; Garg et 

al., 2017; Greguric et al., 2009, 2009; Pyo et al., 2020; Ren et al., 2009), carbon-11 (Garg et al., 2017; Igawa 

et al., 2017) and gallium-68 complex (Kim et al., 2012b, 2012a) have provided interesting results in 

preclinical studies. For radionuclide therapy, the alpha emitter, astatine-211, was considered in early 

studies, with a radio-analog of methylene blue in preclinical models (Link et al., 1989, 1996; Link, 1999). 

Our team investigated both iodinated and fluorinated derivatives of quinoxaline. The same molecule 

can be radiolabeled with fluorine-18 for PET imaging or with iodine-131 for therapeutic applications (Billaud 

et al., 2013, 2015; Maisonial et al., 2013). This multimodal approach has shown promising preclinical results 

in theranostic approaches for pigmented metastatic melanoma: the best compound, [18F]-N-(12-ethyl-1-

fluoro-3,6,9-trioxa-12-azatetradecan14-yl)-6-iodoquinoxaline-2-carboxamide ([18F]ICF15002), 

demonstrated high and early tumor uptake (14.33%ID/g, 1 hour after injection). After [131I]ICF15002 

injection, tumor doubling time increased from 1.8 ± 0.3 to 2.9 ± 0.5 days (controls vs treated), associated 

with higher median survival in the B16-BL6 murine model (Rbah-Vidal et al., 2016). Until now, only radio-

halogenated benzamide derivatives have been injected into humans, radiolabeled with iodine-123/131 or 

fluorine-18. The radionuclide properties are summarized in Table 1. 

The iodine radioisotope pair offers a strategic advantage in terms of development as the same 

molecule can be used for both SPECT with iodine-123 or therapy with iodine-131 (Mier et al., 2014). 

However, for diagnosis applications, more studies are being conducted on fluorine-18 because of its 

availability (18F is the radioisotope present in FDG, the ‘gold standard’ in nuclear medicine for tumor 

imaging) and because of benefits of PET vs SPECT (PET presents higher resolution and a better signal-to-

noise ratio). 

3.3.2.  Radiopharmaceutical production 
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There are many chemical methods to incorporate a radio-halogen onto a small molecule (for 

radioiodination see Dubost et al., 2020 and for radiofluorination see Preshlock et al., 2016). These protocols 

involve two strong constraints: radiochemistry takes place at the trace scale (concentrations µM to pM) 

and the final product must comply with injectable drug regulations. Thus, for a radiopharmaceutical 

application, four main points must be respected: 1) the labeling time must be as short as possible; this 

parameter, while important for radioiodination, becomes crucial for the fluor-18 radiolabeling process; 2) 

radiochemical yields (RCY) must be as high as possible to reduce the activity, cost and radiation exposure 

involved; 3) the purification method must prefer single-use cartridges instead of a column; 4) the process 

must limit the formation of radioactive by-products. 

For all these reasons, for the 10 molecules studied in clinical trials for malignant melanoma (Table 2), 

only four different radiolabeling methods were used. The oldest, and simplest one is the isotopic exchange 

used for [123I]BZA and N-(2-diethylaminoethyl)-2-iodobenzamide ([123I]BZA2). The chemical precursor 

corresponds to the last radiolabeled compound studied. However, final molecular activity levels are low 

(always < GBq/µmol). Nevertheless, this disadvantage is not a problem because the BZA derivative-melanin 

binding process is not saturable. Direct electrophilic aromatic substitution has been used with molecules 

involving an activating group. This method was successfully employed for the radioiodination of MB, N-((1-

ethylpyrrolidin-2-yl)methyl)-2-hydroxy-3-iodo-6-methoxybenzamide (IBZM), N-(2-diethylaminoethyl)-3-

iodo-4-methoxybenzamide (IMBA) and N-(2-diethylaminoethyl)-4-(4-fluorobenzamido)-5-iodo-2-

methoxybenzamide (MIP-1145). Using a chloro- or bromo-chemical precursor, it is also possible to carry 

out a halogen exchange involving nucleophilic aromatic substitution. BZA and BZA2 were thus radiolabeled 

with iodine-123 from the bromo-precursor, N-(2-diethylaminoethyl)-5-fluoropicolinamide (P3BZA) was 

radiolabeled with fluorine-18 from the bromo-precursor and N-(2-diethylaminoethyl)-6-fluoronicotinamide 

(Mel050) with fluorine-18 from the chloro-precursor. Note that the last two methods, direct substitution 

and halogen exchange, require a purification step to separate the chemical precursor from the final 

radiopharmaceutical. The most recently published method uses Iodo-destannylation of the butyltin 

precursor for both N-(4-((2-diethylamino-ethylcarbamoyl)-2-iodo-5-methoxyphenyl)benzo[1,3]dioxole-5-

carboxamide ([123/131I]BA52) and N-(2-diethylaminoethyl)-6-iodoquinoxaline-2-carboxamide 
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([131I]ICF01012). This is a nucleophilic substitution reaction, requiring the presence of a strong oxidant. This 

regiospecific method is most often used for radioiodation because of its very soft conditions (18-25°C) and 

fast kinetics (only a few minutes). The limit of this method for clinical application is that it eliminates 

stannane compounds in the final formulation; a validated method for final purification (HPLC or cartridge) 

is therefore required. 

4. Preclinical and clinical results 

4.1. Biodistribution, imaging, dosimetry and potential adverse effects 

The main concern with radiopharmaceuticals is dosimetry. Radiotoxicity must be minimized in 

imaging, non-targeted organs must be spared in therapeutic protocols, but enough activity must be 

delivered to ensure anti-tumor efficiency. The dose in internal radiotherapy is closely related to the amount 

of radiolabeled ligand in tissues, causing prolonged exposure to different radiations for a given 

radionuclide, inducing a low absorbed dose rate. This is quite different from EBRT, which involves a 

homogeneous high dose rate and short exposure (Pouget et al., 2015). Studies on melanin ligands, as for 

other radiopharmaceuticals, usually refer to the ratio of tumor to blood or muscle for pharmacokinetics 

and the percentage of injected activity per gram of tissues (Table 3). This percentage varied from 9 to 41% 

in preclinical model tumors for the most recent studies on structures transferred to clinical trials (Table 3). 

Dosimetry was calculated with the MIRD formalism, taking into account activity in the source and the S-

factor derived from computed values (Bolch et al., 2009). S-factors are defined as the mean absorbed dose 

in the target organ per decay in the source organ (Stabin, 2003). These S-factors were calculated by 

MONTE-CARLO simulation to increase accuracy and to provide a closed fit with reality (Perrot et al., 2014); 

they are used for specific personal dosimetry in the ongoing MELRIV1 trial (NCT03784625). 

Various melanoma cell lines were used in the preclinical models but most investigations were carried 

out on highly pigmented murine B16 cell lines grafted subcutaneously into C57Bl/6 mice (Poste et al., 

1980). This syngeneic model demonstrates high fixation of radiolabeled benzamides in the eyes, 

particularly in the pigmented retinal epithelium, and choroid, both structures being close to the retina 

(Degoul et al., 2013). This specific targeting is not expected to have an impact in humans as dosimetry 
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extrapolations gave values below the maximum tolerated doses (Jouberton et al., 2018). Furthermore, the 

imaging and therapy protocols already performed on humans did not assess accumulation in the eyes, 

except in the case of uveal melanoma (Everaert et al., 1997; Sillaire-Houtmann et al., 2004). As mentioned 

previously, the melanin-binding of these molecules is not covalent and non-saturable, which allows high 

and low specific activities for these radiotracers. The kinetics of the radiolabeled ligands in pigmented 

tissues (mainly the eyes and melanomas) follow a curve that plateaus, indicating their affinity for melanin 

with the highest percentage of injected activity in pigmented tissues (Perrot et al., 2014). Radioiodinated 

benzamides can also affect skin and hair follicle melanocytes, and melanized neurons. Our results, and 

those from others obtained in preclinical models, did not evidence such toxicities. In the B16 preclinical 

model, cutaneous melanocytes only present in follicles were not modified qualitatively or quantitatively by 

[131I]ICF01012 (Degoul et al., 2013). Concerning neurons and the blood-brain barrier, we have already 

shown that the [125I]BZA2 radiotracer can evidence brain metastases (Cachin et al., 2014), proving that the 

radiotracer can pass through the blood-brain barrier in patients. However, dosimetry for the whole brain 

was not critical in preclinical models (monkeys and mice) (Joyal et al., 2010; Viallard et al., 2015) or also for 

extrapolated human doses (Jouberton et al., 2018). Finally, the most convincing argument for TRT safety is 

that the first TRT on humans did not cause adverse effects in patients receiving [131I]BA52 (Mier et al., 

2014). 

As far as SPECT imaging is concerned, the high specificity of the radiolabeled benzamides has been 

clearly demonstrated by various trials, with values above 86% (Table 3). However, when these tracers were 

tested for PET imaging with [18F]FDG, sensitivity was lower (Cachin et al., 2014), resulting in the 

interruption of benzamide development for SPECT imaging. Nevertheless, the size of these molecules is 

compatible with fluorine radiolabeling for PET imaging, as exemplified with [18F]P3BZA with 17% IA post 

injection, leading to good imaging quality in mice and subsequently in human PET scans (Ma et al., 2019). 

This tracer should be compared with [18F]FDG to evaluate its benefits. 

4.2. Antitumoral effects of benzamide-based TRT  

TRT efficacy has been assessed in preclinical studies in both syngeneic (B16-F0, B16-F10 and B16-BL6) 

and xenograft (M4Beu, SK-MEL-3) models. We used different clones of B16 melanoma, selected for their 
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high metastazing capacities, for serial IV injection of cell lines from lung metastases, i.e. B16-F10 to B16-F0. 

B16-BL6 differs from its parent B16-F10 in that it is able to cross the bladder membrane (Poste et al., 1980). 

We observed that B16-BL6 exhibited higher melanin than B16-F0 and B16-F10 (Rondepierre et al., 2009). 

For instance, we showed that two injections of 18.5 MBq of [131I]ICF01012 significantly inhibited the growth 

of B16-F0 and B16-BL6 tumors (Bonnet et al., 2010; Bonnet-Duquennoy et al., 2009; Viallard et al., 2015). 

This therapeutic effect was also found with [131I]5-IPN367 on B16-F10 tumors with an identical therapeutic 

protocol (Xu et al., 2018). Similarly, in xenograft models, the injection of [131I]ICF01012 or [131I]MIP-1145 

led to a significant slow-down of tumor growth in human pigmented tumors and increased survival 

(Bonnet-Duquennoy et al., 2009; Bonnet et al., 2010; Joyal et al., 2010; Degoul et al., 2013). TRT efficacy on 

tumor growth and survival was dependent upon the number and scheduling of radiopharmaceutical 

injections in both B16 and SK-MEL-3 models (Bonnet et al., 2010; Degoul et al., 2013; Joyal et al., 2010; Xu 

et al., 2018) and was obviously related to the amount of melanin (Viallard et al., 2015). [131I]BA52, a 

molecule derived from [131I]MIP-1145, was tested in metastatic melanoma patients. This unique TRT clinical 

trial showed that of the five patients, two were still alive 2 years after treatment (Mier et al., 2014). These 

patients received the higher activity, emphasizing the importance of dosimetry. Furthermore, a phase I 

clinical trial is currently assessing the safety and efficacy of the [131I]ICF01012 molecule (NCT03784625) 

(Table 3). 

4.3. Biological effects of benzamide-based TRT 

Compared with EBRT, the cellular and molecular effects of TRT are not so well documented and 

researchers are still working to decipher the TRT mechanisms, particularly with respect to dosimetry 

(Pouget et al., 2015). However, by analogy with EBRT, different non-mutually exclusive biological 

mechanisms are likely to be induced after TRT: 1) the DNA double-strand breaks and the cell cycle are 

altered, related to p53 mutational status (Baskar et al., 2014; Pawlik & Keyomarsi, 2004); 2) metastatic 

mechanisms involving VEGF expression are altered, and epithelial-mesenchymal transition (EMT) is altered 

and inhibited (Fujita et al., 2015; Moncharmont et al., 2014); 3) the antitumor immune response is 

stimulated (Rodríguez-Ruiz et al., 2018). The biological effects of TRT described below are summarized in 

Figure 4. 
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4.3.1. Effects on tumor cells 

In B16-F0 and B16-BL6 tumors, TRT induces striking cellular abnormalities with anisocytosis and giant 

cells (Bonnet et al., 2010; Degoul et al., 2013). Both [131I]ICF01012 and [131I]5-IPN induce a higher 

proportion of G2-phase blocked cells, suggesting that the main mechanism of TRT toxicity is the mitotic 

catastrophe (Degoul et al., 2013; Xu et al., 2018). This hypothesis is supported by morphological nuclear 

abnormalities, cytoskeleton alterations (tubulin-13 reduced) and consumption of metabolites (amino acids 

and glucose). In tumors following [131I]ICF01012 injection, DNA damage due to irradiation is indicated by 

the significant increase in SubG1 phase cells and Ser-15 phosphorylation induction of the p53 protein (Akil 

et al., 2019; Degoul et al., 2013). However, apoptosis is not the main mechanism of [131I]ICF01012 efficacy 

in this model (Degoul et al., 2013). With [131I]ICF01012 and [131I]5-IPN, tumor cell proliferation was reduced 

(Bonnet-Duquennoy et al., 2009; Degoul et al., 2013; Xu et al., 2018). Reduced clonogenicity (Akil et al., 

2019) and a decrease in the phosphorylated forms of ERK and AKT (proteins involved in cell survival) were 

observed after [131I]ICF01012 injection (Degoul et al., 2013). 

4.3.2. Effect on metastases: angiogenesis and epithelial-mesenchymal transition (EMT) 

Although the invasion modifications induced by EBRT have been described (Sundahl et al., 2018), few 

data are available on the impact of TRT on metastasis and particularly on EMT-like mechanisms. TRT with 

[131I]ICF01012 reduces the number of spontaneous lung metastases from subcutaneous primary B16-BL6 

tumors (Bonnet-Duquennoy et al., 2009) and significantly decreases the number and size of B16-BL6 

colonies in the lungs (Akil et al., 2019). This might be due to an anti-angiogenic effect, by VEGF down-

regulation and up-regulation of an anti-angiogenic protein, IP10 (Degoul et al., 2013; Xu et al., 2018). A 

decrease in blood vessels has also been found in [131I]5-IPN tumors (Xu et al., 2018). Alternatively, 

[131I]ICF01012 reduces the acquisition of the EMT-like phenotype by decreasing the expression of EMT-like-

related genes (Sparc, Brn2, Zeb2, Mitf) and by reducing the protein expression of two EMT-like markers, N-

cadherin and vimentine (Akil et al., 2019). Further investigations are required to improve understanding of 

the precise mechanisms underlying the effects of TRT on metastatic processes. 

4.3.3. Effect on antitumor immune response 
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Antitumor immune response has been widely studied in melanoma, which is a tumor able to 

spontaneously regress due to a high intrinsic mutational burden (for a review, see Passarelli et al., 2017). In 

the same way, EBRT, which leads to DNA alterations and immunogenic cell death, has been shown to 

modify the antitumor immune response (for a review, see Rodríguez-Ruiz et al., 2018). A few studies report 

changes in the antitumor immune response after TRT (recruitment of specific antigen-presenting cells (Y. 

Wu et al., 2013), induction of a specific T cell immune response (Chakraborty et al., 2008; Keisari et al., 

2014) and a memory T cell immune response (Hernandez et al., 2019). However, all these data were 

obtained in non-melanoma tumors and with different vectorization strategies.  

In a B16-F10 murine model, [131I]ICF01012 efficacy has been found to depend on the 

immunocompetence of the mice (Rouanet et al., 2020). Furthermore, [131I]ICF01012 modifies the antitumor 

immune response by inducing immunogenic cell death (exposure of annexin A1 and calreticulin at the cell 

membrane). This stimulates the recruitment of cytotoxic T cells, responsible for tumor immune destruction, 

regulatory T cells involved in immune tolerance, and innate immune cells (NK cells and macrophages) in the 

tumor environment (Rouanet et al., 2020).  

4.4. TRT combined with other treatments  

In spite of the promise of the antitumoral effects of TRT, the advent of targeted therapies and 

immunotherapy in the early 2010s cast doubt upon this strategy. Combining TRT with ICI and DNA repair 

inhibitors makes sense as TRT induces DSB and immune tolerance (see paragraph 4.3). 

4.4.1.  Immune checkpoint inhibitors 

Combining TRT with ICI has been assessed using different approaches involving antibodies targeting 

melanin (Jiao et al., 2020; Nosanchuk et al., 2018), a peptide targeting the integrin VLA-4 (Choi et al., 2018) 

and melanin ligands (Rouanet et al., 2020). In this last study, [131I]ICF01012 combined with an anti-CTLA-4 

antibody resulted in a significant increase in survival, confirming the importance of immune tolerance after 

[131I]ICF01012. The association of [131I]ICF01012 with anti-PD-1 or anti-PD-L1 antibodies did not bring any 

significant benefit in terms of survival, showing that T cell exhaustion is not a major phenomenon after TRT. 

Further analyses, using the combination of [131I]ICF01012 with an anti-CTLA-4 antibody associated with an 
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anti-PD-1 or an anti-PD-L1 antibody, suggest that the [131I]ICF01012 + anti-CTLA-4 combination limits TRT-

induced immune tolerance but induces T cell exhaustion. It is interesting to note that a similar observation 

was made on a B16 model following combined EBRT and ICI treatment (Twyman-Saint Victor et al., 2015). 

Finally, these results confirm that the combination of TRT and ICI is a promising approach for the treatment 

of metastatic melanoma and opens the prospect of clinical trials for this type of combination. 

4.4.2. coDbait 

coDbait is a small DNA molecule which mimics a DNA double-strand break and disorganizes the DNA 

repair mechanisms by trapping repair enzymes (Biau et al., 2014; Croset et al., 2013; Quanz et al., 2009). It 

has been shown that combining [131I]ICF01012 with coDbait results in a synergistic effect or additive effect 

on tumor growth and median survival, without increasing toxicity, in human SK-Mel 3 melanoma xenografts 

and in murine syngeneic B16-BL6 models (Viallard et al., 2016). However, there are no current plans for 

clinical trials on a DNA repair trap combined with TRT, even though Dbait associated with EBRT has proven 

its safety in melanoma patients (Le Tourneau et al., 2016). 

5. Summary and perspectives 

Benzamide-based radioligands targeting melanin were first developed for imaging. Although their 

specificity is well established, these structures are more suitable for therapeutic purposes because of the 

high capacity of [18F]FDG to detect melanomas. In terms of TRT, we believe that, although many questions 

remain, the use of radiolabeled benzamides may constitute a therapeutic solution for melanomas resistant 

to therapy. TRT is an original strategy for the systemic targeting of not only pigmented lesions, but also 

unpigmented metastases through the abscopal effect. Furthermore, immunogenic modifications of treated 

TRT tumors can enhance the efficacy of ICI. Based on this observation, we are planning a future trial 

combining TRT with ICI inhibitors. 
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Figure 1 

 

Figure 1. Examples of dyes or drugs with a high affinity for melanin. Chemical structures at 

physiological pH. (1) chlorpromazine; (2) methylene blue; (3) acridine orange; (4) chloroquine; (5) 

adiphenin; (6) N-(2-diethylaminoethyl)-4-iodobenzamide (BZA). 

  



32 

Figure 2 

 

Figure 2. Melanin and melanogenesis. A) Localization of melanin synthesis within the melanosomes 

of melanocytes and transfer to keratinocytes. B) Melanogenesis pathway is mainly regulated by tyrosinase 

(Tyr) which produce dopaquinone (DQ) from tyrosine. If cysteine (Cys) is available, the DQ precursor first 

reacts with the Cys to generate cysteinyldopas 5-S and 2-S (5SCD, 2SCD), which are oxidized by DQ, 

producing benzothiazine, yielding PM after polymerization (Ito & Wakamatsu, 2008; Ozeki et al., 1997). 

After PM production, the benzothiazine is gradually converted to benzothiazole (Wakamatsu et al., 2009). 

The depletion of Cys therefore promotes the spontaneous cyclization of DQ, giving rise to DOPAchrome 

(DC) (del Marmol et al., 1996; Ozeki et al., 1997). This is rearranged to produce the constituent monomers 

of EM: 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). The enzyme 

DOPAchrome tautomerase (DCT), also called tyrosinase-related protein 2 (Tyrp2), catalyses the production 

of DHICA (Aroca et al., 1992). Subsequent oxidation of both dihydroxyindoles forms the EM polymer. C) 

Overall view of the functions of melanin and its role on melanoma. 
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Figure 3 

 

Figure 3. Example of BZA derivative-melanin binding: chemical interactions between ICF01012 and 

melanin fragment. 
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Figure 4 

 

Figure 4. TRT biological effects from known preclinical molecular events to potential clinical applications. 
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Tables  

Table 1. Main properties of the three radionuclides used in clinical studies involving benzamide derivatives. 

Radio-isotope Half-life 
Main decay 

(energy max) 

Main γ emission 

(Intensity) 
Production 

Nuclear medicine 

application 

Iodine-123 13.22 h 
100% 

Electronic capture 

159 keV (83%) 

27.5 keV (46%) 

27.2 keV (25%) 

31.1 keV (13%) 

Cyclotron 
Diagnostic Imaging 

SPECT 

Iodine-131 8.023 d β- (606 keV) 

364 keV (81%) 

637 keV (7%) 

284 keV (6%) 

Reactor Therapy 

Fluorine-18 109.8 min β+ (634 keV) 511 keV (194%) Cyclotron 
Diagnostic Imaging 

PET 
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Table 2. Main production characteristics of the radiopharmaceutical compounds involved in clinical trials. 

Name Chemical structure Chemical precursor 
Radiolabeling 

method 
Conditions Purification  Yield Purity 

Molar 

Activity 
Reference(s) 

MB 

Methylene blue 

  

Direct 

Electrophilic 

Aromatic 

Substitution 

KIO3, HCl 

100°C, 1 h 

Anion 

exchange 

cartridge 

60-70% >99% 
199 

MBq/µmol 

(Blower & 

Carter, 

1990) 

  

 

Isotope 

Exchange 

Citrate buffer pH=4 

CuSO4 

140°C, 40 min 

none >98% >98% 
9 

MBq/µmol 

(Michelot et 

al., 1991) 

BZA 

N-(2-diethylaminoethyl)-4-iodobenzamide 

  

Br-I 

Exchange 

PhCO2H 

240°C, 40 min 
HPLC 40-60% n.p. 

1.4-1.5 

TBq/µmol 

(Brandau et 

al., 1993) 

  

 

Isotope 

Exchange 

Acidic condition 

SnSO4/CuSO4 

100°C, 60 min 

none 99.5% >99% 
256 

MBq/µmol 

(Everaert et 

al., 1997) 

IBZM 

N-((1-ethylpyrrolidin-2-yl)methyl)-2-

hydroxy-3-iodo-6-methoxybenzamide 

  

Direct 

Electrophilic 

Aromatic 

Substitution 

AcONH4 buffer pH = 4 

AcO2H 

RT, 5 min 

C4-cartridge 70-80% 95-98% 
>185 

GBq/µmol 

(M.-P. Kung 

& Kung, 

1989) 

(M. P. Kung 

et al., 1991) 

IMBA 

N-(2-diethylaminoethyl)-3-iodo-4-

methoxybenzamide 

  

Direct 

Electrophilic 

Aromatic 

Substitution 

Tl(TFA)3 

RT, 5 min 
HPLC 80-98% n.p. 

90 

GBq/µmol 

(Nicholl et 

al., 1997) 

BZA2 

N-(2-diethylaminoethyl)-2-iodobenzamide 

 

 

Br-I 

Exchange 

Na2S2O5 

CuCl/AcOH ; 10-60 

min à 180°C  

HPLC >80% n.p. 
5 

TBq/µmol 

(Brandau et 

al., 1996) 

 

Isotope 

Exchange 

Acetate buffer pH=5 

Dry evaporation 

140°C, 50 min 

Anionic 

resin 
75% >95% 

6.4-15.4 

MBq/µmol 

(Nicole 

Moins et al., 

2002) 

MIP-1145 

N-(2-diethylaminoethyl)-4-(4-

fluorobenzamido)-5-iodo-2-

methoxybenzamide 

  

Direct 

Electrophilic 

Aromatic 

Substitution 

Tl(TFA)3 

RT, 5 min 
HPLC 70-90% >95% 

55.5 

GBq/µmol 

(Joyal et al., 

2010) 

Mel050 

N-(2-diethylaminoethyl)-6-

fluoronicotinamide 

  

Cl-F 

Exchange 

K222/K2CO3 

DMF 150°C 5 min 
HPLC <5% >99% 

150-220 

GBq/µmol 

(Denoyer et 

al., 2010) 

(Denoyer et 

al., 2011) 
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Name Chemical structure Chemical precursor 
Radiolabeling 

method 
Conditions Purification  Yield Purity 

Molar 

Activity 
Reference(s) 

BA52 

N-(4-((2-diethylamino-ethylcarbamoyl)-2-

iodo-5-methoxyphenyl)benzo[1,3]dioxole-

5-carboxamide 

 

 
 

Iodo-

destannylation 

AcOH 

H2O2 

RT, 10 min  

HPLC 54-68% >95% n.p. 
(Mier et al., 

2014) 

 

P3BZA 

N-(2-diethylaminoethyl)-5-

fluoropicolinamide 

  

Br-F 

Exchange 

Automated 

radiosynthesis 

K222/K2CO3 

DMF 110°C 10 min 

HPLC 12% >99.5% 
132 

GBq/µmol 

(Ma et al., 

2019) 

ICF01012 

N-(2-diethylaminoethyl)-6-

iodoquinoxaline-2-carboxamide 

  

Iodo-

destannylation 

Automated 

radiosynthesis 

HCl, H2O2 

RT, 15 min 

Sep-pak 

cartridge 
60-80% >98% 

24-84 

GBq/µmol 

(Chezal et 

al., 2008) 

This article 

n.p.: not published 

 



 

 

Table 3. Summary of radiolabeled benzamide derivatives injected into humans with corresponding preclinical studies on mice. The parameters given 

are for imaging the tumor-to-blood or tumor-to-muscle activity ratios (T/B, T/M) and the percentage of activity injected into the tumors allowing 

dosimetry to be calculated. For patient studies, the number of the clinical trial is indicated when available. For imaging, sensitivity and specificity 

calculations are based on lesion analysis. 

Acronym  

Preclinical models Clinical trials 

References 
Imaging 

T/M or T/B ratio or % of 

IA/gr 

Therapy 

Dosimetry  

 

Number of 

patients  

 / NCT 

Imaging 

Sensitivity 

Specificity  

Therapy 

Dosimetry  

PFS 

[123I]IBZM    1 

11 

21 

Case report 

87%, nd 

80%, 100%  

 

 

(L. S. Maffioli et al., 1993) 

(L. Maffioli et al., 1994) 

(Larisch et al., 1998) 

[123I]BZA B16: 3.5% IA/gr (6 hrs p.i. 

18 (6 hrs p.i.) 

19 (6 hrs p.i.) 

 110 (phase II) 81%, 100%  (Michelot et al., 1991) 

(Michelot et al., 1993) 

[123I]IMBA B16: 3.5% IA/gr (6 hrs p.i). 

88 (6 hrs p.i.) 

123 (6 hrs p.i.) 

 2 nd  (Nicholl et al., 1997)  

[123I]MB 

[131I]MB 

HX118: 3% (3 hrs p.i.) 

20 (3 hrs p.i.) 

14 (3 hrs p.i.) 

  

11 

 

80%, 100% 

 (Link et al., 1996) 

(Link et al., 1998)  

[123I]BZA2 B16:  

5 (6 hrs p.i.) 

10 (6 hrs p.i.) 

  

25 

40 

87 

 

100%, 95% 

75% 

23%, 86% 

 (Moreau et al., 1995)  

(Nicole Moins et al., 2002) 

(Sillaire-Houtmann et al., 2004) 

(Cachin et al., 2014)  

[18F]Mel050 B16: 9±0.6 (3 hrs p.i.)  NCT01620749   (Denoyer et al., 2010) 

[131I]MIP-1145 

 

[131I]BA52 

SK-Mel-3: 9% (4 hrs p.i.) 

25 (3 hrs p.i.) 

 

  

 

9 

  

12.2 Gy per GBq 

<2 years in 3/5 

receiving >4.5 GBq  

(Joyal et al., 2010) 

(Mier et al., 2014) 

[131I]ICF01012 B16-F0: 41% (6 hrs p.i.)  

 

SK-Mel-3: 27% (6 hrs p.i.)  

108 Gy/37 MBq 

(B16-BL6) 

52 Gy/75 MBq 

(SK-Mel-3) 

NCT03784625 

Recruiting 

  

 

(Chezal et al., 2008; Bonnet-

Duquennoy et al., 2009)  

(Bonnet et al., 2010; Degoul et al., 

2013; Viallard et al., 2015)  

[18F]P3BZA B16-F10: 17% (2 hrs p.i.) 

88 (2 hrs p.i.) 

37 (2 hrs p.i.) 

 NCT03033485 

6 controls 

5 patients 

T/M 60 minutes 18.5+4.8  (Ma et al., 2019)  

 




