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Abstract

Recent studies have shown the possibility to manipulate small elastic spheres in 3D with a single-sided

beam. Acoustical tweezers are very appealing because they provide a fine spatial control of the motion of

a single particle in space. Their main limitations are due to the weak restoring axial force and improving

this force is still a challenge. We show theoretically that the spherical vortex beams can trap large particles

and enhance the axial force. Indeed, the special features of these unusual beams look like the bottle beams

in optics. Nevertheless, their spatial complexity presupposes that they can be produced with sufficient

precision. Therefore, attention is paid to the synthesis of the spherical vortices. A method based on

the inverse filter method is proposed. It allows to synthesize them with a very good precision since the

theoretical force is recovered experimentally with an error smaller that than 10%. Then, the spherical

vortices are used to trap polyethylene beads with radii between 500 and 590 µm. Experiments show that

the radial trap is working while no beads have been trapped in the axial direction. This failure is analyzed

in detail and is shown to be mainly due to sensitivity to the properties of the materials which influences

the resonance modes of the elastic sphere. This study paves the way to the optimization of acoustical

tweezers for the manipulation of large objects.

Keywords: Radiation pressure, Acoustical tweezers, Single beam

tweezers, spherical vortex beam, Resonating spherical target

2010 MSC: 00-01, 99-00

?Fully documented templates are available in the elsarticle package on CTAN.
URL: www.elsevier.com (Zhao D.)

Preprint submitted to Ultrasonics March 5, 2021

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


1. Introduction

Contactless manipulation using radiation pressure is widely used in biological, chemistry and medical

applications. Among available tools, optical tweezers [4] stand out for their selectivity , the ability to pick

up a selected particle among others, and accuracy. They have been used to trap various kinds of targets

such as cells, viruses and molecules [40, 1, 24, 3, 36]. Meanwhile, the shortcomings of optical tweezers:5

the photo-damage due to photochemistry [9] and unavoidable heating [23] with highly focused optical

beam restrict the range of force in practical situations (from 0.1 to 100 pN [30]). Magnetic tweezers are

safe for biological samples but have their limitations in terms of forces and trap stiffness. In this con-

text, the noninvasive and deep-tissue-penetration properties of ultrasound are very attractive for complex

manipulations in biological and biomedical domains.10

Acoustical traps based on standing waves were proved to be feasible and can provide stable traps for

spheres, droplets, living animals [39, 43, 42]. In these setups, the standing waves are made with a single

transducer and a mirror or two transducers in opposite directions. Hence the targets must be located in

between and thus forbid three-dimensional manipulation in many practical situations. Moreover, a single

location of equilibrium is achieved only if the cavity length is one half of wavelength. Indeed, all pressure15

nodes (or anti-nodes depending on the object density and compressibility) act as potential traps. Such a

constraint means that submillimetric wavelengths much larger than the micrometric targets are usually

used even in microfluidic channels. Standing wavefields are of significance in collective manipulation of

multiple objects or for particle sorting. On the contrary, single-beam optical tweezers achieve selective

traps with a single position of equilibrium of size comparable to the particles. Diffraction in the far-field20

limits the focal spot to a size larger than about one wavelength, therefore achieving acoustical tweezers

with optimal selectivity means trapping object of about the size or larger than one wavelength. More-

over, they afford three-dimensional manipulations with nanometer accuracy. Regarding the advantage of

three-dimensional manipulation, single beam acoustical tweezers consisting of single-sided transducer

or transducers array are developed [5, 11, 21]. For such single-sided configurations, the most important25

parts are the beamforming and transducer design. To date, different beamforming of single beam acous-

tical tweezers have been investigated: focused Gaussian beam [34, 19, 20], Bessel beam [15, 13, 26, 12],

fraxicon beam [22] and focused vortex beam [7].
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The major challenge of acoustic single beam trapping is to achieve the axial restoring force since there

is a competition between the gradient forces and axial expelling force induced by the back-scattering. One30

way to overcome this difficulty is to increase the axial pressure gradient. A recent study has proposed

another type of vortex beam, namely, the spherical vortex beam [5]. This special beam has a dark focus

that is surrounded by regions of higher amplitude, features reminiscent of the bottle beam used in optical

traps [2]. For these waves, the minimum energy density is achieved without phase singularity. This black

zone is surrounded by a shiny shell, but the amplitude is not uniform and therefore the trap is anisotropic.35

Optimizations have been proposed [10, 29, 18] and realized [35] in the context of optical tweezers and

high-resolution imaging. These solutions are interesting alternatives but without the phase singularity, the

wave has no pseudo kinetic moment and therefore the tweezers cannot apply any controllable torque and

rotation to the particle [8]. The spherical vortex beam was theoretically estimated to be able to trap large

elastic spheres, i.e. a size comparable to the wavelength, with the potential to achieve optimal selectivity.40

Nevertheless, the experimental realization of acoustical tweezers requires good field synthesis design. For

focused vortex beams, the synthesis systems have been developed using either multi-elements, i.e. arrays

of transducers, [38, 25, 28, 7] or mono-element like spiral grating, spiraling transducers and metasurface

[16, 33, 17]. As the beam shape of a spherical vortex become more complicate, attention should be paid

to find a suitable system for the field synthesis. At the same time, as the target sphere becomes larger,45

the resonances of the scattering coefficients may probably appear and will influence the trapping. So

the question arises: is it possible to trap spherical beads with a spherical vortex? In this paper, we will

answer this question by first presenting the theoretical background about spherical vortices with special

attention to the predictions of the forces exerted by this kind of beams and by comparing them to the

ones exerted by a focused vortex. Then the wavefield synthesis of such beams will be presented and used50

to manipulate polyethylene beads (Sec. 3.2). Finally, the analysis of the resonances of large spheres, as

well as their influence on the trapping, are discussed.

2. Methods

2.1. Theoretical predictions of the forces exerted by a spherical vortex on an elastic sphere

Spherical vortex, as suggested by its name, is a vortex beam whose associated pressure field has a55

spherical pattern at the central beam core. As is shown in Fig. 1(b), the high amplitude has a ‘candy’
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form, the zero amplitude region is like a spherical ‘candy’ wrapped up by the high-pressure field. This

kind of vortex has a high-amplitude gradient both radially and axially and forms a spherical trapping

zone with zero amplitude at the center. Compared to a focused vortex beam with the same topological

charge (Fig. 1(a)), the spherical vortex has a higher pressure gradient in the wave propagation direction60

and a larger trapping zone (Fig. 1(b)). According to this configuration of the pressure field, the spherical

vortex is supposed to be able to trap large spheres radially and axially (with radius a ' 0.5λ).
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(a) Theoretical pressure field of a focused vortex

(b) Theoretical pressure field of a spherical vortex

(c) Theoretical radiation forces

Figure 1: (Color online) Modulus of the complex pressure field at frequency f0 = 1.2MHz for (a) a focused vortex beam and
(b) a spherical vortex beam with topological chargem′ = 1, radial degree l = 8 generated with a concave spherical transducer:
aperture angle α0 = 49o, geometrical focus r0 = 7.5 cm, the spherical basis is centered at the focus of the incident beam; (c)
Radiation forces on a polyethylene sphere with radius a = 0.45λ exerted by a focused vortex beam with topological charge
m′ = 1 and aperture angle α0 = 49o and a spherical vortex beam of same topological charge and aperture angle with radial
degree l = 8.

In a spherical basis, the incident wavefield can be decomposed with spherical functions and described
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by the incident beam shape coefficients (BSC) Amn :

pi(r, θ, φ, t) = pa

+∞∑
n=0

n∑
m=−n

Amn jn(kr)Y
m
n (θ, φ) exp(−iωt) (1)

where pa is the characteristic amplitude, jn is the spherical Bessel function and Y m
n are the spherical

harmonics.

The BSC for a focused vortex are [5]:65

Amn = δm,m′Nm′

n (kr0)
2h(1)n (kr0)(−1)n+m

′
∫ 1

cosα0

Pm′

n (x)dx, (2)

and for a spherical vortex:

Amn = δm,m′4πNm′

n (kr0)
2h(1)n (kr0)(−1)n+l

∫ 1

cosα0

P̃m′

l (x)Pm′

n (x)dx, (3)

where the coefficients Nm′
n are:

Nm′

n =

√
(2n+ 1)

4π

(n−m′)!
(n+m′)!

.

Function h(1)n is the spherical Hankel function of the first kind, the wavenumber is k = 2π/λ, functions

Pm
n and P̃m′

l are the associated Legendre polynomials and associated Legendre polynomials normalized

to unity, respectively, x = − cos(θ) = cos(α), with α = π − θ, (r, θ, ϕ) the spherical coordinates. With

δm,m′ the Kronecker delta, m′ the topological charge of the vortex and α0, a0, r0 are respectively the aper-

ture angle, the radius of the transducer array and the focal distance as illustrated in Fig. 1(b). Comparing70

the beam shape coefficients of the two vortex beams, the spherical vortex is obtained by using the associ-

ated Legendre polynomial to tailor the focused vortex beam. Thus, for a spherical vortex of topological

chargem′ = 1, the shape is mainly determined by the aperture angle α0 and the degree l of the associated

Legendre polynomial P̃m′

l (x) in Eq. (3). Among these factors, the aperture angle α0 is limited by the

directivity pattern of the transducers and the lens used to focus the field. The maximum angle of the75

aperture is generally fixed by the experimental setup (for instance in our experimental system, it is 49◦).

Thus, to achieve the desired forces acting on an elastic sphere, the optimal topological charge m′ and the

degree l should be chosen. First, the degree l of the associated Legendre polynomial P̃m′

l (x), is chosen
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to have an amplitude that varies smoothly in the range of x = [cosα0, 1] and gently drops near zero at

cosα0 to minimize the secondary lobes in the radiated field that would be induced by a sharp truncation.80

As depicted in Fig. 2, the topological charge m′ is fixed at 1, P̃m′

l (x) as a function of α is plotted for

different degrees l. According to the figure, the degree l = 4 and l = 8 are both close to zero at α0 = 49◦.

Actually, l = 4 is closer to zero than l = 8. However, comparing the pressure field for l = 4 and l = 8

(Fig. 3), we find that in plane (x, z), the axial pressure gradient for l = 8 is larger than l = 4. And in

plane (x, y), the size of the trapping region (the blue zone inside the high intensity ring) for l = 8 is also85

larger than l = 4. Therefore, a compromise should be made to obtain the optimal beam shape. As our

aim is to trap large particles, which need a large trapping zone and a high pressure gradient in the axial

direction, the degree l = 8 is the best suited with m′ = 1.
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Figure 2: (Color online) Normalized associated Legendre polynomialP̃m
′

l (cosα) as a function of α. A vertical grey line is
drawn to mark α0 = 49◦.
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Figure 3: Modulus of the pressure field in plane (x, y) and (x, z) with l = 8 (top) and l = 4 (bottom).

The trapping effect of a focused vortex and a spherical vortex beam are assessed by computing the90

radiation forces. To do so, an efficient model established recently [6] is applied. According to this

model, the three-dimensional radiation force acting on an elastic sphere in an arbitrary wavefield can

be computed using the BSC and scattering coefficients. As illustrated in Fig. 1(c), a polyethylene bead

(density ρ = 1000 kg/m3, transverse velocity ct = 1000m/s, longitudinal velocity cl = 2400m/s) with

radius a = 0.45λ, immersed in water (ρ0 =1000 kg/m3, c0 =1480m/s) can be trapped by the forces95

exerted by a spherical vortex but not by a focused vortex beam at frequency f0 =1.2MHz. Consequently,

by tailoring the spherical vortex with proper topological charge and radial degree, it is possible to trap a

large elastic sphere while it is not possible with a focused vortex.
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Figure 4: (Color online) Modulus of the pressure field in plane (x,y) and (x,z) with different topological charges: m′ = 1,
m′ = 2,m′ = 3.

Regarding the topological charge m′, we have compared the amplitude of the pressure field with

m′ = 1, m′ = 2, m′ = 3 in plane (x, y) and (x, z) (see Fig. 4). In plane (x, y), the high-amplitude ring100

keeps almost the same shape and the area of zero amplitude has a radius of about 0.5λ. Meanwhile, the

pressure gradient in plane (x, z) varies a lot from m′ = 1 to m′ = 3. When m′ = 1, the high amplitude

has a ‘candy’ form, the zero amplitude region is like a spherical ‘candy’ wrapped up by high pressure field

(see Fig. 4). By increasing m′ to 2, the zero amplitude region remains roughly spherical at the center,

but the high pressure surrounding it begins to open at the two sides. For m′ = 3, the zero amplitude105

region turns completely into a cylindrical shape. These variations of the beam shape change the pressure

gradient and therefore, intuitively impacts the radiation forces. Computing the forces varying the charge

m′ from 1 to 3, the amplitude of the axial force decreases as a result of the decrease of the pressure field
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amplitude. For m′ = 3, no axial trap is predicted due to the lack of pressure gradient at the center of the

vortex in the axial direction. The axial force with m′ = 1 is the largest owing its beam shape giving rise110

to the greatest pressure gradient. Therefore, the topological charge m′ = 1 and radial degree l = 8 are

selected to generate a spherical vortex with a good capability for trapping the target sphere.

Note that, in this study the scattering between several particles is not taken into account and we

are considering the scattering of only one particle in the model. Indeed, the goal is to improve the

spatial selectivity of the tweezers and as a corollary to minimize the number of particles insonified.115

Nevertheless, if more than one particle are initially located in the spatially focused trap, these particles

may reach configurations where multiple scattering may be of importance and equilibrium configurations

with several particles have already been observed [8]. For these cases, resonances may appear in the wave

scattering process of bouncing back and forth between the particles. Theoretical modeling of these cases

is still an open issue.120

2.2. Experimental setup

The experimental setup is shown in Fig. 5. An array of 127 piezoelectric transducers (Vermon,

France) with a central frequency at 1.2MHz is held by a vertical support in a large water tank. The

corresponding wavelength is λ = 1.23mm in water at 20 ◦C where the speed of sound is about 1480m/s.

The surface of each transducer is a hexagon of 62.82mm2 and they fill a spherical cap with a focal125

distance equal to 45 cm. The total aperture of the transducer array is 110mm. A high numerical aperture

bi-concave lens machined in PMMA allows to reduce the focal distance to about 6 cm (see Fig. 5).

Each transducer is driven independently by a multichannel electronic (Lecoeur, France). The 127 electric

signals used to synthesize the ultrasonic beam are computed by inverse filter method (see section 3.1). A

very thin polyethylene film (with thickness≈ 15 µm) that ensures minimal acoustic reflection is stretched130

on a bracket and is mounted on a three-axis motorized positioning system. The motors (ILS250, Newport)

are powered and controlled by a remote command (Newport, MM-4006) with an accuracy of 5 µm.

Behind an optical window, an optical zoom image the area of interest and the image is recorded by a

CMOS camera (Pointgrey Flea3). At the bottom of the vertical support, four wheels are fixed to move

the array of transducers. The pressure field is measured with a hydrophone of 0.2mm diameter (Precision135

Acoustics Ltd, UK).
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Two kinds of polyethylene spheres were tested in our experiments: spheres with radii between

500 µm and 590 µm (0.4λ − 0.47λ) with density 1000 kg/m3 (990 kg/m3-1010 kg/m3) and 960 kg/m3

(960 kg/m3-980 kg/m3). The transverse and longitudinal velocities are estimated to be : ct = 1000m/s

and cl = 2400m/s [31, 32].140

Figure 5 shows the experimental setup in a configuration where the array of transducers is on the

top oriented downwards. A second experimental configuration has also been used where the array of

transducers is at the bottom and is oriented upwards. This second configuration is used to trap beads with

density 960 kg/m3. In this case the polyethylene film prevents the bead from rising up.

Figure 5: (color on line)Experimental setup: an array of transducers is positioned vertically with an acoustic lens to help the
focusing; a polyethylene film is stretched on a bracket that is connected to a motorized positioning system.

3. Experimental results145

3.1. Experimental synthesis of a spherical vortex

According to the analysis of section 2.1, a spherical vortex with topological charge m′ = 1, radial

degree l = 8 is chosen to trap the elastic spheres. An accurate synthesis of the wavefield is required to
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achieve the desired trapping forces, especially the axial restoring force. With an array of transducers,

multiple methods can be applied to synthesize the desired acoustic field, including time reversal [14],150

inverse filtering [38, 37] and integrative angular spectrum technologies [41]. Among these methods, in-

verse filtering is a very general technique for analyzing and synthesizing complex signals that propagate

through an arbitrary linear medium. This method provides the optimal input signals to get a target wave-

field. It consists of three steps: the first is recording the propagation operator of the propagation medium

which completely characterizes the medium and the geometry of the experiment; the second is calculat-155

ing the inversion of the propagation operator; and finally computing the optimal input for the transducer

array.

We consider N control points whose positions are distributed in the volume of the medium. Let fj(t)

be the signal received at the jth control point (1 6 j 6 N ) and ei(t) (1 6 i 6 M ) the signal emitted by

the ith transducer. As the medium can be thought as a linear and time invariant system, these two signals

are related by:

fj(t) =
M∑
i=1

hji(t) ∗ ei(t), (4)

where hji(t) is the impulse response between transducer i and control point j. The symbol ‘*’ denotes

the convolution product. In the Fourier domain, this equation is transformed into a matrix/vector product:

F (ω) = H(ω)E(ω) , whereH is the frequency response of the system (size: N×M ), which describes the

propagation of signals from the array of transducers to the control points and thus is called the propagation

operator. The vectors E(ω) (length: M ) and F (ω) (length: N ) contain the spectra of the transmitted and

received signals respectively. We aim to find the optimal signals to send (E) by the array of transducers to

generate the target field F on the control points after propagation. A naive approach consists in inverting

directly this relation. However, the matrix H is not square and cannot be inverted directly. Instead,

the pseudo inverse is computed with a singular value decomposition, which allows adding a step of

regularization through the choice of a cut-off in the singular values. Then, it is straightforward to get the

emission vector to synthesize the target field F (ω):

E(ω) = Ĥ
−1
(ω)F (ω). (5)
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with Ĥ
−1
(ω) the regularized inverse propagation operator.

The spatial distribution of the control points is the key parameter determining the efficiency of the in-

verse filter method. To get a propagation operator that completely characterize the medium, it is essential160

to over-sample the field in the area of interest. Among various trial distributions, we found that a regular

distribution with 2500 points located in the focal plane (x, y) gives the best result. For this distribution,

the sampling points are evenly distributed on a square surface with side length 6mm (4.9λ) and with a

step of 0.14mm (0.11λ). At the center, inside a square of side length 2mm (1.62λ), we refined the mesh

and the step is decreased to 0.1mm (0.08λ). This small step is required to properly sample the pressure165

field which varies rapidly in the center (see Fig. 6(b)).

Once the emission vector is obtained, the associated pressure field is measured in the focal plane

(x, y) and the axial plane (x, z) and then compared to the theoretical field (see Fig. 6). For the selected

spherical vortex of charge m′ = 1, radial order l = 8 and aperture angle α0 = 49◦, it appears from the

figure that the high-amplitude ring is well recovered with good uniformity of amplitude. Inside the ring,170

the field is at zero amplitude and again is in agreement with the target theoretical one. Even though the

variation of phase inside the small circle in the center is smeared out in the measured field, the global

variation of the phase is in good agreement with the theoretical one. The modulus in axial plane (x, z) is

similar to the theory as expected.
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(a) Modulus and phase of the complex pressure field in plane (x, y) (exper-
imental measurements).

(b) Modulus and phase of the complex pressure field in plane (x, y) (theo-
retical pressure field).

(c) Modulus of the complex pressure field in plane (x, z): theoretical (left) and experimental (right).

Figure 6: (Color online) Experimental and theoretical modulus and phase of the complex pressure field in plane (x, y) and
(x, z) for a spherical vortex beam with m′ = 1, l = 8 and α0 = 49◦

Furthermore, from the measurement of the field in focal plane (x, y), we can also compute the BSC175

and thus obtain the radiation forces by the angular spectrum method [44]. The radiation forces computed

from the measurements are given in Fig. 7. We find a good agreement with the theoretical forces,
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especially for the axial force Fz for which the discrepancy is less than 10%. The latter confirms the high

quality of the synthesis of spherical vortex beams for this distribution of control points.

Figure 7: (Color online) Theoretical and experimentally estimated radiation force exerted on a polyethylene sphere of radius
a = 0.45λ by a focused spherical vortex beam of topological charge m′ = 1, l = 8.

Nevertheless, regarding the emission vectors obtained by the standard inverse filter method, the en-180

ergy is mainly distributed on the first 20 transducers located in the middle and the other 100 transducers

have barely no contribution to the pressure field. Each electronic channel can deliver high power, 25 W,

but for pulse signals only. Experiments of trapping and manipulation require tens of seconds of duration

and hence the emitted power must be decreased. Taking into account the weight of our large targeted

spheres, the applied axial force has to be as large as possible. For this reason, the emission vector is185

modified to increase the axial force in order to make optimal use of all the transducers and, at the same
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time, increase the amplitude of the high-amplitude ring.

Thus the following modifications are made: first of all, for each transducer, the emitted signals are

normalized ei(tn)/max
n

(ei(tn)) , where i is the index of the transducer (from 1 to 127) and n is the index

of the time sample. Then, each signal is scaled by a new amplitude factor equal to:

(
max
n

(ei(tn)) /max
i

(
max
n

(ei(tn))
))β

(6)

with β equal to 1, 0.5 or 0.25. By applying these modifications, the number of signals with significant

amplitude increases. Meanwhile, the pressure field radiated and measured is also changed. In Fig. 8, the

top row is the field measured with the original emission vector, β = 1 and then going downward β = 0.5190

and finally β = 0.25. In plane (x, y), the high-amplitude rings keep the same pattern. While inside the

rings, the pressure modulus is no longer zero and the phases have also been modified. Moreover, the

differences between the pressure field measurements in plane (x, z) are also clearly visible.

16



Figure 8: (Color online) Modulus (Left) and phase (Middle) of the complex pressure field in plane (x, y) with modulus (Right)
of the pressure field in plane (x, z) for a spherical vortex beam with l = 8, α0 = 49◦. From top to bottom: β = 1, 0.5, 0.25.
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Figure 9: (Color online) Experimentally estimated radiation force exerted on a polyethylene sphere of radius a = 0.45λ by
a focused spherical vortex beam of topological charge m′ = 1, l = 8 synthesized by different emission vectors with β = 1
(original), 0.5, 0.25.

In order to evaluate the impact of these modifications on the radiation forces quantitatively, we use

again a calculation method based on the angular spectrum method which allows to estimate the radiation195

forces from the measured pressure fields [44]. As depicted in Fig. 9, by modifying the emission vector

E from the origin up to β = 0.25, the amplitude of the radial force increases and the trap in radial

direction remains always. For the axial force, when z < 0, the force is positive and increases notably

with the decrease of the coefficient β. The maximum positive force with β = 0.25 is four times larger

than the original one. However, when the sphere is located behind the focus (z > 0), the maximum200

amplitude of the restoring force increases until β = 0.25 and then decreases. Thus, according to the

trapping performance illustrated by the radiation forces, the exponent β = 0.25 is optimum and should be

sufficient to overcome the weight of light spheres. This modification is used in the trapping experiments
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presented in the next section.

3.2. Experimental trapping with a spherical vortex205

3.2.1. Localization of the trapping zone

One feature of the single side acoustical tweezers is to have a tight trapping zone. It means that the

object can be trapped only in a very small region of the space, which is a very appealing property ensuring

a very good selectivity of the device. Therefore, prior to any manipulation task, the trapping zone has

to be found accurately. This is done with the hydrophone. The pressure field of the vortex in transverse210

plane (x, y) has a zero amplitude zone at the center surrounded by a high-amplitude ring as shown in Fig.

1(b). At the focal plane, the amplitude of the ring reaches its maximum amplitude. The focal position of

the vortex can be found by these characteristics. Once the hydrophone is successfully positioned at the

focus, we then adjust the position of the camera to get a clear picture of the hydrophone, and at the same

time make sure that the hydrophone is at the center of the image. This step of fixing the focal position215

allows later to locate the sphere at the trapping area of the vortex.

3.2.2. Axial and radial traps

Once the trapping zone is located by the hydrophone, the target beads are placed on the acoustically

transparent membrane. By moving the membrane with the motorized positioning system, it is easy to

move the target bead in the trapping zone of the spherical vortex beam. Once the bead is positioned220

inside the trapping zone, the spherical vortex is emitted to trap it. It should be noticed that since two

types of polyethylene beads with different densities are used, two experimental setups are used. To trap

the beads with density higher than water, the experimental setup used is the same as in Fig. 5. However,

for the beads which float, the transducer array is placed under the membrane. During the experiments,

once the field is activated, the membrane is moved transversely and axially. Particles could be selected225

individually and relatively to the membrane moved transversely. Fig. 10 shows three snapshots of such

an experiment, see also video of the bead trapped and moved by the acoustic tweezers. We can see that

the selected bead located in the center is radially trapped. Indeed while moving the polyethylene film,

this particle doesn’t move with the film and stays in the same position while other beads located in the

surrounding and not trapped are moving with the membrane and appear in the camera field of view. On230

the contrary, no axial trap was observed during the experiments: when the membrane is moved in the
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direction of propagation of the waves, the bead also moves. The reasons responsible for the failure of the

axial trap have caught our attention and are discussed in the following sections.

Figure 10: Snapshots of a polyethylene sphere trapped radially by a spherical vortex. A movie is available on line showing
the bead trapped and moved laterally by the tweezers.

4. Discussion and conclusions

4.1. The resonance of the spheres235

Despite the theoretical predictions and the good wavefield synthesis, only the radial trap has been

observed and no evidence of the axial trap have been found. Even though the emission vectors have been

modified to ensure a negative axial force larger than the sphere weight, this was not strong enough to

take off the sphere. In the following section, we revisit the numerical evaluation in order to detail the

choice of parameters (material, size) selected to ensure an efficient trapping. According to our estimation240

of the axial forces for a polyethylene sphere of different radii, the trapping capability of the spherical

vortex, especially the axial trap, is not constant. As depicted in Fig. 11, among the radii tested for the

polyethylene spheres a = 0.41λ, a = 0.45λ and a = 0.48λ, the radial trap exists always. On the contrary,

only the sphere with a = 0.45λ can be trapped axially.

20



Figure 11: (Color online) Radial Fρ, azimuthal Fφ, axial Fz forces exerted on a polyethylene sphere of radii a = 0.41λ,
a = 0.45λ, a = 0.48λ by a spherical vortex beam.

Therefore, to succeed in trapping the particles experimentally, it is important to test the range of sizes

and materials that can be trapped, especially in the axial direction of a spherical vortex. The negative

force in the axial direction is the key to trap the particles. Thus, the determination of the suitable range of

sphere sizes requires only to compute the axial force at a position where the negative force is most likely

to appear. This kind of analysis on negative axial force was first demonstrated for a Bessel beam [27].

Note that the maximum axial restoring force exerted by a spherical vortex at frequency 1MHz is about

5 µN (see Fig. 11), however the volume of the sphere is about 1mm3 which limits the choice of sphere

materials to light polymer spheres with density comparable to water. Therefore, only light spheres like

polyethylene and polystyrene are analyzed in this section. According to Fig. 11, for instance, at z = 0.9λ
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the axial force is negative with a maximum amplitude for a polyethylene sphere of a = 0.45λ. In Fig.

12(a), the axial force at z = 0.9λ as a function of sphere radius is represented. As illustrated in the figure,

from a = 0.2λ, the resonances begin to appear in the axial force and thereafter regions for which the

axial force is negative alternates with regions where the force is positive. In the figure, the zone where

Fz < 0 represents the range of sphere radius that can be trapped. Only the spheres with radii between

(0.42λ and 0.47λ) or (0.5λ and 0.54λ), (0.59λ and 0.64λ ) have a negative force and therefore can be

trapped by the spherical vortex. This result agrees with the force estimation in Fig.11, since the spheres

of radii a = 0.41λ and a = 0.48λ are at the resonances of the axial force, it is impossible to trap them

axially. These resonances of the force come from the resonances of the scattering coefficients Rn. The

expression of the axial force [6] can be calculated with :

Fz = −2
〈V 〉
k20

∞∑
n=0

∑
|m|≤n

=(Gm
n A

m∗
n Amn+1Cn). (7)

With:
V = p2a/(4ρ0c

2
0),

Cn = R∗n +Rn+1 + 2R∗nRn+1,

Gmn =
√

(n+m+ 1)(n−m+ 1)/
√

(2n+ 1)(2n+ 3).

where Amn are the BSC defined by Eq. 3, Cn is a function of the scattering coefficients Rn; pa is the linear

component of the acoustic pressure; ρ0 and c0 are the fluid density and speed of sound at rest respectively.

In Fig. 12(b), the modulus of Cn is plotted for a polyethylene sphere as a function of radius. Comparing

Fig. 12(a) and Fig. 12(b), the resonances in Cn locate at the same positions as the resonances observed

in the axial forces. The figure also illustrates that for a < 0.6λ, the coefficients Cn with n > 6 can be

neglected since from n = 6 the amplitudes become weak. As the force is a sum on degree n of function:

f̂nz = −=(Gm
n A

m∗
n Amn+1Cn). (8)

The contribution of f̂nz to the negative force at each degree n can be computed by Eq. (8). In Fig.245

12(c), the f̂nz until degree n = 6 are depicted. Taking the trapping region between 0.42λ and 0.47λ as an

example, according to the figure, f̂nz with negative amplitudes that contribute to the final negative force
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are at degrees n = 2, n = 3 and n = 4.
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Figure 12: (Color online) (a) Normalized axial forces F̃z exerted on a polyethylene sphere positioned at z = 0.9λ as a function
of sphere radius by a spherical vortex ; (b) Modulus of Cn as a function of sphere radius for a polyethylene sphere; (c) f̂nz as
a function of sphere radius for different degrees until n = 6 for a polyethylene sphere.

In order to find the relation between the coefficients Cn and its contribution to the negative force, the

coefficients Cn of polyethylene sphere at degree n = 2, n = 3 and n = 4 are depicted in Fig. 13(a) and250

13(b). In the figure, the region within which the negative force appears is highlighted by two gray dashed

curves. In the trapping region, the modulus of Cn as well as the phase are constant and located between

two resonances. The phase inside the trapping region is approximately π
2
. As the axial force component
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Figure 13: (Color online) (a) Modulus and (b) phase of Cn as a function of radius at degrees n = 2, n = 3, n = 4 for a
polyethylene sphere; (c) Modulus and (d) phase of Am∗n Amn+1 as a function of degree n.

for each n is the opposite of the imaginary part of the product of Am∗n Amn+1 and Cn, the axial force is

negative when the phase is inferior to π. In Fig. 13(c) and 13(d), the modulus and phase of Am∗n Amn+1255

are plotted. Even though the maximum of the modulus is at n = 8, the corresponding phase is however

above π
2

(the gray dashed line represents the position where the phase is π/2), since the phase of Cn is

equal to π
2
, the phase of the product is then equal or superior to π and does not contribute to the axial

restoring force at all (for a value of π) and will, on the contrary, push away the sphere for values superior

to π. Meanwhile, at degree n = 2, n = 3 and n = 4, the phases of Am∗n Amn+1 are the smallest and located260

below π
2

which finally contributes to the negative restoring forces.
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The trap capability of the spherical vortex on a polystyrene sphere can be examined in the same way.

The axial force exerted on a polystyrene sphere at position z = 0.9λ as a function of the polystyrene

sphere radius is computed and shown in Fig. 14(a). According to the figure, the negative force appears

at some of the radii but the amplitude is very weak. For one of the regions between a = 0.46λ and265

0.49λ, the f̂nz are plotted in Fig. 14(b). The f̂nz contributing to the negative force are at degrees n = 2,

n = 3, n = 4 again. Then we plot the coefficients Cn as shown in Fig. 14(c) and 14(d). Similar to the

polyethylene sphere, inside the trapping zone, the modulus and phase of Cn are constant. The phases at

degree n = 2, and n = 3 are close to π
2

while at degree n = 4, the phase is larger and is equal to 2π
3

. As

the sum of Cn phase and Am∗n Amn+1 phase at n = 4 is close but less than π this results in a small negative270

force. Moreover, since the sinus function (the imaginary part) decreases linearly around π, a decrease of

phase thus results in a proportional increase of the modulus of the negative force.
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Figure 14: (Color online) (a) Normalized axial Fz forces exerted on an polystyrene sphere positioned at z = 0.9λ as a function
of sphere radius; (b) f̂nz as a function of sphere radius for different degrees until n = 6; (c) Modulus and (d) phase of Cn as a
function of sphere radius at degrees n = 2, n = 3, n = 4 for a polystyrene sphere.

4.2. Influence of the BSC

As the scattering coefficients Cn of a polystyrene sphere depends only on its physical properties, the

only way to trap a polystyrene sphere is to adjust the BSC of the spherical vortex beam to give rise to the275

negative force. The BSC of a spherical vortex, as demonstrated in the previous section, can be modified

by changing the aperture angle α0, the radial degree l, or topological charge m′. Taking the radial degree

l as an example, in Fig. 15(a) and 15(b), the modulus and phase of Am∗n Amn+1 with different radial degrees

are shown. The gray dashed lines highlight the radial degrees of interest. Looking at the phases of
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each radial degree, the l = 8 gives rise to a phase significantly below π/2 in the region of interest and280

hence potentially to a large negative force. However, the modulus of the Am∗n Amn+1, at the same degree n,

decrease when l increases and this trend is in favor of the smallest l. Therefore the impact of changing

the radial degree l on the negative force is not obvious. In Fig. 15(c), f̂nz as a function of polystyrene

sphere radius with different radial degrees l selected to compute the the BSC are shown. From the figure,

the BSC with radial degree l = 8 lead to the most significant negative force. In spite of the fact that285

the modulus of Am∗n Amn+1 at n = 2, 3, 4 with l = 8 are smaller than those computed with l = 6, and

l = 7, they have a smaller phase at the same time. Thus again, this result emphasizes that the phase of

the scattered waves relative to the incident one is the main feature leading to a large enough negative

restoring force and hence a 3D trapping.
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Figure 15: (Color online) (a) Modulus and (b) phase of Am∗n Amn+1 as a function of degree n for different radial degrees l; (c)
f̂nz at degree n = 4 as a function of sphere radius for different radial degrees l.

4.3. Conclusions290

In conclusion, diffraction in the far-field limits the focal spot to a size larger than about one wave-

length, therefore achieving acoustical tweezers with optimal selectivity means trapping object of about

the size of the tweezers and hence of about one wavelength also. However for such large objects, the

modes have resonances due to creeping waves or anti-resonances around which the phase and the am-

plitude of the modal reflection coefficient vary rapidly. Since the trapping ability of a spherical vortex295

is strongly dependent on the phase of the scattered wave relative to the incident one, this effect leads to
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a reversal of the radiation force direction. Different kinds of acoustical vortices were assessed. As an-

ticipated, the so-called spherical vortices with their peculiar energy density that seems to bypass a zone

where ultrasound is canceled give the best results. The sharp energy density gradient in both radial and

axial directions are favorable for a strong restoring force in all directions. With such fields, we predict300

that 3D trapping can be achieved between two resonance peaks for spheres of about one wavelength in

diameter and with an axial force strong enough to exceed the sphere weight. While we observed radial

trapping, the axial force obtained experimentally was not sufficient to lift the sphere. Several explanations

are possible for this partial failure. First the physical properties of the polymer sphere are not well char-

acterized. A change of the speed of sound for either shear or longitudinal waves will result in a variation305

of the speed of sound of the creeping waves and hence a shift in frequency of the resonances. Moreover,

these polymers are visco-elastic and the acoustic attenuation will contribute to pushing the sphere and

hence the axial restoring force is decreased. Since this parameter is not known, we did not try to estimate

the amplitude of this effect. Second, there are electrical static forces between polyethylene spheres and

a surfactant must be used to disperse them in water. Since our membrane is also in polyethylene, we did310

observe that a static force occurs between the spheres and the membrane. The amplitude of this static

force is difficult to estimate and to mitigate but has to be overcome by the axial radiation force to take

off the sphere. So, it may be possible that the force is enough to compensate the weight but too small

to compensate the weight and overcome the short ranged static force that exists when the sphere lies on

the membrane. In this study, the relatively low frequency and hence relatively large wavelength leads315

to polymer materials for which the density contrast with the fluid is weak to mitigate the weight of the

object. Such constraint will not exist if we scale down the experimental conditions. Indeed, the sphere

weight is proportional to its volume and hence decreases with the cube of the wavelength and hence faster

than the radiation force amplitude. Denser materials are generally much more stiffer than polymers and

therefore the speed of sound is higher. Such conditions are favorable since the resonances will be shifted320

to a higher ratio between the radius and the wavelength in water. Moreover material like glass are well

characterized, the attenuation can be neglected and no electrical force with the membrane is expected.

A numerical method efficient enough to search for the parameters (numerical aperture, elastic constants,

frequency...) allowing to obtain a trap in the three directions must be developed to carry out this task.
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[32] Piché, L., 1987. Application of ultrasonics to the characterization of composites: A method for the

determination of polyethylene density, in: Bussière, J., Monchalin, J., Ruud, C., Green, R. (Eds.),

Nondestructive characterization of materials II. Springer, Boston, MA, pp. 79–87.

[33] Riaud, A., Baudoin, M., Matar, O.B., Becerra, L., Thomas, J.L., 2017. Selective manipulation of400

microscopic particles with precursor swirling rayleigh waves. Phys. Rev. App. 7, 024007.

[34] Silva, G.T., Baggio, A.L., 2015. Designing single-beam multitrapping acoustical tweezers. Ultra-

sonics 56, 449–455.

[35] Skidanov, R., Kachalov, D., Khonina, S., Porfirev, A., Pavelyev, V., 2015. Three-dimensional laser

trapping on the base of binary radial diffractive optical element. J. Mod. Opt. 62, 1183–1186.405

[36] Svoboda, K., Block, S.M., 1994. Biological applications of optical forces. Annu. Rev. Biophys.

Biomol. Struct. 23, 247–285.

[37] Tanter, M., Thomas, J.L., Fink, M., 2000. Time reversal and the inverse filter. J. Acoust. Soc. Am.

108, 223–234.

[38] Thomas, J.L., Marchiano, R., 2003. Pseudo angular momentum and topological charge conservation410

for nonlinear acoustical vortices. Phys. Rev. lett. 91, 244302.

[39] Trinh, E., 1985. Compact acoustic levitation device for studies in fluid dynamics and material

science in the laboratory and microgravity. Rev Sci Instrum 56, 2059–2065.

[40] Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M., 1997. Stretching DNA with optical

tweezers. Biophys. J. 72, 1335–1346.415

[41] Wu, P., Kazys, R., Stepinski, T., 1997. Optimal selection of parameters for the angular spectrum

approach to numerically evaluate acoustic fields. J. Acoust. Soc. Am. 101, 125–134.
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