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Abstract. In this work, we develop a numerical framework for analyzing Bloch waves and
their interactions with localized damages. A reduced Bloch expansion technique is first used
to sub-structure the waveguide’s healthy part, while a detailed finite element description of the
damaged regions can be applied. A remarkable strength of this modelling technique lies in the
possibility to compute the dynamic response of the overall structure (finite or infinite) subjected
to harmonic or transient loads. The damage model and its location on the waveguide can both
be updated with almost negligible additional computational effort. The performances compared
with standard finite element analysis of a similar problem are outstanding (i.e. faster by at
least 3 orders of magnitude). Two types of indicators can therefore be computed over a large
number of possible waveguide-damage configurations: (i) the local transmission, reflection
and conversions of Bloch waves at the interfaces of the damaged region, and (ii) the global
harmonic or transient response of a loaded waveguide. This approach is used to extend the
detectability of small-scaled damages in large-scaled periodic waveguides by exploiting the
frequency-conversions of the Bloch scattering coefficients. These so-called ’diffusion features’
are eventually used to improve sub-wavelength damage quantification and localization.
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1 INTRODUCTION

Guided wave testing (GWT) is a reliable, long-range and highly sensitive damage inspec-
tion technique. It is already well documented and extensively used for structural health as-
sessment of various transportation, aerospace and offshore components. Although embedded
GWT solutions are still seldom in the transportation industry, the upcoming IoT revolution will
undoubtedly stimulate this field and replace many periodic maintenance inspections by embed-
ded monitoring devices. On the other hand, many structural parts are becoming increasingly
complex in this industry, to tackle combined needs for lightweight structures and enhanced
vibroacoustic performances. Despite their many advantages, these lightweight structures ex-
hibit various scattering behaviors (e.g. local resonances, Bragg effects, frequency-conversion)
which considerably alter the broadband dispersion features and overall applicability of GWT
strategies. The question addressed in this work states as follows: how can advanced waveguide
modelling techniques be used to detect small damages in large-scaled periodic assemblies?

If the structure has a canonical form, explicit homogenized models can be used to describe
the local dynamics (for stiffened plates, see Fossat et al. [1]). In more complex assemblies such
as typical lightweight structures, numerical methods (or semi-analytical [2]) are needed, gen-
erally involving a refined finite element description of the structure and associated with model
order reduction schemes [3–5] to reduce the computational cost involved. Since it was shown
that that high-order guided resonances tend to have a superior sensitivity to small scaled dam-
ages [6], the selective generation of guided resonances (or any form of Floquet solutions [7, 8])
can be seen as a possible way to perform multi-modal pre-assessment of a damage’s scattering
properties. These indicators have already been used in axisymmetric structures (see for ex. [9–
11]), however such analyses require extensive computation efforts and wave-based methodolo-
gies. This paper presents a computationally efficient modeling scheme able to predict both the
wave dispersion characteristics, the finite or semi-infinite dynamic response and local damage
scattering properties.

2 METHOD

2.1 Wave Finite Element Method

Consider a waveguide made of identical consecutive sub-structures of length d. Denoting M,
C, K the generalized finite element mass, damping and stiffness matrices of the structure and u
the displacements, the governing equation of the free waveguide writes:

(K + jωC− ω2M)u = 0. (1)

The Floquet theory gives the form of the solutions U(x) of a linear differential equation
H(x)U(x) = 0 where H is a periodic operator such as H(x + d) = H(x). The solution can
therefore be written as a superposition of Floquet vectors using a d-periodic invertible matrix V
and a constant matrix κ as:

U(x) = V(x)eκx (2)

Defining the complex propagation constants λ = eκd, the Floquet theory gives the relation
between the displacements of two consecutive unit-cells as ui+1 = λui. In the direct WFEM
form, the generalized dynamic stiffness matrix is decomposed into its left and right-sided DOFs
located at the junction between the unit-cells, while the inner DOFs can be condensed. Introduc-
ing the Floquet theory in the force equilibrium equation yields the direct form of the dispersion
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relation as the following quadratic eigenvalue problem:(
λDLR + (DLL + DRR) +

1

λ
DRL

)
φ = 0.

Alternatively, the dispersion relation can be written without dynamic condensation with the
form:

D(λ)

{
uL
uI

}
=

{
0
0

}
,

where:

D(λ) : D −→
[
DRL DRI

0 0

]
1

λ
+

[
DRR + DLL DLI

DIL DII

]
+

[
DLR 0
DIR 0

]
λ.

The wave-mode WFEM reduction was used to reduce the computational effort (e.g. [4, 5] for
details). The propagating solutions are selected among the complex solutions λ = e−jkd. So-
lutions are discriminated into positive Ψ+ and negative Ψ− wave amplitudes. A wavematching
procedure is used to track frequency-dependent waves and plot the dispersion curves.

S
a+

F
a- b+ b- c+

(1) (2) (3)

nd (N-n)d

Figure 1: Semi-infinite piece-wise periodic waveguide configuration.

2.2 Diffusion properties

The presence of a coupling region, defined by the scattering matrix S in the waveguide results
in the introduction of two coupling conditions at both sides of the coupling element. Using the
above mentioned Floquet expansion gives, for any incident wave source terms (α+, β+) [12],
the reflection and transmission coefficients as:

{
R
T

}
= −

[
DRLΨ−Λ + (DRR + SLL)Ψ− SLRΨ+

SRLΨ− (SRR + DLL)Ψ+ + DLRΨ+Λ

]−1{
α+

β+

}
The above relation allows the computation of diffusion coefficients from a single incident

wavetype for any given scattering section S.

2.3 Forced response of the piecewise periodic structure

The following configuration is considered: the piecewise waveguide is composed of three
sections as shown in Figure 1. Section 1 contains N1 cells. It is clamped on the left side
and connected to section 2 by a scattering region described by matrix S. An external load is
applied at a distance N2 from the coupling region and defines the semi-infinite section 3. Using
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the Floquet expansion, the generalized governing equation can be rewritten under the reduced
form:

H


a+

a−

b+

b−

c+

 =


0
0
0
F
0

 ,

where H = H(D,S,Ψ+,Ψ−, {Λk}k=[0..N ]) is a Floquet decomposition of the dynamic stiff-
ness matrix projected on the extremities of each waveguide section (interested readers are ref-
ered to [13] for detailed methodology). Note that the maximal dimension of this sparse linear
problem is equal to the number of DOFs in a single unit-cell’s edge. In general, a reduction to
a few propagating and evanescent waves can provide an additional reduction of the dimension
by several orders of magnitude. In the example below, the total number of DOFs in sections (1)
and (2) is 100k DOFs including the scattering element. The Floquet expansion yields a reduced
system of size 250.

3 APPLICATION

The methodology is then used to compute the diffusion indicators, displayed as a set of
three frequency-dependent coefficients: the Transmission (T) and Reflection (R), as well as a
Diffusion (D) term defined as in [12].

3.1 Description of the model

The considered waveguide is an aluminium framed structure of unit-cel’s length lx=5 cm
meshed using 3D block elements and involving three different internal damages as described
in fig. 2. The loading and boundary conditions are the ones of an attempted inspection of the
region between the actuated region and the clamped end, considering a semi-infinite part on
the other side (no reflected waves). The configuration therefore corresponds the one shown in
fig. 1. The damage model is parametrized and consists in a local reduction of the stiffness on
the walls of the damaged unit-cell along three possible direction (see fig. 2).

Figure 2: (a) FEM of a finite section of the framed structure. (b) Example of damage scenario along x (blue), y
(green) and z (red).

3.2 Diffusion features

The diffusion of all propagating waves produced by a x-oriented damage are computed us-
ing Eq. 2.2. The dispersion curves of the first 9 propagating waves is shown in fig. 4. One
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can identify the Bragg bandgap affecting most transverse waves between 8-13 kHz. The three
coefficients displayed in fig. 3 over frequency for each wave indicate the expected sensitivity
of the wave to a given damage. It can be assumed that the more sensitive the wave to the dam-
age is, the more altered the overall dynamic response will be once subjected to this wavetype’s
loading. For a sake of clarity, the non-propagative regions (e.g. bandgaps) are hidden, based on
the wave’s spatial attenuation criterion (i.e. above 5% amplitude decay per unit-cell).

Figure 3: Transmission, Reflection, and Diffusion coefficients of all propagating waves in the considered band-
width, for a damage of type ’longitudinal’.
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Figure 4: Dispersion curves in the framed structure.
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Note that the sensitivities tend to increase close to the non-propagating regions (cut-on,
Bragg, local resonances etc.). For illustration purpose, one can compare the diffusion plots
of waves 5 (middle) and 7 (bottom left). It is clearly visible that wave 5 is almost insensitive to
the damage, except near the bandgap, and is mainly diffused above 14 kHz. On the other hand,
wave 7 cuts-on at 12 kHz but exhibits a higher reflection (above 60%) between 12 and 13 kHz.

3.3 Forced response

The hypothesis that the overall dynamic response of the semi-infinite structure will be more
sensitive by applying wave 7 than wave 5 is tested in the below. In the loading region, a
guided mode actuation is assumed to produce a frequency-dependent edge unit-cell forced ap-
propriation of a selected wave. The co-localized forced response is calculated in fig. 5 for both
wavetype actuations, each comparing the healthy and damaged cases. It shows that the diffu-
sion analysis gave a fair prediction, as the dynamic response is more sensitive under normalized
load to wave 7 than wave 5, despite its reduced propagative bandwidth. In addition, the reduced
wave model described above gives the full dynamic response solution to a given loading case in
less than a second.
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Figure 5: Forced response of the semi-infinite structure under wave-mode appropriation index 5 (a) and (7). The
co-localized response is computed considering an healthy (dashed) and damaged (continuous) region with a longi-
tudinal damage type.

4 CONCLUSIONS

The conclusions of this work can be stated as follows:

• A generalized Floquet decomposition was used to derive the dispersion characteristics,
the damage scattering information and the forced response from a single unified numeri-
cal framework.

• The method was coupled with a model order reduction scheme, providing outstanding
computation performances.

• These methodologies were proved of remarkable efficiency to model and predict the de-
tectability of small-scaled damages in a framed structure using both dynamic response
and diffusion analysis.
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