David Defour
email: david.defour@univ-perp.fr

Pablo De

Oliveira Castro
email: pablo.oliveira@uvsq.fr

Matei Is
email: matei.istoan@uvsq.fr

Eric Petit
email: eric.petit@intel.com

Shadow computation with BFloat16 to estimate the numerical accuracy of summations

In this article, we propose to exploit the new computational capability offered by the Bfloat16 representation format to perform shadow computations and compute estimations of the relative error. We demonstrate and evaluate the assumptions under which shadow computation is valid for the summation problem.

I. INTRODUCTION

With the finite precision arithmetic available in today's processors, results are subject to numerical errors which can come from rounding errors. It is difficult to estimate the numerical error of a computation without further investigation, or, when comparing two results, find the one which exhibits the smallest relative error.

Meanwhile, we are witnessing a generalization in the support of low-precision floating-point formats in order to address new use-cases (ex: neural networks). Among them, Bfloat16 (or BF16) leads to a tremendous increase in processing power (8-32x peak FLOPS higher than Binary32). Furthermore, the Intel AMX implementation [START_REF]Intel Architecture Instruction Set Extensions and Future Features Programming Reference[END_REF] can be used concurrently with the AVX FP32 units, which means that with careful software design, a shadow BF16 execution can have a low overhead. The BF16 FMA operation uses BF16 inputs and a Binary32 accumulator that can be saved to memory in either Binary32 or BF16. It has been demonstrated that the 32-bit accumulator is a low-overhead, critical feature to handle AI workloads [START_REF] Kalamkar | A Study of BFLOAT16 for Deep Learning Training[END_REF], by avoiding absorption (swamping effect)

In this article, we are interested, regarding Binary32 and Bfloat16 computation for the summation problem, in:

• Predicting a result's accuracy and detect potentially faulty execution using estimators. • Given two computed results in Binary32, determining the one with the smallest relative error.

II. BIBLIOGRAPHY AND RELATED WORKS

The study of error and in particular of round-off error due to the use of floating-point arithmetic is an important field of numerical analysis. A posteriori error analysis take into account uncertainty and rounding error along with the main computation leading to a computational and memory overhead, slowing the observed computation.

Funding: This work was supported by the ANR-20-CE46-0009 InterFLOP Stochastic arithmetic estimates the error distribution with a stochastic simulation of round-off effects, either applying random rounding at each step of the chain of computation [START_REF] Vignes | A stochastic arithmetic for reliable scientific computation[END_REF] or through Monte-Carlo arithmetic [START_REF] Parker | Monte Carlo arithmetic: exploiting randomness in floating-point arithmetic[END_REF]. It can help localizing numerical errors in post-mortem numerical analysis but is impractical for online error estimation.

Interval arithmetic is used to model uncertainty on input data, along with round-off error, in order to guarantee the results [START_REF] Kulisch | Mathematics and speed for interval arithmetic: A complement to ieee 1788[END_REF]. It has a contained memory and computational overhead, but suffers from the dependency problem potentially leading to large uninformative interval.

Error analysis on a sequence of operations can be done by devoting extra memory and computational resources to recompute with extra-accuracy, either by using dedicated arithmetic (ex: MPFR [START_REF] Fousse | Mpfr: A multiple-precision binary floatingpoint library with correct rounding[END_REF], double-double [START_REF] Hida | Algorithms for quaddouble precision floating point arithmetic[END_REF]), or compensation [START_REF] Graillat | Algorithms for accurate, validated and fast polynomial evaluation[END_REF].

For each of the previously mentioned methods, beside the fact that the overhead in terms of resources can be large, none of them is able to provide numerical information, for an additional cost that is lower than the original computation.

The application range of BF16 has been limited to specific fields, such as AI, due to the limited accuracy of the format. Recently, Henry et al. [START_REF] Henry | Leveraging the bfloat16 artificial intelligence datatype for higher-precision computations[END_REF] leveraged BF16 to speed-up computations by splitting Binary32 operations into sub-operations and provide an accuracy analysis. They also propose to use iterative refinement with BF16 as a pre-conditioner to accelerate convergence in a LU solver.

The concept of replicating a sequence of computations, also called shadow replication, has been used in the context of fault tolerance for green cloud computing [START_REF] Mills | Shadow computing: An energy-aware fault tolerant computing model[END_REF]. The replication can be limited to intermediate data in the context of shadow memory, used for example for numerical debugging [START_REF] Lam | Floating-point shadow value analysis[END_REF].

III. BACKGROUND Our objective consists of using the extra computational capabilities offered by BF16, available in today's processors, to estimate the numerical error for the classical (noncompensated) summation problem. In this section, we present the BF16 format and how errors can be bounded.

A. Bfloat16

Bfloat16 corresponds to a 16-bit shortened version of the IEEE-754 32-bit single-precision floating-point format (i.e. Bi-nary32). The 16 least-significant bits of Binary32 correspond solely to mantissa bits, which allows for fast conversion to and from Bfloat16. The description of the bit fields of both formats, Bfloat16 and Binary32, are given in Figure 1.

As we can observe, the difference between both formats lies in the fraction field, which is 7-bits long, as opposed to 23-bits in Binary32. This means that the representation range of both formats is almost equivalent.

sign exponent (8 bits) fraction (7 bits) 0 7 15 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 14 6 (bit index) sign exponent (8 bits) fraction (23 bits) 0 23 31 0 0 1 1 1 1 1 0 0 0 1 0 30 22 (bit index)

Fig. 1: The Bfloat16 and Binary32 format

B. Rounding error analysis

We denote by f (x) and f (x) the rounding away from 0 and the rounding to nearest of x ∈ R, respectively, in the format f . Among the considered formats, in this article we use Binary64, Binary32 and Bfloat16, which are represented in the rest of the paper by b64, b32, bf 16.

In the interval of representable numbers, the output of floating-point operations is impacted by rounding, absorption and catastrophic cancellation errors. In the case of the sum s n = n i=1 x i of a vector x i of floating-point numbers, the real absolute error depends on the order of the partial summations. However, there exist metrics which are independent of the order. In rounding to nearest, the approximated computation s n of the true sum, can be bounded [START_REF] Higham | The accuracy of floating point summation[END_REF], independently of the order, for all summation methods without overflow as follows:

| s n -s n | ≤ (n -1)u f n i=1 |x i | + O(u 2 f) (1)
with u f the machine precision (u f = 2 -53 ; 2 -24 ; 2 -8 for b64, b32 and bf 16 respectively).

Rump introduced the unit in the first place concept (ufp) to perform elegant error analysis, such as in [START_REF] Rump | Error estimation of floating-point summation and dot product[END_REF]. He proposed algorithms to compute estimations of the error for the summation and dot product problems. For the summation, the algorithm is:

s 1 = x 1 ; T 1 = |x 1 | for {k = 2; k ≤ n; k + +} do s k = f (s k-1 + x k) T k = f (T k-1 + |x k |) end for
The computed estimator T n corresponds to the accumulation of the absolute value of the x k for each step of the algorithm. Both s k and T k must use the same floating-point format. It can be used to derive a computable absolute error bound:

| s n - n i=1 x i | ≤ (n -1) • u f • ufp(T n) ≤ (n -1) • u f • T n
This bound is known to be a pessimistic upper bound, especially when dealing with random data. Except for very particular cases, the real bound is lower [START_REF] Higham | The accuracy of floating point summation[END_REF]. Using probabilistic assumptions about the rounding error, a relaxed bound can be derived [START_REF] Higham | A new approach to probabilistic rounding error analysis[END_REF] which grows as √ n.u f instead of n.u f for the worst case. In [START_REF] Higham | Sharper probabilistic backward error analysis for basic linear algebra kernels with random data[END_REF], the authors extended their work by proposing a bound depending on the data range distribution independently of n.

IV. PROPOSED STRATEGIES

Relative error, or approximation error is a useful metric to estimate the number of correct digits in a result. The question which we address is: how can we provide a computable relative error for a small overhead?

A. Reference relative error

In order to establish a fair comparison, we have to set a reference value, that we name E ref . Computing the relative error would require, in the case of the summation problem, computing the reference value using a long accumulator in order to avoid rounding errors, such as the one proposed in [START_REF] Collange | Numerical reproducibility for the parallel reduction on multi-and many-core architectures[END_REF]. However, for problems of reasonable size and condition number (eg. N < 2 20 and C < 2 30), computing the reference value using Binary64 can be considered enough:

E ref = | s b32 -s b64 | | s b64 | (2)
with s f corresponding to the computed sum in format f with rounding to nearest mode.

B. Mixed bound

Rump's estimator (T n) is only valid when both T n and s n are computed with identical floating-point formats and rounding modes. It is straightforward to use BF16 to compute T n , and only requires few modifications. The proof of Rump's estimator is based on the monotonicity of rounding ([START_REF] Rump | Error estimation of floating-point summation and dot product[END_REF], equation (3.9)) which states that if |x| ≤ X and |y| ≤ Y then

| f (x + y)| ≤ f (X + Y) for x, y, X, Y ∈ R.
We propose to alter Rump's algorithm, to replace the computation of T n by B n computed as follow:

B k = B (k-1) + bf 16 (|p k |); B k = b32 (B k); (3)
This corresponds to loading BF16 approximations of |p k |, using rounding away from zero, accumulated in a Binary32 accumulator using rounding to nearest. This corresponds to what is usually available in BF16 hardware.

Theorem IV.1. If |x| ≤ X and |y| ≤ Y , then | b32 (x+y)| ≤ b32 (bf 16 (X) + bf 16 (Y)) for x, y, X, Y ∈ R.
Proof. Rounding away from zero lets us have |x| ≤ bf 16 (|x|). Upscaling does not involve rounding error, therefore b32 (bf 16 (x)) = bf 16 (x). Thanks to the monotonicity of rounding, we get

| b32 (x + y)| ≤ b32 (bf 16 (X) + bf 16 (Y)).
Note that it is possible to consider performing everything in BF16 with rounding away from zero (including the accumulation), based on the fact that double rounding issues do not occur with directed rounding. This leads to | b32 (x + y)| ≤ b32 (bf 16 (X) + bf 16 (Y)) ≤ bf 16 (bf 16 (X) + bf 16 (Y)). However, an inevitable drift from the real value happens, as it is usually observed with interval arithmetic, but emphasized here by the poor accuracy provided by BF16. We propose the following mixed bound E mixed , based on Rump's estimator for the absolute value, using BF16 input values:

E mixed = (n -1) • u b32 • B bf 16 | s b64 | (4
)
with s b64 computed in rounding to nearest and B bf 16 computed as in equation 3.

C. Fully computed bound

Equation 4 cannot be considered a fully computable bound as it requires | s b64 |. We have to bound | s b64 | -1 using the computed quantities (s b32 and B bf 16). One may use the fact that |S| ≥ | s b32 | -(n -1)u b32 B bf 16 to propose the following computed estimator:

E comp = (n -1) • u b32 • B bf 16 | s b32 | -(n -1)u b32 B bf 16 (5)
This estimator is valid only if

| s b32 | > (n -1)u b32 B bf 16 .

D. Approximate estimator number 1

Equation 5 is a valid upper bound corresponding to the worst case scenario. As for other estimators, we can consider a more plausible one. In particular, we use the approximation |S| ≈ | s b32 | to propose the E approx estimator:

E approx = (n -1) • u b32 • B bf 16 | s b32 | (6)
V. RESULTS

This section illustrates through some experiments how BF16 shadow computation can add numerical information on a main computation done in Binary32. To do so, we compare the four estimators on the summation problem. We have executed the naive summation for 5000 vectors of 400 floating-point numbers with condition numbers ranging from 2 6 and 2 50 . We use a random generator inspired by the GenSum function in [START_REF] Rump | INTLAB -INTerval LABoratory[END_REF]. Results are reported in Figure 2, which represents the relative error in log scale according to the condition number.

We observe that all four estimators are above (overestimation) the reference error (in blue) for problems of condition number less than 2 24 . For problems of condition numbers greater than this bound, we observe that the mixed estimator follows through a straight line the real error. The bound E comp defined in equation 5 (in grey) presents a singularity for problems of condition number greater than 2 14 . This is due to the validity condition of the estimator (| s b32 | > (n-1)u b32 B bf 16). Finally, the approximate estimator (yellow) behaves as the Fig. 2: Relative error for random vectors of size 400 for the four estimators according to the condition number. mixed estimator for problems of condition numbers less than 2 24 . With larger condition numbers, it saturates at an error 2 10 . Even though this estimator is wrong in this case, it still indicates that all bits are lost in the result, which is an important information. Fig. 3: Relative error for random vectors of size 40000 for the four estimators according to the condition number.

We have conducted tests on vector or larger size (Fig. 3). Previous conclusions stay relevant, we can observe that the differences for each estimators lies in the n factor (vector size parameter) leading to an upward shift of each plots.

A. Comparing numerical quality

In this section, we illustrate how the approximated estimator E approx can be used to compare the numerical quality of two computed results. This could be useful, for example to detect the rise of computer zero during pivoting in LU factorisation [START_REF] Chesneaux | The equality relations in scientific computing[END_REF] and make better selection. We have generated 10 5 random vectors of size 400. We counted the number of times the approximated estimator makes a correct prediction to determine which of two results presents the smallest relative error. Results are reported in Figure 4. It represents the Fig. 4: Percentage of time that BF16 shadow computation make a correct prediction when comparing the relative error of two summation problems with condition number varying between 2 6 and 2 50 . percentage of correct predictions according to the condition number of both vectors, indicated in xy-coordinate.

We observe that the estimator correctly predicts which result is the most accurate as long as the difference is significant (diagonal) and the condition number for at least one vector is less than 2 23 (lower right square) . The difference has to be significant between the two vectors for problem of condition number less than 2 23 as this corresponds to a sharp estimator (yellow line in fig. 2) and a reference relative error that may be better than expected (wide set of blue dots for a given condition number). For the lower right square, this corresponds to the place where the estimator predicts that all bits of accuracy are lost and cannot discriminate.

VI. CONCLUSION

In this article we proposed a computable estimator for the relative error in the case of the summation problem. This illustrates how BF16 computation resources can be used to add information on numerical quality to a Binary32 computation. Through tests, we have shown that the estimator follows the optimal bound for problems of condition number less than the number of bits available in the mantissa. When the condition number is larger, the estimator remains useful by indicating that all bits of information are lost. Finally, we have shown how the estimator successfully predicts which of two computed results is the most accurate, as long as the difference is significant. As future work, we plan to improve the theoretical ground of the proposed estimator and investigate if it attenuates the rise of computer zero during pivoting in LU factorisation.