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ABSTRACT

Bloch theory is broadly used to determine local wave dispersion characteristics of periodic
media, which are key vibroacoustic indicators in a number of research fields such as metama-
terials. Nonetheless, numerical frameworks based on Bloch theory, such as the Wave Finite El-
ement method, can also be used to compute the dynamic response of large-scaled waveguides’
assemblies. This formalism was used to tackle a variety of problems such as damage local-
ization, material identification or vibroacoustic optimization of periodic media. The focus of
this work is therefore to review and generalize the wave-finite element framework, as a tool for
exploring wave dispersion, scattering or dynamic response in piecewise periodic structures.
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1 INTRODUCTION

The need to de-carbonize our economy has led to an urgent strive for lightweight alternatives to
various structural components used in the transportation industry. Combined with increasingly
challenging acoustic comfort and safety EU regulations, the compromise between enhanced vi-
broacoustic performances and lightweight design is often achieved at the cost of an increased
topological and material complexity. In the mid-frequency range (generally the low-medium au-
dible bandwidth), this complexity involves a variety dynamic behaviors which may co-exist at
different scales (e.g. see. [1]) In terms of modeling, this can be tackled by using refined finite el-
ement descriptions of these structures. Therefore, tremendous progresses had to be made on the
acoustic modeling and optimization of complex metamaterials and meta-structures, which are
generally relying on model order reduction schemes or the introduction of relevant yet simple vi-
broacoustic indicators. Noteworthy, most of these indicators (e.g. transmission loss, dispersion
curves, scattering coefficients) have the remarkable advantage of being retrieved from a single
unit-cell model by exploiting multi-scale or periodic structure theories (see [2, 3]). For acoustic
applications, one can mention the succession of works [4–8] only to cite a few dedicated to re-
trieve the sound transmission loss of periodic waveguides. Although it is now possible to design
and produce meta-structures with desirable vibroacoustic performances within targeted band-
widths, these components still rarely appear among the most critical parts of a structure. Most
metamaterials are therefore considered as ”add-ons” to an existing structure whose integrity is
guaranteed or monitored using state-of-the-art inspection techniques. A further embedding of
lightweight meta-structures in the design process of critical transportation components will un-
deniably raise the following question: can we achieve the structural health monitoring of such
complex structures?

In the presence of variable or uncertain boundary conditions, wave-based inspection
techniques can prove efficient to perform damage inspection on specific regions of a waveguide.
Periodic structure theory can also help to compute the dynamic response, hence provides an
efficient numerical framework for modeling large-scaled slender structures such as pipes, ducts,
blades, etc. The so-called ”Wave Finite Element” method have been used in a variety of contexts
relevant to SHM/NDE applications. Kessentini et al. [9] used the diffusion matrix method along
with the WFE framework to study the transmission and reflection of acoustic waves in ducts.
Mitrou et al. [10] investigated the scattering produced by infinite plates’ junctions using the
same method. Gras et al. [11] extended a formulation for railways with periodic supports and
several applications were proposed to compute the forced response and scattering matrices of
two waveguides connected by a junction, an external load or a damage/delamination [12]. An
overview of the Bloch modeling framework is therefore proposed in this work.

2 METHOD AND RESULTS

The above formalism was implemented in many ways, including various edges or boundary
conditions, the coupling of two waveguides with a middle junction or external loads. First, we
propose an overview of Bloch modeling framework for 1D structures with recent developments
on resolution techniques. Our aim is then to present a simple formalism addressing a wide range
of possible waveguide configurations, where Bloch theory can be used to reduce considerably
the modeling and computational efforts. Note that in many cases, a structure can be decomposed
into a combination of periodic parts, separated by joints, coupling and loading regions, so that
it can eventually be described as a piecewise periodic structure. The displacement u at any
unit-cell position p of a N -cell waveguide section can be expressed using the following Bloch
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expansion:

up =
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i

eigenvectors and the propagation constants λi are solution of the quadratic eigenvalue problem
Eq.(2), which is function of the unit-cell’s dynamic stiffness sub-matrices Dab:(

1
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)
Ψi = 0. (2)

A simple validation is shown in Figure 1. The structure is made of four different regions
name ’A’, ’B’, ’C’, and ’D’, while four loads are applied, including a load splitting the region
’B’ in two. The framework provides good results although some numerical issues have to be
discussed.
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Figure 1. Forced response of a piece-wise periodic structure with irregular punctual loads

3 PERSPECTIVES

The framework is generalized and applied to various examples relevant to SHM and in a context
damage scattering analysis.
A typical case scenario is shown in
Figure 2, where different FE models
of structural damages can be con-
sidered in a large-scaled duct whose
periodicity is of equivalent or higher
dimension that those considered
damages or defects. Note that this
reduced models can be efficiently
used for sub-structuring purposes,
while different ’damages’ can be
analyzed with remarkable computa-
tional efficiency (i.e. 2-4 orders of
magnitude compared with FEM).

Figure 2. Scattering of Bloch waves in a periodic
waveguide.
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