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Abstract

In this article, the Second Strain Gradient (SSG) theory proposed by Mindlin is used within a Wave Finite Element
Method (WFEM) framework for dynamic analysis of one-dimensional Euler-Bernoulli bending beam and torsional
bar. Firstly, strong forms of continuum models including governing equations and boundary conditions for bending
and torsion cases, respectively, are derived using Hamilton’s principle. New ”non-local” Lattice Spring Models (LSM)
are expounded, giving unified description of the SSG models for bending and torsion. These LSM can be regarded as
a discrete micro-structural description of SSG continuum models and the resulting dynamic equations are transformed
using Fourier series. Weak forms for both bending and torsion are established based on SSG theory. Subsequently, the
WFEM is used to formulate the spectral problem and compute wave dispersion characteristics from one-dimensional
unit-cell structures. Finally, dispersion relations and forced responses for bending and torsion in micro-sized structures
are calculated by SSG and Classical Theory (CT), and some useful conclusions are discussed.

Keywords: Second Strain Gradient theory; Wave Finite Element Method; Continuum model; Lattice model;
Dispersion relation; Forced response

1. Introduction

Micro-structures have been widely investigated for their dynamic behaviors [1, 2, 3]. For example, nano-sized
Phononic Crystals (PCs) are studied because of their properties for manipulating acoustic and elastic waves. Initially,
the research of micro-structures was mainly focused on stop band phenomena. Then, attention was devoted to wave
propagation within the pass bands, such as negative refraction, super-lens effects, acoustic cloaks and so on. The
exploration for quantum spin Hall effect [4] and topological insulators [5] has recently become a hot spot for current
research.

It is well known that one of the noticeable features of micro-scale structures is their size-dependent mechanical
behavior [6, 7], which cannot be observed in macro-structures. Classical (local) Theory (CT) fails to describe those
physical phenomena in which non-local or long-range interaction plays a non-negligible role in the deformation pro-
cess. There are significant differences between the behavior of micro- and macro-scale structures, such as in their
dispersion relation and forced response. In order to explore the mechanism of size-dependent behaviors for micro-
sized media or structure, several theories are proposed: the surface elasticity theory [8], non-local elasticity [9], couple
stress theory [10] and elastic strain gradient theory [11]. Mindlin and Eshel put forward the First Strain Gradient (SG)
theory that belongs to the higher-order continuum theory [12]. The link between the atomic structure of materials and
the strain gradient theory is studied by Toupin and Gazis, which provided a description for the nearest and next-nearest
inter-atomic interactions [13]. The existence of a cohesive force that only exists in non-centro-symmetric materials
was proved. As for the force mentioned previously in centro-symmetric media or structure, Mindlin and Toupin [11]
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developed the Second Strain Gradient (SSG) theory. Mindlin offered a description for the surface tension and strain at
the surface of a solid plane in the mathematical framework of SSG, showing that the strain and displacement decays
exponentially as the distance to the surface increases. This result was embedded into the formulation of SSG theory
as a direct expression of the material surface characteristics. For the continuum model, the well known Hamiltonian
principle [3] is the most general method for calculating the governing equations as well as determining the associated
boundary conditions.

Besides continuum model theory, LSM theory is another analytical method to explore the dynamic behaviors of
micro-structures. The material’s elastic deformation is expressed through a microscopic method according to the gov-
erning equations of the lattice. Continuum governing equations of elasticity will be regarded as the limit for LSM
when the infinitesimal continuous elements scales are much larger than the distances between the lattice’s particles.
The LSM by SSG theory relies on an assumption that the force reflects a long-range interaction between material
points. The lattice particles with nearest, next-nearest and next-next-nearest neighbor interactions are a new type for
elastic materials with non-local properties.

Because of the extreme complexity of geometries and forces like Van Der Waals force, static electricity and capil-
lary force existing in micro-sized structures, the derivation of an exact theoretical solution may not be achievable for
the dynamic behaviors. Thus, it is essential to develop other methods to solve the problems emerging in micro-sized
structures. The Finite Element Method (FEM) is a widely used approach to explore the mechanical properties of
micro-sized structures [14, 15]. But according to the FEM, the whole structure should be meshed, hence requiring
excessive computational efforts. In order to optimize the traditional FEM in slender or periodic contexts, a Wave Fi-
nite Element Method (WFEM) [16, 17, 18, 19] was introduced. The research of wave propagation in periodic systems
based on the Rayleigh’s approach was put forward, which provided the possibility to apply approximate approaches
such as the FEM in periodic structures for the propagation of wave. The view of WFEM consists in reducing the study
of the whole periodic system into the spectral analysis of a single unit cell. The resulting mass matrix and stiffness
matrix are post-processed to provide the dynamic stiffness matrix for the unit cell through a periodic structure theory
[16]. The WFEM has been applied to solve and analyze the dynamic problems in various engineering fields, such as
textile composites [20], poro-elastic media [21] or curved structures [22].

This paper presents a method which combining SSG theory with WFEM to analyse the dynamic behavior of
micro-sized structures. Firstly, a continuum model for Euler-Bernoulli bending beams and torsional bars by SSG
are introduced. The strong forms including governing equations and boundary conditions are illustrated by applying
the variation method. Secondly, the LSM of a micro-sized Euler-Bernoulli bending beam and torsional bar are dis-
cussed. In order to build the bending and torsion lattice equations of motion for SSG theory, the LSM with the nearest,
next-nearest and next-next-nearest neighbor interactions with three different coupling parameters is considered. The
suggested LSM gave a unified description of the SSG model for bending and torsion. After Fourier series transform-
ing, the continuous governing equations of motion are determined. The variational, or weak, formulations are then
calculated.

The article’s structure is the following: in section 2, the weak formulations of continuum model and LSM for
bending and torsion are obtained using the SSG theory. Subsequently, in section 3, the direct form of the WFEM for
1D structures is reminded. The resulting dynamic stiffness matrix of a unit cell is assembled by WFEM and the spec-
tral eigenvalue problem is solved. In section 4, dynamic behaviors in micro-sized Euler bending beam and torsional
bar are calculated. Finally, some useful conclusions are presented in section 5.

2. Second Strain Gradient (SSG) Elasticity Theory

The 1D micro-sized Euler-Bernoulli bending beam continuum problems following the SSG theory are introduced
firstly in this part. Starting with the strong forms, then the corresponding variational or weak formulations are pre-
sented. The bending vibration of a micro-sized Euler beam simulating a new LSM is illustrated. The proposed LSM
offers a reasonable explanation of Mindlin’s SSG theory and the obtained dynamic equation of motion is fully compat-
ible. Secondly, the strong and weak formulations of 1D micro-sized torsional bar based on SSG theory are calculated,
and the new LSM for torsion case by SSG theory is presented as well.
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2.1. Bending Vibration for Euler-Bernoulli Beam
2.1.1. Continuum Model

Based on the SSG theory formulated by Mindlin [11], the strain energy density u for an isotropic linearly elastic
material is established as a function including the classical infinitesimal strain εi j = sym(∇u), the first order strain
ηi jk = ∇∇u and the second order strain ζi jkl = ∇∇∇u, in which u is the displacement vector and symbol ∇ means the
gradient operator, as below:

u =
1
2
λεiiε j j + µεi jεi j + a1ηi j jηikk + a2ηiikηk j j + a3ηiikη j jk + a4ηi jkηi jk + a5ηi jkη jki + b1ζii j jζkkll

+ b2ζi jkkζi jll + b3ζii jkζ jkll + b4ζii jkζllk j + b5ζii jkζll jk + b6ζi jklζi jkl + b7ζi jklζ jkli + c1εiiζ j jkk

+ c2εi jζi jkk + c3εi jζkki j,

(1)

where λ and µ represent the Lamé parameters related to the Young’s modulus E, the Poisson’s ratio ν and the shear
modulus G, as µ = G = E/2(1 + ν), λ = νE/(1 + ν)(1 − 2ν). ai, bi and ci denote the higher order parameters emerging
in SSG theory. It should be pointed out that there is no mature experimental method to determine the higher order
parameters. Some researchers [23] defined the parameters mentioned above in face centered cubic (fcc) materials by
the Sutton-Chen potential atom method. The higher order parameters for Aluminum (Al), Copper (Cu) and Lead (Pb)
are shown in Tab. 1 and Tab. 2.

Table 1: Higher order material parameters ai (eV/Å), ci (eV/Å).

Material a1 a2 a3 a4 a5 c1 c2 c3

Al 0.1407 0.0027 -0.0083 0.0966 0.2584 0.5041 0.3569 0.1782
Cu 0.1833 0.0103 0.0010 0.0717 0.1891 0.8448 0.5732 0.3465
Pb 0.1039 0.0260 0.0126 0.0154 0.460 1.0991 0.6043 0.5106

Table 2: Higher order material parameters bi (eV ·Å).

Material b1 b2 b3 b4 b5 b6 b7

Al 0.7927 0.0644 -0.1943 -0.0009 0.0009 16.1566 48.5291
Cu 0.6612 0.0663 0.2062 0.0015 0.0015 12.6254 37.9402
Pb 0.2503 0.0154 0.0595 0.0007 0.007 2.7886 8.3842

In order to calculate the governing equation of a micro-sized Euler-Bernoulli bending beam, the variational prin-
ciple is applied. Considering a beam on which acting a lateral distributed force f (x, t). The beam length is L as shown
in Fig. 1.

Figure 1: A Euler-Bernoulli beam under Lateral distributed force.

Assuming that the symmetry axis of the cross section coincides with the neutral axis. According to the kinematic
hypothesis of the Euler-Bernoulli bending beam, the displacement fields are as follows:

ub
1 = −y

∂w(x, t)
∂x

, ub
2 = w(x, t), ub

3 = 0, (2)
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where ub
1, ub

2, and ub
3 mean the displacement components along x, y and z directions, respectively, superscript b

of u represents bending case, w(x, t) is the vertical displacement along y direction. Only nonzero components of
displacement tensors are shown as:

ε11 = −y
∂2w(x, t)
∂x2 , η111 = −y

∂3w(x, t)
∂x3 , η211 = η121 = −

∂2w(x, t)
∂x2 ,

ζ1111 = −y
∂4w(x, t)
∂x4 , ζ2111 = ζ1211 = ζ1121 = −

∂3w(x, t)
∂x3 , ζ1112 =

∂3w(x, t)
∂x3 .

(3)

Integrating the strain energy density over its volume to obtain the beam strain potential energy as:

U =

∫ L

0

∫
A

udAdx. (4)

Whereupon, the beam strain potential energy for SSG theory can be obtained by substitution of Eq. 1 and Eq. 3
into Eq. 4:

U =
1
2

∫ L

0

Bb
1

(
∂2w(x, t)
∂x2

)2

+ Bb
2

(
∂3w(x, t)
∂x3

)2

+ Bb
3

(
∂4w(x, t)
∂x4

)2

+ Bb
4
∂2w(x, t)
∂x2

∂4w(x, t)
∂x4

 dx, (5)

where Bb
1 = 2(a1 − a2 + a3 + 3a4 − a5)A + EI, Bb

2 = 2(a1 + a2 + a3 + a4 + a5)I + 4(b2 − b4 + b5 + 2b6)A, Bb
3 =

2(b1 + b2 + b3 + b4 + b5 + b6 + b7)I, Bb
4 = 3(c1 + c2 + c3)I, A is the area of cross section, I means the moment of inertia.

On the other hand, the kinetic energy of the beam can be expressed as:

T =
1
2

∫ L

0
ρA

(
∂w(x, t)
∂t

)2

dx, (6)

where ρ denotes the linear mass density.
The work done by external classical force and higher-order forces,W, can be established in the variation form as:

δW =

∫ L

0
f (x, t)δw(x, t)dx + V0δw(x, t)|Lx=0 + M0δ

(
∂w(x, t)
∂x

)
|Lx=0 + M1δ

(
∂2w(x, t)
∂x2

)
|Lx=0

+ M2δ

(
∂3w(x, t)
∂x3

)
|Lx=0,

(7)

where V0 and M0 denote the classical forces, M1,2 is the higher order end-sectional forces of the micro-beam.
Next, the Hamilton’s principle is used to calculate the strong forms of the Euler-Bernoulli beam for SSG theory

as follows: ∫ t2

t1
(δU − δW− δT )dt = 0, (8)

where δU is the variational form of strain energy, δT means the variational form of kinetic energy. Then doing
mathematical calculations according to the variation method by substituting equations Eq. 5, 6, and 7 into Eq. 8, one
obtains:

Bb
1
∂4w(x, t)
∂x4 + (Bb

4 − Bb
2)
∂6w(x, t)
∂x6 + Bb

3
∂8w(x, t)
∂x8 − f (x, t) = ρA

∂2w(x, t)
∂t2 . (9)
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Additionally, the boundary conditions at the ends of Euler-Bernoulli beam for SSG theory are extracted:

− Bb
1
∂3w(x, t)
∂x3 − (Bb

4 − Bb
2)
∂5w(x, t)
∂x5 − Bb

3
∂7w(x, t)
∂x7 = V0 or δw(x, t) = 0, on Ω = {0, L} ;

− Bb
1
∂2w(x, t)
∂x2 − (Bb

4 − Bb
2)
∂4w(x, t)
∂x4 + Bb

3
∂6w(x, t)
∂x6 = M0 or δ

∂w(x, t)
∂x

= 0, on ∂Ω;

− (
1
2

Bb
4 − Bb

2)
∂3w(x, t)
∂x3 + Bb

3
∂5w(x, t)
∂x5 = M1 or δ

∂2w(x, t)
∂x2 = 0, on ∂Ω;

1
2

Bb
4
∂2w(x, t)
∂x2 + Bb

3
∂4w(x, t)
∂x4 = M2 or δ

∂3w(x, t)
∂x3 = 0, on ∂Ω.

(10)

Then, transforming strong form into weak form. In the FEM, the displacement w(x, t) inside of an element at point
x ∈ R2 could be expressed by providing the values ub of nodal degree of freedoms (DOFs) vector and shape function
Nb(x), as follows:

w(x, t) = Nb(x)ub(t), (11)

where the sizes of ub and Nb are p × 1 and 1 × p, respectively, and p means the DOFs number. In Eq. 11, the form of
the interpolation function determines ub, Nb and p. The C3 continuum Hermite interpolation function that guarantees
the higher-order strain field and displacement field smooth and continuous is used in Eq. 11. The nodal DOFs, nodal
numbers and coordinate of 1D Hermite element are presented in Fig. 2. For 1D C3 continuum Hermite element
(element length is de), there are four DOFs, wi, θi,

∂2wi
∂x2 ,

∂3wi
∂x3 , i = 1, 2, on each node. The Hermite shape functions

Figure 2: Definition of nodal DOFs, nodal numbers and coordinate for 1D.

corresponding to the eight DOFs of the 1D element are expressed as:

N0
1 = 1 − 35x4/d4

e + 84x5/d5
e − 70x6/d6

e + 20x7/d7
e , N0

2 = 35x4/d4
e − 84x5/d5

e + 70x6/d6
e − 20x7/d7

e ,

N1
1 = x − 20x4/d3

e + 45x5/d4
e − 36x6/d5

e + 10x7/d6
e , N1

2 = −15x4/d3
e + 39x5/d4

e − 34x6/d5
e + 10x7/d6

e ,

N2
1 = x2/2 − 5x4/d2

e + 10x5/d3
e − 15x6/d4

e + 2x7/d5
e ,N

2
2 = 5x4/d2

e − 7x5/d3
e + 13x6/d4

e − 2x7/d5
e ,

N3
1 = x3/6 − 2x4/3de + x5/d2

e − 2x6/3d3
e + x7/6d4

e , N3
2 = −x4/6de + x5/2d2

e − x6/2d3
e + x7/6d4

e ,

(12)

where the subscript and superscript of N in Eq. 12 denote the nodal numbers and the order of the derivative with respect
to coordinate x ∈ [0, de], respectively. Substituting Eq. 11 into equilibrium equation Eq. 9, then doing integration to
the resulting formula by the Galerkin’s approach leads to:[∫ de

0
(Nb)T

(
Bb

1
d4Nb

dx4 + (Bb
4 − Bb

2)
d6Nb

dx6 + Bb
3

d8Nb

dx8

)
dx

]
ub −

∫ de

0
(Nb)T f (x, t)dx

=

(∫ de

0
(Nb)TρANbdx

)
üb,

(13)

in which the dot symbol over ub indicates the second derivative with respect to the time. In order to illustrate the weak
form of Eq. 9, the part-by-part integration is used and result in:

Kbub − Fb = Mbüb, (14)

where Kb and Mb represent the stiffness matrix and mass matrix, respectively, Fb denotes the force vector for bending.
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The aforementioned parameters are derived as:

Mb = ρA
∫ de

0
(Nb)T Nbdx,

Kb =

∫ de

0

[
Bb

1

(
(Nb)′′

)T
(Nb)′′ + (Bb

2 − Bb
4)

(
(Nb)′′′

)T
(Nb)′′′ + Bb

3

(
(Nb)′′′′

)T
(Nb)′′′′

]
dx,

Fb =

∫ de

0
(Nb)T f (x, t)dx + V0Nb|∂ΩV0

+ M0(Nb)′|∂ΩM0
+ M1(Nb)′′|∂ΩM1

+ M2(Nb)′′′|∂ΩM2
.

(15)

where superscript (′) is the partial derivative with respect to coordinate x. It is noted that ensuring the correctness of
the correspondent relations between the local numbering and global numbering of DOFs is a prerequisite, especially
owing to the strict regularity of basis functions.

2.1.2. Lattice Spring Model (LSM)
In this part, the fundamentals of Euler–Bernoulli theory and “non-local” LSM are used to discretize the beam

into a series of identical elements, as shown in Fig. 3, P is the total number of lattice nodes. This LSM can reflect
the mechanical response of the continuum structure when the length between each node at small scale and P is large
enough. The DOFs on each node are displacement in y direction and rotation angle in x0y plane. From Fig. 3(b), 3(c),
3(d), the total rotation angle of node n can be presented by displacement components as:

∆θi =
wn+i − wn

id
−

wn − wn−i

id
, (i = 1, 2, 3). (16)

The governing equation of motion at node n for a LSM of Euler beam can be illustrated by applying Lagrange

(a) LSM from Euler beam with bending coupling constants k1 (nearest neighbor interaction), k2 (next-
nearest neighbor interaction) and k3 (next-next-nearest neighbor interaction) and the distance d and the
mass M = ρAd.

(b) The schematic deformed shape of
nodes n − 1, n and n + 1.

(c) The schematic deformed shape of nodes
n − 2, n and n + 2.

(d) The schematic deformed shape of nodes
n − 3, n and n + 3.

Figure 3: Sketch of a LSM beam.

equation [24] in y direction as:
∂L

∂wn
− Fn =

d
dt

(
∂L

∂ẇn

)
, (17)
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where Fn is an externally load applied at node n in y direction. L=T -U means the lagrangian that composed of the
kinetic energy (T ) and potential energy (U), where,

T =
1
2

M
P∑

n=1

ẇ2
n,

U =
1
2

k1

P∑
n=1

(∆θ1)2 +
1
2

k2

P∑
n=1

(∆θ2)2 +
1
2

k3

P∑
n=1

(∆θ3)2.

(18)

The lattice equation of motion for node n can be calculated by replacing Eq. 16 and Eq. 18 into Eq. 17 as:

k1

d3 (wn−2 − 4wn−1 + 6wn − 4wn+1 + wn+2) +
k2

(2d)3 (wn−4 − 4wn−2 + 6wn − 4wn+2 + wn+4)

+
k3

(3d)3 (wn−6 − 4wn−3 + 6wn − 4wn+3 + wn+6) − Fn = M
d2wn(t)

dt2 .

(19)

Subsequently, the Fourier series transform approach is used to derive a continuous equation w(x, t) from the LSM
wn(t). The process from a LSM to a continuum model was defined as [25]:

(1) Assuming wn(t) is the Fourier coefficient of field ŵ(κ, t), and defining F∆ as the Fourier series transform:

ŵ(κ, t) =

+∞∑
n=−∞

wn(t)e−iκxn = F∆ (wn(t)) , (20)

(2) Using Taylor series expansion for sine function by limiting d → 0:

w̃(κ, t) = lim
d→0

ŵ(κ, t), (21)

(3) The inverse Fourier transform F−1:

w(x, t) =
1

2π

∫ +∞

−∞

w̃(x, t)eiκxdκ = F−1 (w̃(x, t)) , (22)

where xn = dn, κ is defined as wavenumber which will be discussed in Sec. 3. These three steps aforementioned
was proved in [25, 26]. And the detail for calculating dynamic continuum equation w(x, t) from LSM addressed in
Appendix A, as a result:

Gb
4
∂4w(x, t)
∂x4 + Gb

6
∂6w(x, t)
∂x6 + Gb

8
∂8w(x, t)
∂x8 + O

(
Gb

i
∂iw(x, t)
∂xi

)
− f (x, t)

=ρA
∂2w(x, t)
∂t2 , (i = 10, 12, ...),

(23)

with Gb
4 = k1 + 2k2 + 3k3, Gb

6 = −
(

k1
6 + 4k2

3 +
9k3
2

)
d2, Gb

8 =
(

k1
80 + 2k2

5 +
243k3

80

)
d4, Gb

10 = −
(

17k1
30240 + 68k2

945 +
1377k3
1120

)
d6,...

The convergence condition for Eq. 23 is defined as:∣∣∣∣∣∣Gb
10
∂10w(x, t)
∂x10

/
Gb

8
∂8w(x, t)
∂x8

∣∣∣∣∣∣ < 1. (24)

For the continuum model of Eq. 23, the displacement solution is w(x, t) = w0ei(ωt−κx) [27], where w0 is amplitude,
ω means angular frequency. Replacing this solution into Eq. 24, as a result: the Eq. 24 holds when the node number
P ≥ π + 1 (here P should be infinite or large enough), then ignore higher order part, Eq. 23 will be written as:

Gb
4
∂4w(x, t)
∂x4 + Gb

6
∂6w(x, t)
∂x6 + Gb

8
∂8w(x, t)
∂x8 − f (x, t) = ρA

∂2w(x, t)
∂t2 . (25)
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Compare Eq. 25 with the equation of motion from Mindlin’s theory (Eq. 9), the first 3 parts should be:

Gb
4 = Bb

1, Gb
6 = Bb

4 − Bb
2, Gb

8 = Bb
3, (26)

with k1 =
3Bb

1
2 +

13(Bb
4−Bb

2)
4d2 +

10Bb
3

3d4 , k2 = −
3Bb

1
10 −

2(Bb
4−Bb

2)
d2 −

8Bb
3

3d4 , k3 =
Bb

1
30 +

(Bb
4−Bb

2)
4d2 +

2Bb
3

3d4 . Then, replacing Eq. 26 into Eq. 15,
the weak formulations for Euler–Bernoulli beam from LSM will be derived finally.

2.2. Torsional Vibration for a Bar

2.2.1. Continuum Model

Figure 4: A torsional bar under torque.

In order to calculate the governing equation of a micro-sized torsional bar, the variational principle is applied.
Considering a bar on which acting distributed torque Γ̄(x, t). The bar length is L as shown in Fig. 4. Assuming that
the symmetry axis of the cross section coincides with the neutral axis. Then, the components of the displacements are
expressed as:

ut
1 = 0, ut

2 = zϕ(x, t), ut
3 = −yϕ(x, t), (27)

where ut
1, ut

2, and ut
3 represent the displacement along the directions x, y, and z, respectively, superscript t of u denotes

torsional case. Therefore, the only nonzero components of displacement tensors are expressed as:

ε12 = ε21 =
1
2

z
∂ϕ(x, t)
∂x

, ε13 = ε31 = −
1
2

y
∂ϕ(x, t)
∂x

, η112 = z
∂2ϕ(x, t)
∂x2 , η113 = −y

∂2ϕ(x, t)
∂x2 ,

η123 = η213 = −
∂ϕ(x, t)
∂x

, η132 = η312 =
∂ϕ(x, t)
∂x

, ζ1112 = z
∂3ϕ(x, t)
∂x3 , ζ1113 = −y

∂3ϕ(x, t)
∂x3 ,

ζ3112 = ζ1312 = ζ1132 =
∂2ϕ(x, t)
∂x2 , ζ2113 = ζ1213 = ζ1123 = −

∂2ϕ(x, t)
∂x2 .

(28)

In this step, the Hamilton principle is used to calculate the strong forms of a torsional bar for SSG theory. The
detail addressed in Appendix B, one arrives:

Bt
1
∂2ϕ(x, t)
∂x2 + (Bt

4 − Bt
2)
∂4ϕ(x, t)
∂x4 + Bt

3
∂6ϕ(x, t)
∂x6 − Γ(x, t) = ρJ

∂2ϕ(x, t)
∂t2 . (29)

where Bt
1 = GJ + 2A(4a4 − a5), Bt

2 = J(a3 + a4)/2 − 2A(b4 + 2b5 − 6b6 + 2b7), Bt
3 = 2J(b5 + b6), Bt

4 = Jc3, J
means torsion of inertia within plane y0z. Additionally, the boundary conditions at the ends of bar for SSG theory are
extracted:

Bt
1
∂ϕ(x, t)
∂x

+ (Bt
4 − Bx

2)
∂3ϕ(x, t)
∂x3 + Bt

3
∂5ϕ(x, t)
∂x5 = Γ0 or δϕ(x, t) = 0, on Ω = {0, L} ;

(Bt
2 −

1
2

Bt
4)
∂2ϕ(x, t)
∂x2 + Bt

3
∂4ϕ(x, t)
∂x4 = Γ1 or δ

∂ϕ(x, t)
∂x

= 0, on ∂Ω;

1
2

Bt
4
∂ϕ(x, t)
∂x

+ Bt
3
∂3ϕ(x, t)
∂x3 = Γ2 or δ

∂2ϕ(x, t)
∂x2 = 0 on ∂Ω,

(30)

where Γ0 and Γ1,2 denote the classical and higher-order end-sectional loads of the micro-bar respectively.
In the FEM, the torsional angle ϕ(x, t) inside of an element at point x ∈ R2 could be expressed by providing the
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values ut(t) of nodal DOFs vector and the shape function Nt(x), as follows:

ϕ(x, t) = Nt(x)ut(t) (31)

where the sizes of ut and Nt are r × 1 and 1 × r, respectively, and r means the DOFs number. In Eq. 31, the form
of the interpolation function determines ut, Nt and r. Here, different from bending case, there are three DOFs,
ϕi,

∂ϕi
∂x ,

∂2ϕi
∂x2 , i = 1, 2, on each node, so the C2 continuum Hermite interpolation function can guarantee the continuity

of high-order displacement. The nodal DOFs, nodal numbers and coordinate of 1D Hermite element are presented in
Fig. 5 and Hermite shape functions corresponding to the six DOFs of the 1D element are expressed as:

Figure 5: Definition of nodal DOFs, nodal numbers and coordinate for 1D.

N0
1 = 1 − 10x3/d3

e + 15x4/d4
e − 6x5/d5

e , N0
2 = 10x3/d3

e − 15x4/d4
e + 6x5/d5

e ,

N1
1 = x/de − 6x3/d3

e + 8x4/d4
e − 3x5/d5

e , N1
2 = −4x3/d3

e + 7x4/d4
e − 3x5/d5

e ,

N2
1 = x2/2d2

e − 3x3/2d3
e + 3x4/2d4

e − x5/2d5
e , N2

2 = x3/2d3
e − x4/d4

e + x5/2d5
e .

(32)

According to the Galerkin’s method, doing the same calculating progress as shown in bending case , the stiffness
Kt, mass matrices Mt and force vector Ft for torsion are derived as:

Mt = ρJ
∫ de

0
(Nt)T Ntdx,

Kt =

∫ de

0

[
Bt

1

(
(Nt)′

)T
(Nt)′ + (Bt

2 − Bt
4)

(
(Nt)′′

)T
(Nt)′′ + Bt

3

(
(Nt)′′′

)T
(Nt)′′′

]
dx,

Ft =

∫ de

0
Γ̄(x, t)Ntdx + Γ0Nt |∂ΩΓ0

+ Γ1(Nt)′|∂ΩΓ1
+ Γ2(Nt)′′|∂ΩΓ2

.

(33)

2.2.2. Lattice Spring Model (LSM)
In this part, the fundamentals of “non-local” LSM are used to disperse the torsional bar into a series of identical

elements, as shown in Fig. 6, P is the total number of the lattice nodes. This LSM for torsion bar can reflect

Figure 6: LSM for a torsional bar with torsional coupling constants s1 (nearest-neighbor interaction), s2 (next-nearest-neighbor interaction) and s3
(next-next-nearest-neighbor interaction) and the distance d and the mass M = ρAd.

the mechanical response of the continuum structure when the length between each node at small scale and P is large
enough. The lattice equation of motion for node n as:

s1(ϕn−1 − 2ϕn + ϕn+1) + s2(ϕn−2 − 2ϕn + ϕn+2) + s3(ϕn−3 − 2ϕn − ϕn+3) − Γn =
mJ
A

d2ϕn(t)
dt2 . (34)

9



Subsequently, the Fourier series transform approach [25] is used to derive a continuous equation ϕ(x, t) from the
LSM ϕn(t). The detail addressed in Appendix C, as a result:

Gt
2
∂2ϕ(x, t)
∂x2 + Gt

4
∂4ϕ(x, t)
∂x4 + Gt

6
∂6ϕ(x, t)
∂x6 + O

(
Gt

i
∂iϕ(x, t)
∂xi

)
− Γ̄(x, t)

=ρJ
d2ϕ(x, t)

dt2 , (i = 8, 10, ...),

(35)

with Gt
2 = (s1 + 4s2 + 9s3)d, Gt

4 =
(

s1
12 + 4s2

3 +
27s3

4

)
d3, Gt

6 =
(

s1
360 + 8s2

54 +
81s3
40

)
d5, Gt

8 =
(

7s1
20160 + 4s2

315 +
729s3
2240

)
d7,...

Here, the convergence condition is same as bending case: P ≥ π + 1. Ignore higher order part, Eq. 35 will be
written:

Gt
2
∂2ϕ(x, t)
∂x2 + Gt

4
∂4ϕ(x, t)
∂x4 + Gt

6
∂6ϕ(x, t)
∂x6 − Γ̄(x, t) = ρJ

d2ϕ(x, t)
dt2 , (36)

Compare Eq. 36 with the equation of motion for torsion from Mindlin’s theory (Eq. 29), the first 3 parts should be
same:

Gt
2 = Bt

1, Gt
4 = Bt

4 − Bt
2, Gt

6 = Bt
3, (37)

with s1 =
3Bt

1
2d +

13(Bt
2−Bt

4)
2d3 +

15Bt
3

d5 , s2 = −
3Bt

1
20d −

2(Bt
2−Bt

4)
d3 −

6Bt
3

d5 , s3 =
Bt

1
90 +

(Bt
2−Bt

4)
6d3 +

Bt
3

d5 . Replacing Eq. 37 into Eq. 33, the
weak formulations for torsional bar from LSM will be derived finally.

3. Wave Finite Element Method (WFEM) for One-dimensional Structure

The WFEM offers a numerical wave characterization of periodic structures that composed of identical unit cells
coupled together. In my work, one-dimensional periodic structures are considered only. The advantage of WFEM is
modeling a unit cell by the conventional finite elements, which thus complex geometries or several materials can be
involved. What is more, the wave propagation of whole structure can be evaluated by analyzing a single unit cell.
The size of numerical problem that related directly to the number of DOFs will be reduced, thus computational time
will be saved. Considering an elastic structure with identical unit cells that arranged in x direction, as presented in
Fig. 7, the length of each unit cell is Lu, which corresponds to a small length of wave-guide or a unit length of periodic
structure.

(a) periodic structure constituted by K unit cells. (b) a unit cell.

Figure 7: One-dimensional FE model for a periodic structure.

According to the WFEM, only one unit cell is modeled through traditional finite elements, as indicated in Fig. 7(b),
The left boundary and right boundary of the unit cell are meshed with same number of DOFs. The dynamic equilib-
rium formulation of a unit cell can be written as:

Ku(t) + C
∂u(t)
∂t

+ M
∂2u(t)
∂t2 = F, (38)

where K and M denote the stiffness matrix and mass matrix, respectively, C = ξK/ω is identified as damping matrix
considering damping lose factor ξ, u is vectors of nodal displacement/rotation/torsion, F represents force/moment/torque.
Assuming that u and F are harmonic, the dynamic stiffness matrix will be written as D = K + iωC − ω2M in fre-
quency (ω) domain. Eq. 38 can be re-expressed by dividing the DOFs into I (internal), L (left boundary) and R (right
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boundary) DOFs, as described in Fig. 7(b), this yields: DLL DLI DLR
DIL DII DIR
DRL DRI DRR


 u0L

u0I
u0R

 =

 F0L
F0I
F0R

. (39)

where u0 and F0 are the amplitudes of u and F, respectively. It should be noticed that the internal DOFs are not
affected by external loads due to the coupling actions are restricted to its left boundary and right boundary only [16],
as a result, F0I = 0. The dynamic equilibrium equation, considering left boundary and right boundary in the matrix D
only, will be written as: [

D∗LL D∗LR
D∗RL D∗RR

] [
u0L
u0R

]
=

[
F0L
F0R

]
, (40)

where D∗ = DBB −DBID−1
II DIB is the condensed form of dynamic stiffness matrix, subscript B represents the DOFs on

the boundaries of the unit cell. Note that this is a typical issue for WFEM [28] and a modal reduction can be applied
to reduce the computational cost of the dynamic condensation. Eq. 40 is the starting point for the WFEM analysis that
relates the displacement/rotation/torsion and force/moment/torque on the two sides of the unit cell. For the solution
of propagation constants Λ and eigenvectors Ψ, one can solve the direct Bloch formulation [18, 29, 30] as:[

D∗RL(ω)Λ−1 + (D∗RR(ω) + (D∗LL(ω)) + D∗LR(ω)Λ
]
Ψ = 0, (41)

where Λ =diag
{
λ j

}
j=1,...,2m

, Ψ =
{
φ j

}
j=1,...,2m

. The 2m eigenvalues in Eq. 41 can be divided into (λ j, φ
+
j ) and (1/λ j, φ

−
j ).

The waves propagate to the positive direction if
∣∣∣1/λ j

∣∣∣ <1. And the waves propagate to the negative direction if
∣∣∣λ j

∣∣∣
>1. Here, λ j take the form λ j = exp(−iκ jLu). The direction of waves propagation can be defined utilizing R(κ j) when∣∣∣λ j

∣∣∣ = 1 in the passing bands, which representing the real part of the wave-number. R(κ j) >0 means that the waves
propagate to the positive direction. On the other hand, R(κ j) <0 represents that the waves propagate to the negative
direction.

4. Numerical Applications

In this section, the WFEM is applied to study bending and torsional vibration based on SSG theory. Two different
structures are considered for each: one is a single material structure with 5 unit cells, each unit cell’s length Lu is 15a0
(a0 is the lattice parameter) as shown in Fig. 8(a). The other one is a binary periodic structure with 5 unit cells, each
unit cell has a length Lu = 15a0 and consists of parts A and B as shown in Fig. 8(b). Both structures have a circular
cross section with radius r = 3a0 and loss factor ξ = 1 × 10−4.

(a) Single material structure. (b) Binary periodic structure.

Figure 8: One-dimensional structures’ configurations.

4.1. Bending Vibration

The bending vibration for single material and binary periodic structures are discussed. Aluminium (Al) is used
for single material structure with linear mass density ρ = 2.7 g/cm3 and Young’s modulus E = 70 GPa, and each unit
cell is divided into 100 elements. Al and Pb (Lead: linear mass density ρ = 11.34 g/cm3, Young’s modulus E = 16
GPa) are respectively used for part A with 50 elements and part B with 50 elements in binary periodic structure.
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4.1.1. Single Material Structure
Firstly, the dispersion relation of a unit cell for single material Euler-Bernoulli beam is calculated by WFEM. The

real part R(κ j) of wavenumber is the phase shift per unit length and the imaginary part I(κ j) means the attenuation per
unit length. Only the positive waves with real and imaginary parts are illustrated due to the wavenumbers of the neg-
ative waves and positive waves are symmetric with respect to x-axis. The dimensionless wavenumbers in frequency
range [0, 30ωb1], where ωb1 = 3.516

√
EI/ρAL4 [31] assumed as clamped-free boundary conditions, are presented

in Fig. 9. There are four waves (κ1, κ2, κ3, κ4) predicted by SSG theory, in which κ1 is non-classical bending wave
propagating in a dispersive manner, κ2 is the non-classical shear wave, κ3 and κ4 are the evanescent waves which exist
exclusively in SSG theory.

(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 9: Dispersion relation for single material Euler-Bernoulli beam by SSG (ωb1 is the first nature frequency, subscript c of SSG means
continuum model, l is lattice model).

(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 10: Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript a of SSG means analytical method, l is lattice
model).

In order to verify the WFEM results, an analytical method is used. Replacing displacement w(x, t) = w0ei(ωt−κx)

into Eq. 9 assuming f (x, t) = 0, the analytical dynamical formulation of Euler-Bernoulli beam by SSG theory be-
comes: Bb

1κ
4 + (Bb

4 − Bb
2)κ6 + Bb

3κ
8 = ρAω2. The results by analytical method and WFEM via LSM are shown in

Fig. 10. The dispersion relation by WFEM is in good accordance with the analytical method. On anther hand, at low
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frequency, κ1 from SSG and CT are close, but a discrepancy appears at higher frequency. Note that without higher
order material contributions (i.e. ai, bi and ci equal 0), SSG becomes identical to CT.

Next, the forced response for single material Euler-Bernoulli beam is discussed, as presented in Fig. 8(a), the beam

(a) Forced response of displacement along y direction. (b) Forced response of rotation angle in x0y plane.

Figure 11: Forced response for single material Euler-Bernoulli beam by CT and SSG (subscript c means continuum model, l is lattice model).

consists of 5 unit cells. One side is clamped and another side is free and subjected to a harmonic force f (x, t) = eiωt on
free end of the beam. The amplitude at free end is calculated out on each frequency according to Eq. 38. The forced
response is shown in Fig. 11 by SSG theory and CT. It can be noticed that resonances are well predicted in both the-
ories. Same as for the dispersion curves, the results show that discrepancies between CT and SSG FRF increase with
frequency. Wave propagation is significantly affected by the micro-sized structure interactions. The input vibration
energy can be transferred both by propagating waves and other evanescent waves, which decay rapidly in the near
field of the excitation.

4.1.2. Periodic Structure

(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 12: Dispersion relation for periodic Euler-Bernoulli beam by SSG (subscript c of SSG means continuum model, l is lattice model).

The dispersion relation with positive-going waves of a unit cell for periodic Euler-Bernoulli beam is calculated
by WFEM. The dimensionless wavenumbers with real and imaginary parts of the waves [0, 20ωb1] are presented in
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Fig. 12. The difference with single material structures lies in the existence of stop bands (visible here on κ1). For
the bending wave in micro-sized periodic structure we have R(κ1) = 0 within pass bands and I(κ1) , 0 within stop
bands, which is a typical behavior of evanescent waves. When R(κ1) = 0, the waves decay exponentially with the stop
bands frequencies bounded with λ = 1. The stop bands frequencies are bounded with λ = −1 which indicates a single
wavelength when R(κ1) = ±π/Lu.

(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 13: Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript l of SSG means lattice model).

Next, the comparison between SSG theory and CT is shown in Fig. 13. It is noticed that at low frequency, the first
wave by SSG confirms to CT well, but the difference is bigger when frequency increase. When higher order material
parameters ai, bi and ci are 0, SSG will reverse to CT.

(a) Forced response of displacement. (b) Forced response of rotation angle.

Figure 14: Forced response for periodic Euler-Bernoulli beam by CT and SSG (subscript c of SSG means continuum model, l denotes lattice
model).

The forced response for periodic Euler-Bernoulli beam is discussed, as presented in Fig. 8(b), the beam is com-
posed of 5 unit cells, each unit cell includes two parts with A and B. The boundary condition and external force are
same as bending case of single material structure. The forced response of displacement and rotation angle is shown in
Fig. 14 by SSG theory and CT. The resonances are predicted well by both theories. The results by these two theories
close to each other at lower frequency range, but the values are different in higher frequency. The frequency ranges in
the stop bands indicate that there is no resonance.
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4.2. Torsional Vibration
Material Al with shear modulus G = 26 GPa is used for single material torsional bar with 100 elements in each

unit cell. Al and Cu (shear modulus G = 48 GPa, linear mass density ρ = 8.96 g/cm3) are used for part A with 50
elements and part B with 50 elements in binary periodic bar, respectively.

4.2.1. Single Material Structure

(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 15: Dispersion relation for single material torsional bar by SSG (ωt1 = π
√

G/4ρL2 [32] is the first nature frequency, subscript c of SSG
means continuum model, l is lattice model).

Firstly, the dispersion relation of a unit cell for single material torsional bar is calculated by WFEM. The positive-
going waves are shown in Fig. 15. Then, the WFEM is compared with the analytical method which expressed as
Bt

1κ
2 + (Bt

4 − Bt
2)κ4 + Bt

3κ
6 = ρJω2. As shown in Fig. 16, the results indicate that there are three waves (κ1, κ2, κ3)

predicted by SSG theory, in which κ1 is a dispersive non-classical torsional wave. The evanescent waves κ2 and κ3
exist only in SSG theory model. Next, the forced response is illustrated in Fig. 17 by SSG and CT. The boundary
conditions are same as bending case of single material structure and a harmonic force Γ(x, t) = eiωt is applied on free
boundary of the bar. The characteristics of forced responses referred in the bending case of single material structure
are observed in the torsional ones as well.

4.2.2. Periodic Structure
As presented in Fig. 18, the dispersion relation of a unit cell for periodic torsional bar is calculated by WFEM.

And the comparison between SSG theory and CT is shown in Fig. 19. As we can see, the wave κ1 of SSG confirms
the wave of CT well when the frequency range is in the first pass band and stop band. But as the frequency increases,
the difference between this two waves is getting bigger. This phenomena shows that the micro-sized structure’s char-
acteristics can be reflected by non-local theory at high frequency range. And when higher order material parameters
ai, bi and ci are 0, SSG will reverse to CT.

In this part, the forced response for periodic torsional bar is discussed by SSG theory and CT, as shown in Fig. 20.
The boundary conditions and external force are same as single material structure of torsional bar. The frequency range
can be divided into two parts, namely the stop bands frequency and pass bands frequency, and there is no resonances
in stop bands. The results by these two theories match to each other just in the first pass and stop band frequency
range.

5. Conclusions

In this paper, we used WFEM to study the dynamic behavior and wave propagation features of complex 1D micro-
sized structures. The SSG theory is used to analyze the structural characteristics. The main contributions of the work
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(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 16: Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript a means analytical method and l is lattice
model).

Figure 17: Forced response of single material torsional bar by CT and SSG (subscript c and l of SSG denote continuum model and lattice model,
respectively).

are drawn as follows:
(i) The governing equations and boundary conditions of one-dimensional Euler-Bernoulli bending beam and tor-

sional bar are derived from continuum models based on SSG theory. Then, two “non-local” Lattice Spring Models
(LSM) for bending and torsion are introduced, and the dynamic equations from LSM are calculated respectively.
Weak forms by SSG theory for bending and torsion are established finally. WFEM for one-dimensional structures is
discussed. Free wave propagation characteristics are expressed by solving eigenvalue problems.

(ii) Bending and torsional dispersion relations for single material and binary periodic structures are presented by
WFEM, respectively. For bending, there are four waves (κ1, κ2, κ3, κ4) predicted by SSG theory, in which κ1 is non-
classical bending wave propagating in a dispersive manner, κ2 is non-classical shear wave, κ3 and κ4 are the evanescent
waves which exist exclusively in SSG theory model. For torsion, there are three waves (κ1, κ2, κ3) predicted by SSG
theory, in which κ1 is non-classical torsional wave propagating in a dispersive manner, κ2 and κ3 are the evanescent
waves. Significant stop bands are observable for both bending and torsion modes in SSG periodic structures.

(iii) For the forced response of bending and torsion, wave propagation is significantly affected by the micro-
structure interactions. The input vibration energy can be transferred both by propagating waves and other evanescent
waves which decay rapidly in the near field of the excitation.
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(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 18: Dispersion relation for periodic torsional bar by SSG (subscript c of SSG means continuum model and l is lattice model).

(a) Real part of positive waves. (b) Imaginary part of positive waves.

Figure 19: Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript l of SSG means lattice model).
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Appendix A. Transform Bending LSM to Continuum Model

The bending lattice equation of motion for particle n as:

k1

d3 (wn−2 − 4wn−1 + 6wn − 4wn+1 + wn+2) +
k2

(2d)3 (wn−4 − 4wn−2 + 6wn − 4wn+2 + wn+4)

+
k3

(3d)3 (wn−6 − 4wn−3 + 6wn − 4wn+3 + wn+6) − Fn = M
d2wn(t)

dt2 .

(A.1)
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Figure 20: Forced response for periodic torsional bar by CT and SSG (subscript c of SSG means continuum model and l represents lattice model).

Multiplying Eq. (A.1) by e−iκnd, and summing over n from −∞ to +∞. Then Eq. (A.1) will be written as:

k1

d3

+∞∑
n=−∞

e−iκnd (wn−2 − 4wn−1 + 6wn − 4wn+1 + wn+2) +
k2

(2d)3

+∞∑
n=−∞

e−iκnd (wn−4 − 4wn−2

+6wn − 4wn+2 + wn+4) +
k3

(3d)3

+∞∑
n=−∞

e−iκnd (wn−6 − 4wn−3 + 6wn − 4wn+3 + wn+6)

−

+∞∑
n=−∞

e−iκndFn = M
+∞∑

n=−∞

e−iκnd d2wn(t)
dt2 .

(A.2)

The first, second and third parts of the left side in Eq. (A.2) can be written as:

k1

d3

e−2iκd
+∞∑

m=−∞

e−iκmdwm − 4e−iκd
+∞∑

j=−∞

e−iκ jdw j + 6
+∞∑

n=−∞

e−iκndwn − 4eiκd
+∞∑

p=−∞

e−iκpdwp

+e2iκd
+∞∑

q=−∞

e−iκqdwq

 +
k1

(2d)3

e−4iκd
+∞∑

m=−∞

e−iκmdwm − 4e−2iκd
+∞∑

j=−∞

e−iκ jdw j + 6
+∞∑

n=−∞

e−iκndwn

−4e2iκd
+∞∑

p=−∞

e−iκpdwp + e4iκd
+∞∑

q=−∞

e−iκqdwq

 +
k1

(3d)3

e−6iκd
+∞∑

m=−∞

e−iκmdwm − 4e−3iκd
+∞∑

j=−∞

e−iκ jdw j

+6
+∞∑

n=−∞

e−iκndwn − 4e3iκd
+∞∑

p=−∞

e−iκpdwp + e6iκd
+∞∑

q=−∞

e−iκqdwq

 .

(A.3)

Using the definition in Eq. (20), Eq. (A.3) will be written:

4k1

d3

[
−2 sin2

(
κd
2

)]2

ŵ(κ, t) +
4k2

(2d)3

[
−8 sin2

(
κd
2

)
+ 8 sin4

(
κd
2

)]2

ŵ(κ, t)

+
4k3

(3d)3

[
−18 sin2

(
κd
2

)
+ 48 sin4

(
κd
2

)
− 32 sin6

(
κd
2

)]2

ŵ(κ, t).

(A.4)
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Taylor series expansion is used here for sine function at the point 0 and limiting d → 0 from Eq. (21). Then,
substitution of Eq. (A.4) into Eq. (A.2) gives:

Gb
4κ

4w̃(κ, t) −Gb
6κ

6w̃(κ, t) + Gb
8κ

8w̃(κ, t) − O(Gb
i κ

iw̃(κ, t)) − F ( f (x, t))

=ρA
∂2w̃(κ, t)
∂t2 , (i = 10, 12, ...),

(A.5)

with Gb
4 = k1 + 2k2 + 3k3, Gb

6 = −
(

k1
6 + 4k2

3 +
9k3
2

)
d2, Gb

8 =
(

k1
80 + 2k2

5 +
243k3

80

)
d4, Gb

10 = −
(

17k1
30240 + 68k2

945 +
1377k3
1120

)
d6,...

The inverse Fourier transform F−1 of Eq. (A.5) has the form:

Gb
4F
−1(κ4w̃(κ, t)) −Gb

6F
−1(κ6w̃(κ, t)) + Gb

8F
−1(κ8w̃(κ, t)) − O

(
Gb

i F
−1(κiw̃(κ, t))

)
− f (x, t)

=ρA
∂2F−1(w̃(κ, t))

∂t2 .
(A.6)

The relations between the derivatives and its Fourier transforms, using the formula F−1(w̃(κ, t)) = w(x, t), can be
written as:

F
−1(κ4w̃(κ, t)) =

∂4w(x, t)
∂x4 , F−1(κ6w̃(κ, t)) = −

∂6w(x, t)
∂x6 , F−1(κ8w̃(κ, t)) =

∂8w(x, t)
∂x8 . (A.7)

As a result, the dynamic continuous equation w(x, t) is obtained as:

G4
∂4w(x, t)
∂x4 + G6

∂6w(x, t)
∂x6 + G8

∂8w(x, t)
∂x8 + O

(
Gi
∂iw(x, t)
∂xi

)
− f (x, t) = ρA

∂2w(x, t)
∂t2 . (A.8)

Appendix B. Governing Equation and Associated Boundary Conditions of a Torsional Bar by SSG Theory

Based on Eq. 27 and Eq. 28, u (the strain energy density) of a torsional bar by SSG theory is expressed as:

u =µ(ε2
21 + ε2

12 + ε2
13 + ε2

31) + a3(η2
112 + η2

113) + a4(η2
112 + η2

113 + η2
123 + η2

213 + η2
132 + η2

312)

+ a5η213η312 + b4ζ1132ζ1123 + b5(ζ2
1132 + ζ2

1123 + ζ2
1112 + ζ2

1113) + b6(ζ2
3112 + ζ2

1312 + ζ2
1132

+ ζ2
2113 + ζ2

1213 + ζ2
1123 + ζ2

1112 + ζ2
1113) + b7(ζ3112ζ1123 + ζ2113ζ1132) + c3(ε12ζ1112 + ε13ζ1113),

(B.1)

Integrating strain energy density over its volume, the strain energy of the bar will be calculated as:

U =

∫ L

0

∫
A

udAdx
′

. (B.2)

By substitution of Eq. 28 and Eq. B.1 into Eq. B.2, the strain energy of the torsional bar by SSG theory is expressed
as:

U =
1
2

∫ L

0

Bt
1

(
∂ϕ(x, t)
∂x

)2

+ Bt
2

(
∂2ϕ(x, t)
∂x2

)2

+ Bt
3

(
∂3ϕ(x, t)
∂x3

)2

+ Bt
4
∂ϕ(x, t)
∂x

∂3ϕ(x, t)
∂x3

 dx, (B.3)

where Bt
1 = GJ + 2A(4a4 − a5), Bt

2 = J(a3 + a4)/2 − 2A(b4 + 2b5 − 6b6 + 2b7), Bt
3 = 2J(b5 + b6), Bt

4 = Jc3, J means
torsion of inertia within plane y0z.

The kinetic energy of the bar is presented as:

T =
1
2

∫ L

0
ρJ

(
∂ϕ(x, t)
∂t

)2

dx. (B.4)
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The work done by external classical force and higher-order forces, W, can be established in the variation form as:

δW =

∫ L

0
Γ(x, t)δϕdx + Γ0δϕ(x, t)|Lx=0 + Γ1δ

(
∂ϕ(x, t)
∂x

)
|Lx=0 + Γ2δ

(
∂2ϕ(x, t)
∂x

)
|Lx=0, (B.5)

where Γ(x, t) means the distributed torque within plane y0z, Γ0 denotes the classical torque, Γ1,2 are higher-order end-
sectional torques of the micro-bar.

In this step, the Hamilton principle is used to calculate the strong forms of the bar for SSG theory as follows:∫ t2

t1
(δU − δW− δT )dt = 0, (B.6)

where δU and δT are the variation form of strain energy and kinetic energy, respectively. Then doing mathematical
calculations according to the variation method by substituting equations Eq. B.3, Eq. B.4, and Eq. B.5 into Eq. B.6,
one arrives at:

Bt
1
∂2ϕ(x, t)
∂x2 + (Bt

4 − Bt
2)
∂4ϕ(x, t)
∂x4 + Bt

3
∂6ϕ(x, t)
∂x6 − Γ(x, t) = ρJ

∂2ϕ(x, t)
∂t2 . (B.7)

Additionally, the associated boundary conditions for a torsional bar written as:

Bt
1
∂ϕ(x, t)
∂x

+ (Bt
4 − Bx

2)
∂3ϕ(x, t)
∂x3 + Bt

3
∂5ϕ(x, t)
∂x5 = Γ0 or δϕ(x, t) = 0, on Ω = {0, L} ;

(Bt
2 −

1
2

Bt
4)
∂2ϕ(x, t)
∂x2 + Bt

3
∂4ϕ(x, t)
∂x4 = Γ1 or δ

∂ϕ(x, t)
∂x

= 0, on ∂Ω;

1
2

Bt
4
∂ϕ(x, t)
∂x

+ Bt
3
∂3ϕ(x, t)
∂x3 = Γ2 or δ

∂2ϕ(x, t)
∂x2 = 0 on ∂Ω.

(B.8)

Appendix C. Transform Torsional LSM to Continuum Model

Multiplying Eq. (34) by e−iκnd with n from −∞ to +∞, Eq. (34) will be written as:

s1

+∞∑
n=−∞

e−iκnd(ϕn−1 − 2ϕn + ϕn+1) + s2

+∞∑
n=−∞

e−iκnd(ϕn−2 − 2ϕn + ϕn+2)

+ s3

+∞∑
n=−∞

e−iκnd(ϕn−3 − 2ϕn + ϕn+3) −
+∞∑

n=−∞

e−iκndΓn =
mJ
A

+∞∑
n=−∞

e−iκnd d2ϕn(t)
dt2 .

(C.1)

The first, second and third parts on the right side in Eq. (C.1) are:

s1(e−iκd
+∞∑

j=−∞

e−iκ jdϕ j − 2
+∞∑

n=−∞

e−iκndϕn + e−iκd
+∞∑

p=−∞

e−iκpdϕp)

+ s2(e−2iκd
+∞∑

j=−∞

e−iκ jdϕ j − 2
+∞∑

n=−∞

e−iκndϕn + e−2iκd
+∞∑

p=−∞

e−iκpdϕp)

+ s3(e−3iκd
+∞∑

j=−∞

e−iκ jdϕ j − 2
+∞∑

n=−∞

e−iκndϕn + e−3iκd
+∞∑

p=−∞

e−iκpdϕp).

(C.2)
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Using the definition of Eq. (20) (replace w(x, t) with ϕ(x, t)), Eq. (C.2) gives:

s1

(
e−iκdϕ̂(κ, t) − 2ϕ̂(κ, t) + e−iκdϕ̂(κ, t)

)
+ s2

(
e−2iκdϕ̂(κ, t) − 2ϕ̂(κ, t) + e−2iκdϕ̂(κ, t)

)
+ s3

(
e−3iκdϕ̂(κ, t) − 2ϕ̂(κ, t) + e−3iκdϕ̂(κ, t)

)
= − (2s1 + 16s2 + 36s3) sin2 κd

2
ϕ̂(κ, t) + (16s2 + 96s3) sin4 κd

2
ϕ̂(κ, t) − 64s3 sin6 κd

2
ϕ̂(κ, t).

(C.3)

Taylor series expansion is used here for sine function at the point 0 and transit to the limit d →0 from Eq. (21),
substitution of Eq. (C.3) into Eq. (C.1) gives::

−Gt
2κ

2ϕ̃(κ, t) + Gt
4κ

4ϕ̃(κ, t) −Gt
6κ

6ϕ̃(κ, t) + O
(
Gt

iκ
iϕ̃(κ, t)

)
− F(Γ(x, t))

=ρJ
∂2ϕ̃(κ, t)
∂t2 , (i = 8, 10, ...),

(C.4)

with Gt
2 = (s1 + 4s2 + 9s3)d, Gt

4 =
(

s1
12 + 4s2

3 +
27s3

4

)
d3, Gt

6 =
(

s1
360 + 8s2

54 +
81s3
40

)
d5, Gt

8 =
(

7s1
20160 + 4s2

315 +
729s3
2240

)
d7,...

The form of inverse Fourier transform F−1 from Eq. (22) (replace w with ϕ) is expressed as:

−Gt
2F
−1(κ2ϕ̃(κ, t)) + Gt

4F
−1(κ4ϕ̃(κ, t)) −Gt

6F
−1(κ6ϕ̃(κ, t)) + O

(
Gt

iF
−1(κiϕ̃(κ, t))

)
− Γ(x, t)

=ρJ
∂2F−1(ϕ̃(κ, t))

∂t2 , (i = 8, 10, ...).
(C.5)

The relations between the derivatives and its Fourier transforms, using F−1(ϕ̃(κ, t)) = ϕ(x, t), can be expressed as:

F
−1(κ2ϕ̃(κ, t)) = −

∂2ϕ(x, t)
∂x2 , F

−1(κ4ϕ̃(κ, t)) =
∂4ϕ(x, t)
∂x4 , F

−1(κ6ϕ̃(κ, t)) = −
∂6ϕ(x, t)
∂x6 . (C.6)

As a result, the dynamic continuous equation ϕ(x, t) is obtained as:

Gt
2
∂2ϕ(x, t)
∂x2 + Gt

4
∂4ϕ(x, t)
∂x4 + Gt

6
∂6ϕ(x, t)
∂x6 + O

(
Gt

i
∂iϕ(x, t)
∂xi

)
− Γ̄(x, t)

=ρJ
d2ϕ(x, t)

dt2 , (i = 8, 10, ...).

(C.7)
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