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.A paired many-to-many kdisjoint path cover (or k-DPC for short) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs that each vertex of G is covered by a path. A graph is called paired k-disjoint path coverable graph, if it has an paired many-to-many k-disjoint path cover joining S and T for any possible configurations of source and sink sets S and T of each size k . In this paper, we characterize the unit interval graphs which are paired k-disjoint path coverable graphs.

Introduction

Let G be a simple undirected graph with vertex set V (G) and edge set E(G). Let x 0 , . . . , x be pairwise distinct vertices of V (G) with x i-1 x i ∈ E(G) for all i ∈ [ ]. We call it a path of G which starts at x 0 and ends at x , and denote it by P = (x 0 , . . . , x ).

1
x 0 is called the left endpoint of P and x is called the right endpoint of P . We say P starts at x 0 and ends at x , or just say that P is an x 0 , x -path. If P contains all vertices of G, then P is called a Hamiltonian path of G, or HP for short.

A path cover of G is a set that paths covers all vertices of G. If every vertex of G belongs to only one path, then we say the path cover is vertex-disjoint, or disjoint for short [START_REF] Park | Algorithms for finding disjoint path covers in unit interval graphs[END_REF]. The disjoint path cover problem has applications in many areas, such as software testing, database design, and code optimization [START_REF] Asdre | The 1-fixed-endpoint path cover problem is polynomial on interval graphs[END_REF][START_REF] Ntafos | On path cover problems in digraphs and applications to program testing[END_REF]. The size of a path cover is the number of paths in the graph. The path cover number of G is the number of paths in an disjoint path cover of G which is of smallest size. The path cover problem is to find a disjoint path cover of G with smallest size. Interestingly, the existence of a disjoint path cover in a graph is closely related to the Hamiltonian properties as well as the conception of vertex connectivity, characterized with respect to the minimum number of disjoint paths. The path cover problem is NP-complete for general graphs [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. This problem is polynomial-time solvable for interval graphs [START_REF] Arikati | Linear algorithm for optimal path cover problem on interval graphs[END_REF], block graphs and bipartite permutation graphs [START_REF] Srikant | Optimal path cover problem on block graphs and bipartite permutation graphs[END_REF], cographs [START_REF] Lin | An optimal path cover algorithm for cographs[END_REF], distance-hereditary graphs [START_REF] Hung | Finding a minimum path cover of a distancehereditary graph in polynomial time[END_REF], and comparability graphs [START_REF] Corneil | LDFS-based certifying algorithm for the minimum path cover problem on cocomparability graphs[END_REF].

In this paper, we mainly consider the disjoint path cover problem with prescribed sources and sinks, where each path run from a source to a sink. Let S = {s 1 , . . . , s k } and T = {t 1 , . . . , t k } be two disjoint sets of V (G). Let P = {P 1 , . . . , P k } be a set of disjoint path cover of G. If we request that every path P i starts at s i and ends at t i , then we say P is a paired many-to-many k-DPC for S and T . Otherwise, we say P is a unpaired many-to-many k-DPC for S and T . If G has a paired manyto-many k-DPC for any k-elements disjoint subsets S and T of G, then we say G is paired k-disjoint path coverable. If G has a unpaired many-to-many k-DPC for any k-elements disjoint subsets S and T of G, then we say G is unpaired k-disjoint path coverable. Let S = {s} and T = {t 1 , . . . , t k } be two disjoint set of V (G). Let P = {P 1 , . . . , P k } be a set of disjoint path cover of G. If every path P i starts at s and ends at t i , then we say P is aone-to-many k-DPC for S and T . If T = {t}, then we say P is a one-to-one k-DPC for S and T . The k-DPC problem, originated from the community of interconnection networks, is concerned with applications where the full utilization of nodes is important [START_REF] Park | Many-to-many disjoint path covers in the presence of faulty elements[END_REF], Every paired many-to-many k-disjoint path coverable graph is Hamiltonian-connected for any k ≥ 1 [START_REF] Park | Many-to-many disjoint path covers in the presence of faulty elements[END_REF], i.e., every pair of vertices is joined by a Hamiltonian path. The disjoint path covers of these types above have been studied for many graph classes, such as hypercubes [START_REF] Chen | Many-to-many disjoint paths in faulty hypercubes[END_REF][START_REF] Chen | Paired many-to-many disjoint path covers of the hypercubes[END_REF][START_REF] Dvořák | Partitions of faulty hypercubes into paths with prescribed endvertices[END_REF][START_REF] Gregor | Path partitions of hypercubes[END_REF][START_REF] Jo | Paired many-to-many disjoint path covers in faulty hypercubes[END_REF], recursive circulants [START_REF] Kim | Disjoint path covers in recursive circulants G(2m, 4) with faulty elements[END_REF][START_REF] Kim | Paired many-to-many disjoint path covers in recursive circulants G(2m, 4)[END_REF], hypercube-like graphs [START_REF] Jo | Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs[END_REF][START_REF] Kim | Many-to-many two-disjoint path covers in restricted hypercube-like graphs[END_REF][START_REF] Park | Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements[END_REF][START_REF] Park | Many-to-many disjoint path covers in the presence of faulty elements[END_REF],k-ary n-cubes [START_REF] Shih | One-to-one disjoint path covers on k-ary n-cubes[END_REF][START_REF] Zhang | Many-to-many disjoint path covers in k-ary n-cubes[END_REF],cubes of connected graphs [START_REF] Park | Single-source three-disjoint path covers in cubes of connected graphs[END_REF][START_REF] Park | Disjoint path covers in cubes of connected graphs[END_REF], grid graphs [START_REF] Park | Many-to-many two-disjoint path covers in cylindrical and toroidal grids[END_REF], interval graphs [START_REF] Park | A sufficient condition for the unpaired k-disjoint path coverability of interval graphs[END_REF][START_REF] Park | Disjoint path covers joining prescribed source and sink sets in interval graphs[END_REF][START_REF] Park | Characterization of interval graphs that are unpaired 2disjoint path coverable[END_REF] and unit interval graphs [START_REF] Park | Algorithms for finding disjoint path covers in unit interval graphs[END_REF].

For any graph G, if there is a map I that assigns to each vertex x ∈ V (G) a In addition, I (v) is named the left endpoint of I(v) and r I (v) is named the right endpoint of I(v). The class of the unit interval graph is known to admit polynomial solutions for many problems that are NP-complete for general graph, such as vertex coloring,clique, independent set,etc. [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF]. The combinatorics of interval graphs has both rich mathematical theory and important practical applications. Due to their simple geometric representation, many problems regarding the path and/or cycle structure of a graph can be solved much more easily for interval graphs than for arbitrary graphs. Nonetheless, there are still many interesting open problems and conjectures relating to interval graphs or even unit interval graphs.

In 2012, Jae-Ha Lee and Jung-Heum Park characterize the unpaired k-disjoint path coverable unit interval graphs [START_REF] Lee | General-demand disjoint path covers in a graph with faulty elements[END_REF]. Based on the work of [START_REF] Lee | General-demand disjoint path covers in a graph with faulty elements[END_REF], we characterize the paired k-disjoint path coverable unit interval graphs and obtain some other results. This work may be useful to design a efficient algorithm for finding paired many-tomany k-DPC on unit interval graphs.

Preliminaries

Let i, j be two positive integers with i < j. We denote the set {1, . . . , i} by [i] and {i, . . . , j} by [i, j]. Let π 1 , . . . , π n be any ordering. Denote π 1 , . . . , π i by π[i] and 

G. Let N G (v) denote the open neighborhood of v i in G, i.e., N G (v) = {u : u ∈ V (G), uv ∈ E(G)}. Let N G [v] denote the closed neighborhood of v i in G, in other word, N G [v] = N G (v) ∪ {v}. Suppose S be any subset of V (G). Let G[S] denote the subgraph of G induced by S. Let N G (S) denote the set (∪ v∈S N G (v)) \ S and N G [S] denote the set ∪ v∈S N G (v).
Let G be any n-vertex graph and π be any ordering of V (G). For any i ∈

[n -1], denote the number of vertices of N G (π i )∩π[i+1, n] by d G,π (π i ). If π[i+1, n] ⊆ N G (π i ), then we let d G,π (π i ) = +∞. Denote the sequence d G,π (π 1 ), . . . , d G,π (π n-1 ) by d G,π (π). Let k be any integer of [n -1]. If π is an Hamiltonian path of G and d G,π (π i ) ≥ k holds for each i ∈ [n -1], then we say π is k-thick.
Let π = π 1 , . . . , π n be any ordering of V (G). If the vertices of each maximal clique are consecutive in π, then we say π is consecutive. 

. , v n , G is k-connected if and only if v i v j ∈ E(G) whenever 1 ≤ |i -j| ≤ k.
Theorem 2.2 [START_REF] Roberts | Indifference graphs[END_REF][START_REF] Roberts | On the compatibility between a graph and a simple order[END_REF] For a simple graph G, the following statements are equivalent:

• G is a unit interval graph.

• G is a proper interval graph.

• There is a consecutive ordering of V (G).

All graph-theoretical terms not defined can be found in [START_REF] Bondy | Graph Theory[END_REF]. Note that when we talk about the path cover, we always mean a sequence of paths in which each path should be read as a vertex sequence and so has a natural direction. This convention is important in understanding several algorithms discussed in the paper.

Properties of UIOs

Let G be an n-vertex unit interval graph. Let π = π 1 , . . . , π n be a ordering of V (G).

If for all p < q < r, v p v r ∈ E(G) implies v p v q , v q v r ∈ E(G), then we say we say π is a unit interval ordering of G, or UIO for short. • π is consecutive.

• For any i ∈ [k -1] and any j ∈ [i + 1, k], (N G (π i ) ∩ R) ⊆ (N G (π j ) ∩ R). • For any p ∈ [k + 1, n -1] and any q ∈ [p + 1, n], (N G (π q ) ∩ L) ⊆ (N G (π p ) ∩ L). • N G (L) ⊆ N G (π k ) and N G (R) ⊆ N G (π k+1 ). • Both G[N G (L)] and G[N G (R)] are cliques of G.
Proof. (a) Let C be any maximal clique of G. Let p = min{i : π i ∈ C} and q = max{i : π i ∈ C}. We just need to show that for any i ∈ [p, q], it holds π i ∈ C. (e) Let π r and π s be two vertices of N G (L). Without loss of generality, we assume

Since π p π q ∈ E(G), it holds π i ∈ N G [j] for each j ∈ [p, q], hence π i ∈ C. (b) Let π h be any vertex of N G (π i ) ∩ R. We have h > k > j > i. Since π is a UIO and π h π i ∈ E(G), we get π h π j ∈ E(G), so it holds (N G (π i ) ∩ R) ⊆ (N G (π j ) ∩ R). (c) Let π h be any vertex of N G (π q ) ∩ L. We have h < k < p < q. Since π is a UIO and π h π q ∈ E(G), we get π h π p ∈ E(G), so it holds (N G (π q ) ∩ L) ⊆ (N G (π p ) ∩ L).
r < s. By (d), π r π k , π s π k ∈ E(G). Since π is a UIO and k < r < s, we have π r π s ∈ E(G), hence G[N G (L)] is a clique of G. In the same manner, we can show that G[N G (R)] is a clique of G, finishing the proof. Let π be a UIO of an n-vertex unit interval graph G. Let k ∈ [n -1]. Note that if π is k-thick, then π i π i+k ∈ E(G) holds for each i ∈ [n -k]. Lemma 3.2 Let π be a UIO of an n-vertex unit interval graph G. Take k ∈ [n].
Then the following statements are equivalent.

• G is k-connected. • For any i, j ∈ [n] with |i -j| ≤ k, it holds π i ∈ N G [π j ]. • π is a k-thick UIO of G.
Proof. It directly follows from Theorem 2.1.

Algorithm 1 Find a special Hamiltonian path of G, say HP(G, π)

Input: A n-vertex unit interval graph G, 2-thick UIO π of G Output: A Hamiltonian path τ of G which starts at π n and ends at π n-1 1: if n is even then 2: Proof. It directly follows from the fact that π is 2-thick UIO of G.

(τ 1 = π n , τ 2 = π n-2 , τ 3 = π n-4 , . . . ,τ n 2 = π 2 , τ n 2 +1 = π 1 ,τ n 2 +2 = π 3 ,τ n 2 +3 = π 5 ,. . . ,τ n = π n-1 ) 3: else 4: (τ 1 = π n , τ 2 = π n-2 , τ 3 = π n-4 , . . . ,τ n+1 2 = π 1 , τ n+3 2 = π 2 ,τ n+5 2 = π 4 ,. . . ,τ n = π n-1
Remark. Let G be a n-vertex unit interval graph. Let π be any k-thick UIO of G

while k ∈ [n -1]. Then it holds that: 1. For any i ∈ [n -1] and j ∈ [i + 1, n], π[i, j] is also a k-thick UIO of G[π[i, j]]. 2. Take p ∈ [k -1]. Take any p-vertex subset of V (G), say S. Then G -S is (k -p)-connected and π -S is (k -p)-thick UIO of G -S. 4 Main results Lemma 4.1 An unit interval graph G is paired 1-disjoint path coverable if and only if G is 3-connected.
Proof. Let π be any UIO of G. Firstly, suppose G is paired 1-disjoint path coverable.

Then we obtain that there is an HP of G -S for any S ⊆ V (G) with |S| ≤ 2, hence

G is 3-connected.
Next we suppose G is 3-connected. By Lemma 3.2, π is 3-thick. Let S = {π s } and T = {π t }. Assume that s < t. We need to find a π s , π t -HP of G. We shall proceed by induction on n. If n ≤ 4, it is trivial since G is a clique in this case. Suppose n > 4.

We distinguish two cases.

Case 1: s = 1. Since π is a 3-thick UIO of G, we get π[2, 4] ⊆ N G (π 1 ). Take any j ∈ [2, 4] \ {t}. As we see π[2, n] is a 3-thick UIO of G -π 1 , by induction hypothesis, there is a π j , π t -HP of G -π 1 , say τ . Then π 1 + τ is a π s , π t -HP of G. Case 2: s > 1. As π is a 3-thick UIO of G, we get {π s+1 , π s+2 } ⊆ N G (π s-1 ). Take any j ∈ [s + 1, s + 2] \ {t}. By Remark 3, π[s + 1, n] is a 3-thick UIO of G[π[s + 1, n]]. By induction hypothesis, there is a π j , π t -HP of G[π[s + 1, n]], say τ . By Lemma 3.3, there is a π s , π s-1 -HP of G[π[s]], say θ. Then θ + τ is a π s , π t -HP of G, finishing the proof.
Let G be any n-vertex unit interval graph and v be any vertex of V (G). If there is some UIO of G which starts at v, then we say v is a good vertex of G. If G has a paired many-to-many k-disjoint path cover for any k-element disjoint subsets S and T in G where S contains one good vertex, then we say G is semi-paired k-disjoint

path coverable. Lemma 4.2 A unit interval graph G is semi-paired 1-disjoint path coverable if and only if G is 2-connected. Proof. If G is semi-paired 1-disjoint path coverable, it is obviously that G is 2- connected.
Suppose G is 2-connected and π is 2-thick UIO of G. Note that π is a HP of G. The statement is trivial when n = 2. Suppose n > 2 and we shall proceed by induction on n.

If j = n, then π is a π 1 , π j -HP of G. Suppose j < n. By induction hypothesis, there is a π j+1 , π j -HP of G[π[j, n]], say τ. As π is a 2-thick UIO of G, it holds π j-1 π j+1 ∈ E(G), hence π[j -1] + τ is a π 1 , π j -HP of G, completing the proof. Lemma 4.3 A unit interval graph G is semi-paired 2-disjoint path coverable if and only if G is 3-connected. Proof. Firstly, we prove that G is 3-connected if G is semi-paired 2-disjoint path coverable. Let π be any UIO of G. If G is not 3-connected, then π is not 3-thick, which means that there is some i ∈ [n -3] such that π i π i+3 / ∈ E(G). Let S = {π 1 , π i+1 }
and T = {π i+3 , π i+2 }. Then there is not any paired many-to-many 2-DPC for S and T in G since there is not any path from

π 1 to π i+3 in G -π i+1 -π i+2 , hence G is not semi-paired 2-disjoint path coverable, a contradiction. So it holds G is 3-connected.
Secondly, suppose G is 3-connected and π be any 3-thick UIO of G. Let S and T be any 2-vertex disjoint subsets of V (G) with π 1 ∈ S. Let n = |V (G)|. We want to show that there is some paired many-to-many 2-DPC for S and T in G. We shall proceed by induction on n. If n = 4, then G is a clique and the statement is true.

Suppose n > 4 and the statement holds for any smaller n. As π is 3-thick UIO of

G, it holds π[2, 4] ⊆ N G (π 1 ). Suppose S = {π s 1 = π 1 , π s 2 } and T = {π t 1 , π t 2 }. We distinguish two cases. Case 1: 2 / ∈ {s 2 , t 1 , t 2 }. Let G = G -π 1 , π = π -π 1 = π[2, n], S = {π 2 , π s 2 }
and T = T . By Remark 3, π is a 3-thick UIO of G . By induction hypothesis, there is a paired many-to-many 2-DPC for S and T in G , say P = {P 1 , P 2 }. Then we see P = {π 1 + P 1 , P 2 } is a paired many-to-many 2-DPC for S and T in G.

Case 2: 2 ∈ {s 2 , t 1 , t 2 }.

Case 2.1: 

2 = t 1 . In this case, let G = G -π 1 -π 2 , π = π[3,
}. Let G = G-π 1 -π t 1 , π = π-π 1 -π t 1 = π[2, n]-π t 1 .
By Remark 3, π is a 2-thick UIO of G . By Lemma 4.2, there is a π s 2 , π t 2 -HP of G , say P 2 . Then P = {P 1 = (π 1 , π t 1 ), P 2 } is a paired many-to-many 2-DPC for S and T in G, completing the proof.

Let G be any n-vertex graph and π be any k-thick ordering of G where k ∈ Proof. Firstly, assume that G is paired 2-disjoint path coverable. We want to show that G is almost 4-connected. Let π be any UIO of G. Suppose κ(G) < 3.

[n -1]. If d G,π (π i ) + d G,π (π i+1 ) > 2k holds for every i ∈ [n -2],
By Lemma 3.2, π is not 3-thick. That means, there is some i 0 ∈ [n -3] with

π i 0 π i 0 +3 / ∈ E(G). Since π is a UIO of G, we obtain π i π j / ∈ E(G) for any i ∈ [i 0 ] and j ∈ [i 0 + 3, n]. Let s 1 = π i 0 , s 2 = π i 0 +1 , t 2 = π i 0 +2 and t 1 = π i 0 +3 . Let S = {s 1 , s 2 } and T = {t 1 , t 2 }.
It is easy to see that there is not any paired many-to-many 2-DPC for S and T in G since there is not any path from

s 1 to t 1 in G -s 2 -t 2 , a
contradiction. So we obtain κ(G) ≥ 3. Assume that κ(G) = 3 and there is some

i 0 ∈ [n -2] with d G,π (π i 0 ) + d G,π (π i 0 +1 ) ≤ 6. Since κ(G) = 3, we have π is 3-thick and d G,π (π i 0 ) = d G,π (π i 0 +1 ) = 3. Let s 1 = π i 0 +1 , s 2 = π i 0 +2 , t 2 = π i 0 +3 and t 1 = π i 0 +4 . Let S = {s 1 , s 2 } and T = {t 1 , t 2 }. Note that π i 0 π i 0 +4 , π i 0 +1 π i 0 +5 / ∈ E(G). Notice that N G (π[i 0 ]) = {s 1 , s 2 , t 2 } and N G (π[i 0 + 5, n]) = {s 2 , t 2 , t 1 }.
Then it is easy to check that there is not any paired many-to-many k-DPC for S and T in G, a contradiction.

So we have π is almost 4-thick and G is almost 4-connected.

Next we assume that G is almost 4-connected and π is almost 4-thick. We need to prove that G is paired 2-disjoint path coverable. We shall proceed by induction on n. If n = 4, it is trivial since G is a clique in this case. Suppose n > 4. Let S = {π s 1 , π s 2 } and T = {π t 1 , π t 2 } be two subsets of V (G) with s 1 < s 2 and s j < t j for each j ∈ [START_REF] Asdre | The 1-fixed-endpoint path cover problem is polynomial on interval graphs[END_REF]. We want to show that there is a paired many-to-many 2-DPC for S and T in G. We distinguish two cases.

Case 1: s 1 = 1. Since π is a almost 4-thick UIO of G, it holds that π j π 1 ∈ E(G)
for every j ∈ [START_REF] Asdre | The 1-fixed-endpoint path cover problem is polynomial on interval graphs[END_REF][START_REF] Chen | Many-to-many disjoint paths in faulty hypercubes[END_REF].

Case 1.1: ∃j ∈ [2, 4] \ {s 2 , t 1 , t 2 }. Let S = {π j , π s 2 }, T = T and G = G -π 1 .
Obviously, π[2, n] is a almost 4-thick UIO of G . By induction hypothesis, there is a paired many-to-many 2-DPC for S and T in G , say P = {P 1 , P 2 }, where P 1 is a path from π j to π t 1 . Let Q = π 1 + P 1 . Then {Q, P 2 } is a paired many-to-many 2-DPC for S and T in G.

Case 1.2: [2, 4] = {s 2 , t 1 , t 2 }. Let P 1 = (π 1 , π t 1 ). Let G = G -{π s 1 , π t 1 } and π = π -{π 1 , π t 1 } = π[2, n] -π t 1 . By Remark 4, π is a almost 3-thick UIO of G ,
hence a 2-thick UIO of G . Then the statement follows from Lemma 4.2.

Case 2: s 1 > 1. Since π is a almost 4-thick UIO of G, it holds that π j π s 1 -1 ∈ E(G) for every j ∈ [s 1 , s 1 + 2]. By Remark 3, π[s 1 ] is a almost 4-thick UIO of G[π[s 1 ]]. By Lemma 3.3, the output of Algorithm HP (G, π), say τ , is a π s 1 , π s 1 -1 -HP of G[π[s 1 ]]. Case 2.1: ∃j ∈ [s 1 + 1, s 1 + 2] \ {s 2 , t 1 , t 2 }. Let S = {π j , π s 2 }, T = T , G = G[π[s 1 + 1, n]] and π = π[s 1 + 1, n]. By Remark 4, π is a almost 4-thick UIO of G .
By induction hypothesis, there is a paired many-to-many 2-DPC for S and T in G , say P = {P 1 , P 2 }, where P 1 is a path from π j to π t 1 . Let Q = τ + P 1 . Then {Q, P 2 } is a paired many-to-many 2-DPC for S and T in G.

Case 2.2:

[s 1 + 1, s 1 + 2] ⊆ {s 2 , t 1 , t 2 }. Case 2.2.1: t 1 ∈ [s 1 +1, s 1 +2]. Let G = G[s 1 +1, n]-π t 1 and π = π[s 1 +1, n]-π t 1 .
By Remark 4, π is a almost 3-thick UIO of G . Notice that the first vertex of π belongs to {π s 2 , π t 2 }. By Lemma 4.2, there is a π s 2 , π t 2 -HP of G , say P 2 . Let

P 1 = τ + π t 1 .
Then {P 1 , P 2 } is a paired many-to-many 2-DPC for S and T in G.

Case 2.2.2:

t 1 / ∈ [s 1 + 1, s 1 + 2]. In this case, we have [s 1 + 1, s 1 + 2] = {s 2 , t 2 }. Case 2.2.2.1: d G,π (π s 1 -1 ) = 3. In this case, N G (π s 1 -1 ) ∩ π[s 1 , n] = π[s 1 , s 1 + 2].
Since π is a almost 4-thick ordering of G, we obtain d G,π (π πs 1 ) > 3 and d G,π (π

π s 1 -2 ) > 3 if s 1 > 2, which implies π[s 1 + 1, s 1 + 4] ⊆ N G (π s 1 ) and π[s 1 , s 1 + 2] ⊆ N G (π s 1 -2 ) if s 1 > 2.
If Proof. If k = 1, the statement follows from Lemma 3.3. If k = 2, the statement follows from Lemma 4.4. Suppose k > 2 and π be any UIO of G. Firstly, assume that G is paired k-disjoint path coverable. We want to show that G is (2k -1)-connected.

s 1 = 2, let P 2 = (π s 2 , π 1 , π t 2 ); Assume that s 1 > 2. By Remark 4, π[s 1 -1] is a almost 4-thick UIO of G[π[s 1 -1]]. By Lemma 3.3, there is a π s 1 -2 , π s 1 -1 -HP of G[π[s 1 -1]], say τ . In this case, let P 2 = π s 2 + τ + π t 2 . Let G = G[π[s 1 , n]]-π s 2 -π t 2 , S = {π s 1 }, T = {π t 1 } and π = π[s 1 , n]-π s 2 -π t 2 . Notice that π = π s 1 + π[s 1 + 3, n] and d G ,π (π s 1 ) = d G,π (π s 1 ) -2 ≥ 2,
d G,π (π s 1 -1 ) ≥ 4. Because π is a UIO of G, π[s 1 , s 1 +3] ⊆ N G (π s 1 -1 ). If s 1 + 3 = t 1 , let P 1 = τ + π t 1 . Let G = G[π[s 1 + 1, n]] -π t 1 , S =
Suppose κ(G) < 2k -1. By Lemma 3.2, π is not (2k -1)-thick. That means, there

is some i 0 ∈ [n -2k + 1] with π i 0 π i 0 +2k-1 / ∈ E(G). Since π is a UIO of G, we obtain π i π j / ∈ E(G) for any i ∈ [i 0 ] and j ∈ [i 0 + 2k -1, n]. Let s j = π i 0 +j and t j = π i 0 +k+j-1 for every j ∈ [k -1]. Let s k = π i 0 and t k = π i 0 +2k-1
Then it is easy to see there is not any path from s k to t k in G -{s 1 , . . . , s k-1 , t 1 , . . . , t k-1 }, hence there is not any paired many-to-many k-DPC for S and T in G, a contradiction. So we have κ(G) ≥ 2k -1 and the statement holds.

Next we assume that G is (2k -1)-connected. We need to prove that G is paired k-disjoint path coverable. By Lemma 3. Then we see P = {P 1 , P 2 , . . . , P k } is a paired many-to-many k-DPC for S and T in G.

Case 2: s 1 > 1. Since π is a (2k-1)-thick UIO of G, it holds that π j π s 1 -1 ∈ E(G) for every j ∈ [s 1 , s 1 + 2k -2]. In addition, we have π j π s 1 -2 ∈ E(G) for every j ∈ [s 1 -1, s 1 + 2k -3] when s 1 > 2. By Remark 3, π[s 1 ] is a (2k -1)-thick UIO of G[π[s 1 ]]. By Lemma 3.3, the output of Algorithm HP (G[π[s 1 ]], π[s 1 ]), say τ , is a π s 1 , π s 1 -1 -HP of G[π[s 1 ]]. Case 2.1: ∃j ∈ [s 1 +1, s 1 +2k-2]\{s 2 , . . . , s k , t 1 , . . . , t k }. Let S = {π j , π s 2 , . . . , π s k }, T = T and G = G[π[s 1 + 1, n]]
. By induction hypothesis, there is a paired many-tomany k-DPC for S and T in G , say P = {P 1 , . . . , P k }, where P 1 is a path from π j to π t 1 . Let Q = τ + P 1 . Then {Q, P 2 , P Then P = {P 1 , P 2 , . . . , P k } is a paired many-to-many k-DPC for S and T in G. G is (2k -1)-connected.

Proof. If G is (2k -1)-connected, by Theorem 4.1 (c), G is paired k-disjoint path coverable, hence G is semi-paired k-disjoint path coverable.

Suppose G is semi-paired k-disjoint path coverable and π be any UIO of G. We turn to show that G is (2k -1)-connected. If this were not true, we have G is not (2k -1)-connected and π is not (2k -1)-thick. Then there is some i 0 ∈ [n -2k + 1] such that π i 0 π i 0 +2k-1 / ∈ E(G). Let s 1 = π 1 , s 2 = π i 0 +1 , s 3 = π i 0 +2 , . . . , s k = π i 0 +k-1 , t 1 = π i 0 +2k-1 , t 2 = π i 0 +k , t 3 = π i 0 +k+1 , . . . , t k = π i 0 +2k-2 . Let S = {s 1 , . . . , s k } and T = {t 1 , . . . , t k }. Since there is not any s 1 , t 1 -path in G -{s 2 , . . . , s k } -{t 2 , . . . , t k } =

  nonempty closed interval I(x), say [ I (x), r I (x)], satisfying that xy ∈ E(G) if and only if I(x) ∩ I(x) = ∅, then we say G is an interval graph and I is an interval representation of G. If r I (v) -I (v) = 1 holds for each v ∈ V (G), then G is called an unit interval graph and I is called a unit interval representation of G( Fig 1 gives an example of a unit interval graph and its interval representation).

Fig. 1 :

 1 Fig. 1: A unit interval graph and its interval representation.

Theorem 2 . 1 [ 6 ,

 216 Theorem 2] For any positive integer k and any proper interval graph G of n ≥ k + 1 vertices with a consecutive ordering v 1 , . .

Theorem 3 . 1

 31 [21] A simple graph G of order n is a unit interval graph if and only if G has a UIO. Lemma 3.1 Let G be a unit interval graph and π be a UIO of G. Take k ∈ [n]. Let L = {π 1 , . . . , π k } and R = {π k+1 , . . . , π n }. Then it holds:

( d )

 d It directly follows from (b) and (c).

  For example, let G be a 8-vertex unit interval graph and π be any 2-thick UIO of G. Then the output of Algorithm HP (G, π) is τ = (π 8 , π 6 , π 4 , π 2 , π 1 , π 3 , π 5 , π 7 ); Let G be a 7-vertex unit interval graph and π be any 2-thick UIO of G. Then the output of Algorithm HP (G, π) is τ = (π 7 , π 5 , π 3 , π 1 , π 2 , π 4 , π 6 ).

Lemma 3 . 3

 33 Let π be a 2-thick UIO of an n-vertex unit interval graph G. Then the output of Algorithm HP (G, π) is a Hamiltonian path of G which starts at π n an ends at π n-1 .

k > 3 ,

 3 by induction hypothesis, there is a paired many-to-many (k -1)-DPC for S and T in G , say P = {P 1 , P 3 , . . . , P k }. If k = 3, by Lemma 4.3, there is a paired many-to-many 2-DPC for S and T in G , say P = {P 1 , P 3 }.

Case 2 . 2 . 2 :

 222 t 1 ∈ [s 1 + 1, s 1 + 2k -2]. Let G = G[π[s 1 + 1, n]] -π t 1 , π = π[s 1 + 1, n]-π t 1 , S = S \{π s 1 } and T = T \{π t 1 }. By Remark 3, π is a (2k-2)-thick UIO ofG . By Lemma 4.4 and induction hypothesis, there is a paired many-to-many (k -1)-DPC for S and T in G , say P = {P 2 , . . . , P k }. Then {P 1 = τ + π t 1 , P 2 , . . . , P k } is a paired many-to-many k-DPC for S and T in G, finishing the proof. Theorem 4.2 Let G be any n-vertex unit interval graph and k be any positive integer with n ≥ 2k. If k ≥ 3, then G is semi-paired k-disjoint path coverable if and only if

  n]. By Remark 3, π is a 3-thick UIO of G . By Lemma 4.1, there is a π s 2 , π t 2 -HP of G , say P 2 . Then

P = {P 1 = (π 1 , π 2 ), P 2 } is a paired many-to-many 2-DPC for S and T in G.

Case 2.2: 2 ∈ {s 2 , t 2 }. Case 2.2.1: ∃j ∈ [3, 4] \ {s 2 , t 1 , t 2 }. Let G = G -π 1 , π = π -π 1 = π[2, n],

S = {π j , π s 2 } and T = T . By Remark 3, π is a 3-thick UIO of G . By induction hypothesis, there is a paired many-to-many 2-DPC for S and T in G , say P = {P 1 , P 2 }. Then we see P = {π 1 + P 1 , P 2 } is a paired many-to-many 2-DPC for S and T in G.

Case 2.2.2:

[START_REF] Bondy | Graph Theory[END_REF][START_REF] Chen | Many-to-many disjoint paths in faulty hypercubes[END_REF] 

⊆ {s 2 , t 1 , t 2 }. In this case, it holds

[START_REF] Asdre | The 1-fixed-endpoint path cover problem is polynomial on interval graphs[END_REF][START_REF] Chen | Many-to-many disjoint paths in faulty hypercubes[END_REF] 

= {s 2 , t 1 , t 2 } and t 1 ∈

[START_REF] Bondy | Graph Theory[END_REF][START_REF] Chen | Many-to-many disjoint paths in faulty hypercubes[END_REF]

. Note that 2 ∈ {s 2 , t 2

  {π s 2 }, T = {π t 2 } and π = π[s 1 + 1, n] -π t 1 . Note that the first vertex of π belongs to {π s 2 , π t 2 }. By Remark 4, π is a almost 3-thick UIO of G . By Lemma 4.2, there is a π s 2 , π t 2 -HP of G , say P 2 . Then P = {P 1 , P 2 } is a paired many-to-many 2-DPC for S and T in G.Assume thats 1 +3 = t 1 . Let G = G[π[s 1 +1, n]], S = {π s 1 +3 , π s 2 }, T = {π t 1 , π t 2 } and π = π[s 1 + 1, n]. By Remark 4, π is a almost 4-thick UIO of G . By inductionhypothesis, there is a paired many-to-many 2-DPC for S and T in G , say P = {P 1 , P 2 }, where P 1 is a path from π s 1 +3 to π t 1 . Let Q = τ + P 1 . Then P = {Q, P 2 } is a paired many-to-many 2-DPC for S and T in G, completing the proof. Theorem 4.1 Let G be any n-vertex unit interval graph. Then it holds that:1. G is paired 1-disjoint path coverable if and only if G is 3-connected.2. G is paired 2-disjoint path coverable if and only if G is almost 4-connected.

	3. G is paired k-disjoint path coverable if and only if G is (2k -1)-connected, where
	k > 2.

  2, π is (2k -1)-thick. We shall proceed by induction on n. If n = 2k, it is trivial since G is a clique in this case. Suppose n > 2k. Let S = {π s 1 , . . . , π s k } and T = {π t 1 , . . . , π t k } be disjoint subsets of V (G) with s 1 < • • • < s k and s j < t j for each j ∈ [k]. We want to show that there is a paired many-to-many k-DPC for S and T in G. We distinguish two cases.Case 1: s 1 = 1. Since π is a (2k -1)-thick UIO of G, it holds that π j π 1 ∈ E(G) Case 1.1: ∃j ∈ [2,2k]\{s 2 , . . . , s k , t 1 , . . . , t k }. Let S = {π j , π s 2 , . . . , π s k }, T = T and G = G -π 1 . By induction hypothesis, there is a paired many-to-many k-DPC for S and T in G , say P = {P 1 , . . . , P k }, where P 1 is a path from π j to π t 1 . Let Q = π 1 + P 1 . Then {Q, P 2 , . . . , P k } is a paired many-to-many k-DPC for S and T Case 1.2: [2, 2k] = {s 2 , . . . , s k , t 1 , . . . , t k }. Let P 1 = (π s 1 , π t 1 ). Let G = G -{π 1 , π t 1 }, S = {π s 2 , . . . , π s k }, T = {π t 2 , . . . , π t

	for every j ∈ [2, 2k].
	in G.

k } and π = π -{π 1 , π t 1 }. By Remark 3, π is a (2k -2)-thick UIO of G . If k = 3, then π is a 4-thick UIO of G . By Lemma 4.

[START_REF] Chen | Many-to-many disjoint paths in faulty hypercubes[END_REF]

, there is a paired manyto-many k-DPC for S and T in G , say P = {P 2 , . . . , P k }; If k > 3, then by induction hypothesis, there is a paired many-to-many k-DPC for S and T in G , say P = {P 2 , . . . , P k }.

  Case 2.2.1: t 1 / ∈ [s 1 + 1, s 1 + 2k -2]. In this case, we have [s 1 + 1, s 1 + 2k -2] = {s 2 , . . . , s k , t 2 , . . . , t k }. If s 1 = 2, let P 2 = (π s 2 , π 1 , π t 2 ); If s 1 > 2, then itholds π j π s 1 -2 ∈ E(G) for every j ∈ [s 1 -1, s 1 + 2k -3], hence π s 2 π s 1 -2 ∈ E(G) or π t 2 π s 1 -2 ∈ E(G). Without loss of generality, assume that π s 2 π s 1 -2 ∈ E(G). By Remark 3, π[s 1 -1] is a (2k -1)-thick UIO of G[π[s 1 -1]]. By Lemma 3.3, the output of Algorithm HP (G[π[s 1 -1]], π[s 1 -1]), say τ , is a π s 1 -2 , π s 1 -1 -HP of G[π[s 1 -1]].In this case, letP 2 = π s 2 + τ + π t 2 . Let G = G[π[s 1 , n]] -π s 2 -π t 2 , π = π[s 1 , n] -π s 2 -π t 2 , S = S \ {π s 2 } and T = T \ {π t 2 }. By Remark 3, π is a (2k -3)-thick UIO of G , hence G[π[s 1 + 1, n]]is (2k -3)-connected. Note that the first vertex of π is π s 1 , which belongs to S . If

3 

, . . . , P k } is a paired many-to-many k-DPC for S and T in G.

Case 2.2:

[s 1 + 1, s 1 + 2k -2] ⊆ {s 2 , . . . , s k , t 1 , . . . , t k }. Note that |[s 1 + 1, s 1 + 2k -2]| = 2k -2

and |{s 2 , . . . , s k , t 1 , . . . , t k }| = 2k -1.

Acknowledgements

We thank the referees and editors for their constructive input. This work was supported by the National Natural Science Foundation of China (No. 11701059) (No. 11971311) and Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0156),The cross research foundation for medicine and engineering, Shanghai Jiao Tong University (YG2017QN35).

* This work was supported by the National Natural Science Foundation of China (No. 11701059) (No. 11971311) and Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0156),The cross research foundation for medicine and engineering, Shanghai Jiao Tong University (YG2017QN35).

Concluding Remarks

In this paper, we present a characterization of paired k-disjoint path coverable on unit interval graphs. Specifically, we prove that G is paired k-disjoint path coverable if and only if G is (2k -1)-connected, where k > 2. Moreover, we show that G is semi-paired k-disjoint path coverable if and only if G is (2k -1)-connected where k ≥ 3 and n ≥ 2k. It is interesting to characterize the paired (or unpaired) k-disjoint path coverable on unit interval graphs with faulty edges .