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Let Ω be a bounded domain of R d , d ∈ {2, 3} with C 1,1 boundary and ω ⊂⊂ Ω be a non empty open set. Let T > 0 and denote Q T := Ω × (0, T ), q T := ω × (0, T ) and Σ T := ∂Ω × (0, T ). We consider the semilinear wave equation ( 1)

     y + g(y) = f 1 ω , in Q T , y = 0, on Σ T ,
(y(•, 0), y t (•, 0)) = (u 0 , u 1 ), in Ω, where (u 0 , u 1 ) ∈ V := H 1 0 (Ω) × L 2 (Ω) is the initial state of y, f ∈ L 2 (q T ) is a control function and [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF]). The exact controllability for (1) in time T is formulated as follows: for any (u 0 , u 1 ), (z 0 , z 1 ) ∈ V , find a control function f ∈ L 2 (q T ) such that the weak solution of (1) satisfies (y(•, T ), ∂ t y(•, T )) = (z 0 , z 1 ). This problem has been solved by Fu,Yong and Zhang: Γ 0 is the star-shaped part of the whole boundary of Ω introduced in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]. Theorem 1 extends to the multi-dimensional case the result of [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF] devoted to the one dimensional case. The proof given in [START_REF] Fu | Exact controllability for multidimensional semilinear hyperbolic equations[END_REF] is based on a fixed point argument introduced in [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF]: it is shown that the operator K :

y := ∂ tt y -∆y. g : R → R is a function of class C 1 such that |g(r)| ≤ C(1 + |r|) ln(2 + |r|) for every r ∈ R and some C > 0. (1) has a unique global weak solution in C([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)) (see
Theorem 1. [Fu, Yong, Zhang, 2007] For any x 0 ∈ R d \Ω, let Γ 0 = {x ∈ ∂Ω, (x - x 0 ) • ν(x) > 0} and, for any > 0, let O (Γ 0 ) = {y ∈ R d | |y -x| ≤ for x ∈ Γ 0 }. Assume (H 0 ) T > 2 max x∈Ω |x -x 0 | and ω = O (Γ 0 ) ∩ Ω for some > 0, ( H 
L ∞ (0, T ; L d (Ω)) → L ∞ (0, T ; L d (Ω)) where y ξ := K(ξ) is a controlled solution through the control function f ξ (of minimal L 2 (q T )-norm) of the linear boundary value problem      y ξ + y ξ g(ξ) = -g(0) + f ξ 1 ω , in Q T , y ξ = 0, on Σ T , (y ξ (•, 0), ∂ t y ξ (•, 0)) = (u 0 , u 1 ), in Ω, g(r) :=    g(r) -g(0) r r = 0, g (0) r = 0 , satisfying (y ξ (•, T ), y ξ,t (•, T )) = (z 0 , z 1 )
has a fixed point. The existence of a fixed point for the compact operator K is obtained by using the Leray-Schauder's degree theorem: it is shown under the growth assumption (H 1 ) that there exists a constant

M = M ( u 0 , u 1 V , z 0 , z 1 V ) such that K maps the ball B L ∞ (0,T ;L d (Ω)) (0, M ) into itself.
Our goal is to construct an explicit sequence (f k ) k∈N that converges strongly to an exact control for [START_REF] Bristeau | On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I. Least square formulations and conjugate gradient[END_REF]. The controllability of nonlinear partial differential equations has attracted a large number of works in the last decades (see [START_REF] Coron | Control and nonlinearity[END_REF]). However, as far as we know, few are concerned with the approximation of exact controls for nonlinear partial differential equations, and the construction of convergent control approximations for nonlinear equations remains a challenge.

A first idea that comes to mind is to consider the Picard iterations (y k ) k∈N associated with the operator K defined by y k+1 = K(y k ), k ≥ 0 initialized with any element y 0 ∈ L ∞ (0, T ; L d (Ω)). Such a strategy usually fails since the operator K is in general not contracting, even if g is globally Lipschitz.

Given any initial data (u 0 , u 1 ) ∈ V , we design an algorithm providing a sequence (y k , f k ) k∈N converging to a controlled pair for (1), under assumptions on g that are slightly stronger than (H 1 ). Moreover, after a finite number of iterations, the convergence is super-linear. This is done by introducing a least-squares functional measuring how much a pair (y, f ) ∈ A is close to a controlled solution for (1) and then by determining a particular minimizing sequence enjoying the announced property. We define the Hilbert space

H H = (y, f ) ∈ L 2 (Q T ) × L 2 (q T ) | y ∈ L 2 (Q T ), (y(•, 0), ∂ t y(•, 0)) ∈ V , y = 0 on Σ T .
Then, for any (u 0 , u 1 ), (z 1 , z 1 ) ∈ V , we define the subspaces of

H A = (y, f ) ∈ H | (y(•, 0), ∂ t y(•, 0)) = (u 0 , u 1 ), (y(•, T ), ∂ t y(•, T )) = (z 0 , z 1 ) , A 0 = (y, f ) ∈ H | (y(•, 0), ∂ t y(•, 0)) = (0, 0), (y(•, T ), ∂ t y(•, T )) = (0, 0)
and consider the following non convex extremal problem [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF] inf

(y,f )∈A E(y, f ), E(y, f ) := 1 2 y + g(y) -f 1 ω 2 2
observing that any zero (y, f ) ∈ A of E is a solution of the controllability problem.

Our main result is Then, for any (y 0 , f 0 ) ∈ A, the sequence (y k , f k ) k∈N defined by

(3)      (y 0 , f 0 ) ∈ A, (y k+1 , f k+1 ) = (y k , f k ) -λ k (Y 1 k , F 1 k ), k ∈ N, λ k = argmin λ∈[0,1] E (y k , f k ) -λ(Y 1 k , F 1 k ) , where (Y 1 k , F 1 k ) ∈ A 0 is the solution of minimal control norm of (4) 
     Y 1 k + g (y k )Y 1 k = F 1 k 1 ω + y k + g(y k ) -f k 1 ω , in Q T , Y 1 k = 0, on Σ T , (Y 1 k (•, 0), ∂ t Y 1 k (•, 0)) = (0, 0), in Ω
strongly converges to a pair (y, f ) ∈ A satisfying (1). Moreover, the convergence is at least linear and is at least of order 1 + s after a finite number of iterations.

As far as we know, the method described here is the first one providing an explicit, algorithmic construction of exact controls for semilinear wave equations with non Lipschitz nonlinearity and defined over multi-dimensional bounded domains. It extends the one-dimensional study addressed in [START_REF] Münch | Constructive exact control of semilinear 1d wave equations by a least-squares approach[END_REF]. The parabolic case can be addressed as well: for semilinear heat equation, we mention [START_REF] Lemoine | Approximation of nulls controls for semilinear heat equations using a least-squares approach[END_REF] for d ∈ {2, 3} with Lipschitz nonlinearity and [START_REF] Lemoine | Constructive exact control of semilinear 1D heat equations[END_REF] for d = 1 and non Lipschitz nonlinearity. These works devoted to controllability problems takes their roots in [START_REF] Lemoine | A fully space-time least-squares method for the unsteady Navier-Stokes system[END_REF][START_REF] Lemoine | Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method[END_REF] concerned with the direct problem for the Navier-Stokes equation: they refine the analysis performed in [START_REF] Lemoine | Analysis of continuous H -1 -least-squares approaches for the steady Navier-Stokes system[END_REF][START_REF] Münch | A least-squares formulation for the approximation of controls for the Stokes system[END_REF] inspired from the seminal contribution [START_REF] Bristeau | On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I. Least square formulations and conjugate gradient[END_REF].

1 )

 1 lim sup |r|→∞ |g(r)| |r| ln 1/2 |r| = 0, then (1) is exactly controllable in time T .

Theorem 2 .(H 2 )

 22 [Lemoine, Münch, 2021] Assume for some s ∈ (0, 1] (H s ) [g ] s := sup a,b∈R a =b |g (a)-g (b)| |a-b| s < +∞, There exists α ≥ 0 and β ∈ [0, s 2C(2s+1) ) such that |g (r)| ≤ α + β ln 1/2 (1 + |r|) for every r in R.