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Abstract—This paper proposes to study the impact of image Alice Public Channel Cloud
selective encryption on both forensics and privacy preserving
mechanisms. The proposed selective encryption scheme works in- ) Selectively encrypted
dependently on each bitplane by encrypting thes most signi cant v Es(liik) '
bits of each pixel. We show that this mechanism can be used to -
increase privacy by mitigating image recognition tasks. In order i
to guarantee a trade-off between forensics analysis and privacy,
the signal of interest used for forensics purposes is extracted from - [integrty checking
the 8 s least signi cant bits of the protected image. We show on
the CASIA2 database that good tampering detection capabilities Clear content

o
o[ ]

|
using SRMQ1 features, while preventing class recognition tasks
using CNN with an accuracy smaller than 50%.
Index Terms—Forensics, Privacy, Visual con dentiality, Selec-

tive encryption, Trade-off. Fig. 1. Trade-off between privacy preservation and integrity check in the

context of selectively encrypted image exchanges throughout a public server.
I. INTRODUCTION

Image exchanges represent a large amount of Internet cigar domain [3]. In order to preserve privacy while enabling
age nowadays. This trend goes hand in hand with privaayalysis in the encrypted domain, homomorphic encryption
requirements since the transmission can be spied on pultlais been proposed. This approach can be used for SIFT
channels. Therefore, it has been proposed to encrypt thegeection for example [4]. However, homomorphic encryption
images in order to hide their content, making them visuallschemes are computationally intensive, which avoids complex
con dential to unauthorized users. Some encryption methodgerations from being carried out, and requires more storage.
have been speci cally designed for images in order to preser@n the contrary selective encryption is fast and does not
their format and their size and allowing their visualizatioexpand the original image size. With such an approach, a part
after encryption. Allowing visualization is interesting to leof the image content is encrypted, while the other one remains
users being able to see that an image is present, butiitsclear,i.e. non-encrypted, and can be then analyzed. This
access is restricted. Moreover, selective encryption, whicbuld introduce a security breach and image content privacy
only encrypts a fraction of image information, allows us tés thus questionable.
visualize a level of details of the image as a function of the In this paper, we study how it is possible to use the
encrypted information [1]. In addition, visualization may béramework of selective encryption in order to reach a trade-
authorized only on a certain part of the image. Encryptiasff between privacy preservation and integrity check. An
can be then done partially, for example only on human faceéfustration of an application scenario on a public server is
for privacy concerns. In this context, partial encryption cagepicted in Fig. 1. From original images, several bit-planes
be selective [2]. Nevertheless, for end users such as clau@ encrypted, from most signi cant to least signi cant bits. A
platforms or image based social networks, encrypted imagegensics analysis based on the extraction of SRMQ1 features
are not convenient to work with. Indeed, using a classical then conducted to detect if a selectively encrypted image
encryption scheme, the targeted platform is not able to decidgs been tampered or not. In addition, a privacy evaluation
whether an image respects the terms of usage or not.idncarried out in order to assess the visual con dentiality
particular, it cannot check its integrity as this is done in thef a selectively encrypted image. This is done in terms of

) ) ) recognizability by predicting the image class.
This work has been funded in part by the French National Research Agency.

(ANR-18-ASTR-0009), ALASKA project: https:// alaska.utt.fr, and by the The_ rest of this paper is organized as follows. S?Ct'on I
French ANR DEFALS program (ANR-16- DEFA-0003). describes our proposed approach to analyze the in uence



of selective encryption on both image forensics and priva€y k <s, should be discarded in a pre-processing step.
preserving mechanisms. Experimental results are presentedatording to the Kerckhoffs' principle, we can assume that
Section Ill. Finally, the conclusion is drawn in Section IV. the numbeis of encrypted bit-planes is known. Therefore, for
each pixelpe (i;j ), the encrypted bits are set to zero using
bitwise shift operations to obtain a valpe(i;] ):
In this section, we describe our proposed approach to . .
analyze the trade-off between privacy and tampering detection Po(ii)=(pe@) 8 s ®)
in the context of selective encryption. Selective encryption |n doing so, only the non-encrypted least signi cant bit-
consists to encrypt the most signi cant bit-planes (MSBplanes are considered. One can note that these bit-planes
of an image, while keeping the least signi cant bit-planeshould be the most relevant for the classi cation task because
(LSB) in clear. In order to perform forensics on selectivelyhey are directly linked to the image residuals. Steganalysis
encrypted images, we focus on the residual information of tg@main falls within the search of weak signals in image
image. Moreover, for privacy evaluation, we are interested fasiduals. Due to the intrinsic properties of traces left by image
assessing the recognizability of a Selectively encrypted imaﬁﬁgery, Stegana|ysis approaches can be app“ed to image
by automatically predicting the class of the content. No@rensics [5], [6].
that our approach is detailed for an application to gray level|n this context, one of the most popular feature extractor
images, but can be easily extended to RGB color images. js the Spatial Rich Model (SRM) [7]. Because it uses the
statistics of neighboring noise residuals, it is widely employed
for steganalysis, but can be also used for tampering detection.
Let us consider a gray level input imagemf n pixels. |ndeed, noise residuals correspond to high frequency compo-
Each pixelp(i;j ) from this image0 i<m and0 j<n, nents of an image. They capture the dependency changes due

I[l. PROPOSED APPROACH

A. Selective encryption

is made of 8 bits and de ned as: to the tampering operation, in both horizontal and vertical di-
X7 rections. The SRM begins by the computation of the residuals.
p(i;i) = pAGj) 27K (1) During this step, the input image is Itered by several high-
k=0 pass lters to generate residual images with different shapes
wherep(i;j ) is the bit of indexk. and orientations. After that, a quantization and a truncation

One can note that the smaller the indexthe more sig- steps are performed. Finally, an output featL_Jre vector _With
ni cant the associated bit. For privacy requirements, the inpgt 261 residuals is obtained, whatever the size of the input
image is encrypted in order to ensure the visual security of [[§29€- The main drawback of SRM is that it leads to a high
content. Moreover, depending on the application, it should f@Mputational complexity. Therefore, in order to deal with
interesting to be able to preserve a part of the image in clef{liS iSsué, a simpli ed version called SRMQ1 can be used
In this context, encryption is selectively performed. Only instead. Wlth this feature extractor, the output feature vector
xed numbers of bit-planes are encrypted and the remainingnly contains 12,753 residuals. _ _ _

8 sones are kept in clear. Encryption is then performed from FO classi cation, an implementation of ridge regression
the most k = 0) to the leastk = s 1) signi cant bit-plane USINg anst Square Mln!mum—ReSAduaI (.LSMR) opt|m|_zat|on
to encrypt (from MSB to LSB). An encryption key is used a@nethod is used, QUe to its low computational complexﬂy and
a seed for a cryptographically secure pseudo-random numlf¥¥ memory requirements [8], [9]. Two classes are considered
generator to obtain a pseudo-random sequense af n bits for classi cation: authentic,i.e. Wlth no falsi ca_t|0n, and_ _
B(i:j), with 0k <s. For each bit-plane to encrypt, eactfampered, when there are forgeries due to cloning or splicing

bit p¥(i;j ) is XOR-ed with the associated bit in the pseudd2Perations.
random sequence to generate an encryptegifi; j ): C. Privacy evaluation of selectively encrypted images

pEGij) = pGisj ) BGis): (2)  The selective encryption allows us to hide some levels on
) ) _ _ details of the image. The proposed tampering detection relies
B. Tampering detection using residuals on the LSB that are not encrypted. Using a non full encryption
Tampering detection aims to decide whether or not anethod could lead to privacy leak using the clear content of
image has been altered by local modi cation. Most commathie image. Therefore, we aim to know what is the trade-off
forgeries are cloning (copy/move from a single image) artsbtween the visual con dentiality, which assesses the privacy,
splicing (copy/paste between several images). If typical imaged the tampering detection.
forensics techniques use as inputs the whole image to belhe assessment of the visual con dentiality of an image is
analyzed, this strategy is not the best for encrypted imageglif cult task. Indeed, it is known that usual quality metrics,
since the encryption adds a noise of strong magnitude. Tkisch as PSNR or SSIM, are not relevant for assessing a
noise could also alter the extraction of signi cant features fgerceptual low quality. A low score does not point out if
a classi cation as authentic or tampered. the image has just a low quality or if the content can not
In order to perform a forensics analysis from selectivelge recognizedi.e. if the encryption preserves the privacy.
encrypted images, all the encrypted bit-planes, of ind&Some perceptual metrics based on subjective evaluations were



Fig. 2. lllustration using the luminance component of the original imAgeani_00001from the CASIA2 database [10]: rst row) Selectively encrypted

images depending on the numbeof encrypted bit-planes, from MSB to LSB and with s  7; second row) Images obtained by setting to zero the

s encrypted bit-planes of associated selectively encrypted images (images were standardized for the recognizability task; this also allows a better visualization
of the signi cant information for classi cation).

proposed. In the context of privacy evaluation, the main drav. Examples of selectively encrypted images
back of these metrics is that they focus on perceptual quahty.In Fig. 2, we rst present the luminance component of the

Recently, Hofbaueet al. [11] have proposed an encrypted, iqinalimageAu ani_00001from the CASIA2 database [10].
image database with subjective recognition ground truth aRd"an illustration, in the rst row of the gure, we display

analyzed the correlation of subjective scores with some stalgacti - . .
ectively encrypted images obtained by encryptingit-
of the art metrics. They conclude that the evaluation of ima?ﬁe y yp g y ypting

. . A anes of this image, from MSB to LSB and with s 7
quality and the evaluation of the content recognizability a(‘?rom left to right). One can notice that as soon as at least two

two really different tasks and, therefore, the visual qualityy hanes are encrypted, it is visually dif cult to recognize the
metrics should not be used to assess content recog.mzablllgﬁginal image content. Indeed, in this example, distinguishing
we propose to eyaluate the privacy of a s<_alect|ve|y Cthe silhouette of the zebra is not an easy task. In the second
crypted image by ”Y'”g to autqmatlcally predict 'FS class. O,%W, the presented images have been obtained by setting to
assumption is thaj[ if an algorithm can automancall)_/ pred'_%ro thes encrypted bit-planes of the selectively encrypted
the content O.f an Image, then the encrypted image s Ieak'f?ﬁages and by performing a classical image standardization.
some visual information. ih??/en after this process, the content of the original image is

Ir:age contt(ra]nt li:lats& Cat'OT tr_nethlods hellve taCh'Eve(él\T recognizable when at least ve bit-planes are encrypted.
performance thanks to convolutional neural networks ( his kind of images are taken as input of the CNN for the

;I_'helrefore, V\f{e dp_roposebto tas_sgss the rgclogrrl:_z?]bnny df)ftsflﬁgéognizability task. Moreover, they illustrate the signi cant
Ively encrypled Image by traning a modet which predicts r\ﬂformation for classi cation in both forensics analysis and

class of the image. : .
. . . rivacy evaluation tasks.
As for forensics analysis, the encrypted bitplanes shouldp y

be set to zero using Eq. (3). This boils down to work directl Forensics analysis

on high frequencies and short intensity range. In order to ) _
exploit the low dynamic, images are standardized before to! "¢ CASIAZ database [10] consists of authentic and tam-
be passed as input to the model. pered images (cloned or spliced) on JPEG or TIFF formats and

Finally, to assess the classi cation score we use the acclith @ size betwee@40 160and900 600 pixels [10]. One
racy score which measures how much data have been v Note that: 1) tampered images have been generated using
predicted. As visual con dentiality is inherently linked to@ Subset of authentic images, and 2) several tampered images

recognizability, we propose to de ne a privacy index such Jave been_ |ss_ued_ from the same authentic images. In order to
1 accuracy recognizaniity INdeed, the more easily the contenfeémove this bias in the construction of the database, we have

of an image is recognizable, the lower the level of visugfndomly picked 1,000 authentic images and 1,000 tampered

con dentiality: recognizability and privacy are consequenty2des in the full database making sure that there is no
antagonist. overlap between imagesg. an image content only appears

one time. Then, we have designed eight associated databases of
IIl. EXPERIMENTAL RESULTS selectively encrypted images, by encrypting between 1 to 8 bit-
In this section, we present experimental results assessingphenes from MSB to LSB. After that, each of them has been
feasibility of combining forensics and privacy requirements fggrocessed separately. Into each database, images have been
digital images. First, we provide an illustration of selectivelgplit into two balanced subsets with as many authentic images
encrypted images and standardized images in order to visualizetampered images: 80% of the images have been used for
the high frequency information. We then describe the trainirigpining and the remaining 20% for test. As feature extractor,
and the classi cation results obtained for the tampering dere have used SRMQ1 [7]. In Table I, we present the accuracy
tection and the recognizability tasks considering selectivedgores obtained during the test phase as a function of the
encrypted images. Finally, we discuss the trade-off betweramber of encrypted bit-planes. First of all, on clear images
tampering detection and privacy. (i.e. without encryption), we can see that the accuracy is equal



TABLE |
ACCURACY FOR TAMPERING DETECTION USINGSRMQ1 [7]AS A FUNCTION OF THE NUMBER OF ENCRYPTED BITPLANE$FROM MSB TO LSB).

Feature Numbers of encrypted bitplanes
extraction 0 1 2 3 4 5 6 7 8
Without pre-processing 090 | 081| 0.76 | 0.69 | 0.62 | 0.61 | 0.55 | 0.54 | 0.50
With encrypted bitplanes set to zeo0.90 | 0.87 | 0.87 | 0.86 | 0.84 | 0.81 | 0.79 | 0.72 | 0.50

TABLE I
ACCURACY FOR THE RECOGNIZABILITY TASK AS A FUNCTION OF THE NUMBER OF ENCRYPTED BITPLANEGROM MSB TO LSB).

Image Numbers of encrypted bitplanes
database 0 1 2 3 4 5 6 7 8
CASIA2 [10] | 0.76 | 0.68 | 0.56 | 0.45| 0.36 | 0.29 | 0.25 | 0.26 | 0.14
Intel [12] 0.93| 0.89| 0.82| 0.73| 0.60| 0.52 | 0.45| 0.49 | 0.17
Cifar10 [13] | 0.87 | 0.68 | 0.52 | 0.37 | 0.23 | 0.13 | 0.09 | 0.10 | 0.10

to 0.90 even using a feature extractor as simple as SRMQ1In order to see if the content is still recognizable after the
To put this result in perspective with the state of the aréncryption of thes most signi cant bitplanes, the baseline
one of the best performing method [14] uses CNN to achiemeodel is ne tuned using the same training set in which images
0.97 accuracy, using 1:6 train to test ratio. Moreover, we came selectively encrypted. As we have to consider that the
see that the pre-processing step consisting in discarding thanbers is known, the best case for image classi cation is
encrypted bit-planes is relevant. If the performances are stil work directly on the clear bits of the image. Therefore,
quite good fors = 1 ands = 2 without pre-processing, theimage pixels are transformed using Eg. (3). In practice, as
accuracy score falls signi cantly as soon as three bit-planeg want to standardize the model inputs, it is suf cient to
are encrypted. With encrypted bit-planes set to zero, whatapply the left shift operatiope (i;j ) s and then standardize
particularly interesting is that, even with a reduced number mhages using classical image standardization. We also perform
bit-planes in clear, accuracy remains high. Indeed, it is highttrese experiments on the selectively encrypted dataset. With
than 0.80 considering at least three bit-planes in clear asd= 1, the accuracy of the recognizability task is only of
remains higher than 0.70 with only one or two bit-planes i8:37, and fors > 1, the accuracy is close t0:14. Indeed,
clear. Therefore, with a very small amount of information othe model does not directly converge toward the extraction
high frequencies, the tampering detection task is possible. Nofefeatures that do not rely on the encrypted bits. Thus,
that the results obtained using SRMQ1 are comparable withtends to classify all images into the most common class,
those achieved using SRM, which highlights that the simpli ede. the “animal” class which represents 14% of the base.
version of SRM can be used in practice. The ne tuning and testing phases have been independently
done fors 2 fO0;79, wheres = 0 means the image is

in clear. The obtained results are reported in Table Il. We
also present results we have obtained using the Intel image

The recognizability of image content is assessed by aufdassi cation [12] and the Cifar10 [13] databases which were
matically predicting the image class. designed for image classi cation. The total images in each

The CASIA2 database also provides coarse categories ¢lass is_ balanced. Intel ima_lge classi cation dgtabase contains
image content: animals, architecture, art, character, indobf; 034images ofL50 150pixels (14; 034for train and3; 000
nature, plants, text and sec. We choose to use7tH81 au- for test) separated intb classes: _“sea”, “mountain”, “bund—.
thentic images of the CASIA2 database for this task beca88s™ ‘forest’, “street” and “glacier”. CIFAR1O database is
authentic images are well labeled and do not contain falsi€omMPosed of; 000images of32 32 pixels (5; 000 for train
cation on which the model may focus. The number of imag@§d1; 000for test) belonging to one df0 classes: “airplane”,
is relatively small thus, we propose to use the VGG11 [15futomobile”, “bird", “cat’, “deer’, "dog”, *frog”, “horse”,
network pre-trained on ImageNet [16] as our baseline modet!P” and “truck”. The recognizability task performs better
The database is randomly split into two subsets with 80:5% the InFeI database because its classes are well separated,
ratio for train and test. Images are cropped at their center td'géreas in CIFARI10 there are classes that are close such as

size of224 224pixels to be passed as input of the model. Th@Irds” and “plane” or “automobile” and “truck”. Note that the
model is ne tuned using the train set, it converges quicklvend observed on the CASIA2 database is rmly established.

C. Recognizability

and it is stopped before over tting. The model can predict . . .

CASIA2 classes with an accuracy @f76 on the test set. This D. Trade-off between tampering detection and privacy

task is dif cult because classes are not well de ned and thereIn Fig. 3, we illustrate the trade-off between tampering de-
are some overlap. Nevertheless, it shows that the model is aigletion accuracy and privacy, as a function of the nunsbefr

to predict CASIA2 classes on clear images. encrypted bit-planes. These results were obtained using images



from the CASIA2 database. On the one hand, we can see thihg integrity threat from visually con dential image content
from one to ve encrypted bit-planes, the tampering detectighould be relevant. Regarding the recognizability task, instead
accuracy is very good (higher than 0.8). On the other haraf, only predicting the image class, we are planning to take
the privacy index (computed from recognizability accuracgn interest in object detection (its localization and its class)
as explained in Section II-C), is higher than 0.5 as long &s protected images. Consequently, a subjective validation,
at least three bit-planes are encrypted. This means that tieolving human evaluation, should also be conducted.

classi cation rate is low for recognizability,e. the class of the
image is mis-predicted on average. Therefore, this highlights . .
that an interesting trade-off for combining tampering detection This work has been funded in part by the French National
and privacy is achieved for three to ve encrypted bit-plane&esearch Agency (ANR-18-ASTR-0009), ALASKA project:
In particular, when ve bit-planes are encrypted, tamperin?ttps:” alaska.utt.fr, and by the French ANR DEFALS program
detection accuracy is equal to 0.81 and the privacy index (RNR-16- DEFA-0003).
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