
HAL Id: hal-03159965
https://hal.science/hal-03159965v1

Preprint submitted on 4 Mar 2021 (v1), last revised 26 May 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shadow computation with BFloat16 to compute
numerical accuracy

David Defour, Pablo de Oliveira Castro, Matei Istoan, Eric Petit

To cite this version:
David Defour, Pablo de Oliveira Castro, Matei Istoan, Eric Petit. Shadow computation with BFloat16
to compute numerical accuracy. 2021. �hal-03159965v1�

https://hal.science/hal-03159965v1
https://hal.archives-ouvertes.fr

Shadow computation with BFloat16 to compute
numerical accuracy

David Defour, Pablo de Oliveira Castro, Matei Iştoan, Eric Petit

Abstract—In this article, we propose to exploit the new compu-
tational capability offered by the Bfloat16 representation format
to perform shadow computations and compute estimations of
the relative error. We demonstrate and evaluate the assumptions
under which shadow computation is valid for the summation
problem.

I. INTRODUCTION

With the finite precision arithmetic available in today’s
processors, results are subject to numerical errors which can
come from rounding errors or cancellations. It is difficult to
estimate the numerical error of a computation without further
investigation, or, when comparing two results, find the one
which exhibits the smallest relative error.

Meanwhile, we are witnessing a generalization in the
support of low-precision floating-point formats in order to
address new use-cases, such as neural networks. Among
them, Bfloat16 (or BF16)leads to a tremendous increase in
processing power. As of 2019, this format is available on Intel
AI processors (AVX-512 with BF16 extension and AMX),
Google’s TPU and in the ARMv8.6-A.

Vendors usually provide BF16 units with peak FLOPS
8-32x higher than Binary32. Furthermore, the Intel AMX
implementation [1] can be used concurrently with the AVX
FP32 units, which means that with careful software design,
leveraging data prefetching and fast conversion, a shadow
BF16 execution can have virtually no overhead. The BF16
FMA operation uses BF16 inputs and a Binary32 accumulator
that can be saved to memory in either Binary32 or BF16. It
has been demonstrated that the 32-bit accumulator is a low-
overhead, critical feature to handle AI workloads [12], by
avoiding absorption (swamping effect [20]).

In this article, we are interested, regarding Binary32 and
Bfloat16 computation for the summation problem, in:

• Predict a result’s accuracy and detect potentially faulty
execution using estimators.

• Given two computed results in Binary32, determine the
one with the smallest relative error.

II. BIBLIOGRAPHY AND RELATED WORKS

The study of error and in particular of round-off error due
to the use of floating-point arithmetic is an important field of
numerical analysis. The error analysis can be done a priori
using a mathematical proof or a posteriori. In the latter case,
the analysis is done automatically for a given set of input data,
taking into account uncertainty and rounding error along with
the main computation. All methods belonging to this class

of analysis involve a computational and memory overhead,
slowing the observed computation.

Among the available methods, automatic differentiation can
evaluate numerically the derivative of a sequence of arithmetic
operations and functions in a computer program. Automatic
differentiation has been implemented through libraries for
many programming languages [2]. However, tools based on
automatic differentiation face drawbacks in terms of difficulty
of implementation when applied to complex programs, and in
terms of computational and memory overhead.

Stochastic arithmetic estimates the error distribution with
a stochastic simulation of round-off effects, either applying
random rounding at each step of the chain of computation [19]
or through Monte-Carlo arithmetic [16]. Stochastic arithmetic
has been successfully applied to localize numerical errors in
post-mortem numerical analysis but is impractical for online
error estimation.

Interval arithmetic is used to model uncertainty on input
data, along with round-off error, in order to guarantee the re-
sults [13]. Interval arithmetic can provide a contained memory
and computational overhead, but suffers from the dependency
problem leading to large uninformative interval.

Error analysis on a sequence of operations can be done by
devoting extra memory and computational resources to recom-
pute with extra-accuracy, either by using dedicated arithmetic
(ex: MPFR[5], double-double[8]), or compensation [6].

For each of the previously mentioned methods, beside the
fact that the overhead in terms of resources can be large, none
of them is able to provide numerical information, for a cost
that is lower than the original computation.

The application range of BF16 has been limited to specific
fields, such as AI, due to the limited accuracy of the format.
Recently, Henry et al.[7] leveraged BF16 to speed-up com-
putations by splitting Binary32 operations into sub-operations
and provide an accuracy analysis. They also propose to use it-
erative refinement with BF16 as a pre-conditioner to accelerate
convergence in a LU solver.

The concept of replicating a sequence of computations, also
called shadow replication, has been used in the context of
fault tolerance for green cloud computing [15]. The replication
can be limited to intermediate data in the context of shadow
memory, which is used, for example, for numerical debugging
purposes [14].

III. BACKGROUND

Our objective consists of using the extra computational
capabilities offered by BF16, available in today’s processors,

to estimate the numerical error of a sequence of operations.
In this section we present characteristics of the BF16 format
and how errors can be bounded.

A. Bfloat16

Bfloat16 corresponds to a 16-bit shortened version of the
IEEE-754 32-bit single-precision floating-point format (i.e. Bi-
nary32). The 16 least-significant bits of Binary32 correspond
solely to mantissa bits, which allows for fast conversion to
and from Bfloat16. The description of the bit fields of both
formats, Bfloat16 and Binary32, are given in Figure 1.

As we can observe, the difference between both formats lies
in the fraction field, which is 7-bits long, as opposed to 23-bits
in Binary32. This means that the representation range of both
formats is almost equivalent.

sign exponent (8 bits) fraction (7 bits)

0715

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0

14 6 (bit index)
sign exponent (8 bits) fraction (23 bits)

02331

0 0 1 1 1 1 1 0 0 0 1 0

30 22 (bit index)

Fig. 1: The Bfloat16 and Binary32 format

B. Rounding error analysis

We denote by 4f (x) and ©f (x) the rounding away from
0 and the rounding to nearest of x ∈ R, respectively, in the
format f . Among the considered formats, in this article we
use Binary64, Binary32 and Bfloat16, which are represented
in the rest of the paper by b64, b32, bf16.

In the interval of representable numbers, the output of
floating-point operations is impacted by rounding, absorption
and catastrophic cancellation errors. In the case of the sum
Sn =

∑n
i=1 xi of a vector xi of floating-point numbers, the

real absolute error depends on the order of the partial summa-
tions. However, there exist metrics which are independent of
the order. In rounding to nearest, the approximation error of
the true sum Sn is:

Ŝn =©f (Sn) = Sn(1 + ε)

with |ε| ≤ uf and uf the machine precision (uf = 2−53; 2−24;
2−8 for b64, b32 and bf16 respectively) can be bounded [9],
independently of the order, for all summation methods without
overflow as follow:

|Ŝn − Sn| ≤ (n− 1)uf

n∑
i=1

|xi|+O(u2f) (1)

Rump introduced the unit in the first place concept (ufp) to
perform elegant error analysis, such as in [17]. He proposed
algorithms to compute estimations of the error for the sum-
mation and dot product problems. It consists in computing an
approximation of the exact sum Sn, as follows:
ŝ1 = x1; T̂1 = |x1|
for {k = 2; k ≤ n; k ++} do
ŝk =©f (ŝk−1 + xk)

T̂k =©f (T̂k−1 + |xk|)
end for
The computed sum T̂n corresponds to the accumulation of

the absolute value performed at each step of the algorithm.
The only requirement is that both ŝk and T̂k use the same
format. It can be used to derive a computable absolute error
bound:

|ŝn −
n∑

i=1

xi| ≤ (n− 1) · uf · ufp(T̂n)

≤ (n− 1) · uf · T̂n
This bound is known to be a pessimistic upper bound,

especially when dealing with random data. Except for very
particular cases, the real bound is lower [9]. In [10], using
probabilistic assumptions about the rounding error, they pro-
posed a relaxed bound which grows as

√
n− 1uf instead of

(n − 1)uf for the worst case. In [11], the authors extended
their work by proposing a bound depending on the data range
distribution independently of n.

IV. PROPOSED STRATEGIES

Relative error, or approximation error is a useful metric to
estimate the number of correct digits in a result. The question
which we address is: how can we provide a computable
relative error for a small overhead?

A. Reference relative error

In order to establish a fair comparison, we have to set a
reference value, that we name Eref . Computing the relative
error would require, in the case of the summation problem,
computing the reference value using a long accumulator in
order to avoid rounding errors, such as the one proposed in
[4]. However, for problems of reasonable size (N < 220) and
condition number (C < 230), computing the reference value
using Binary64 can be considered enough:

Eref =
|ŝb32 − ŝb64|
|ŝb64|

(2)

with ŝf corresponding to the computed sum in format f with
rounding to nearest mode.

B. Mixed bound

The problem with equation 2 is that the real value (ŝb64)
has to be computed very accurately, requiring extra time and
memory compared to the main computation. The relative error
corresponds to the absolute value divided by the real value.
We propose to use a computable bound for the absolute value
as described in Section III-B.

Rump’s estimator (T̂n) is only valid when both T̂n and
ŝn are computed with identical floating-point formats and
rounding modes. It is straightforward to use BF16 to compute
T̂n, and only requires few modifications. The proof of Rump’s
estimator is based on the monotonicity of rounding ([17],
equation (3.9)) which states that if |x| ≤ X and |y| ≤ Y
then | ©f (x+ y)| ≤ ©f (X + Y) for x, y,X, Y ∈ R.

We propose to alter Rump’s algorithm, to replace the
computation of T̂n by B̂n computed as follow:

Bk = B̂(k−1) +4bf16(|pk|); B̂k =©b32(Bk); (3)

This corresponds to loading BF16 approximations of |pk|,
using rounding away from zero, accumulated in a Binary32
accumulator using rounding to nearest. This corresponds to
what is usually available in BF16 hardware.

Theorem IV.1. If |x| ≤ X and |y| ≤ Y , then |©b32(x+y)| ≤
©b32(4bf16(X) +4bf16(Y)) for x, y,X, Y ∈ R.

Proof. Rounding away from zero lets us have |x| ≤
4bf16(|x|).

Upscaling does not involve rounding error, therefore
©b32(4bf16(x)) = 4bf16(x).

Thanks to the monotonicity of rounding, we get |©b32 (x+
y)| ≤ ©b32(4bf16(X) +4bf16(Y)).

Note that it is possible to consider performing everything
in BF16 with rounding away from zero (including the accu-
mulation), based on the fact that double rounding issues do
not occur with directed rounding. This leads to | ©b32 (x +
y)| ≤ ©b32(4bf16(X) +4bf16(Y)) ≤ 4bf16(4bf16(X) +
4bf16(Y)). However, an inevitable drift from the real value
happens, as it is usually observed with interval arithmetic, but
emphasized here by the poor accuracy provided by BF16.

We propose the following mixed bound Emixed, based on
Rump’s estimator for the absolute value, using BF16 input
values:

Emixed = (n− 1) · ub32 ·
B̂bf16

|ŝb64|
(4)

with ŝb64 computed in rounding to nearest and B̂bf16 com-
puted as in equation 3.

C. Fully computed bound

Equation 4 cannot be considered a fully computable bound
as it requires |ŝb64|. We have to bound |ŝb64|−1 using the
computed quantities (ŝb32 and B̂bf16). One may use the fact
that |S| ≥ |ŝb32| − (n− 1)ub32B̂bf16 to propose the following
computed estimator:

Ecomp = (n− 1) · ub32 ·
B̂bf16

|ŝb32| − (n− 1)u32B̂bf16

(5)

Note that this estimator is valid only if

|ŝb32| > (n− 1)ub32B̂bf16

D. Approximate estimator number 1

Equation 5 is a valid upper bound corresponding to the
worst case scenario. As for other estimators we can consider
a more plausible one. In particular, we can use the following
overestimation |S| ≥ |ŝb32| to propose the following Eapprox

estimator:

Eapprox = (n− 1) · ub32 ·
B̂bf16

|ŝb32|
(6)

V. RESULTS

This section illustrates through some experiments how BF16
shadow computation can add numerical information on a main
computation done in Binary32. To do so, we compare the
four estimators on the summation problem. We have executed
the naive summation for 5000 vectors of 400 floating-point
numbers with condition numbers ranging from 26 and 250.
We use a random generator inspired by the GenSum function
in [18]. Results are reported in Figure 2, which represents the
relative error in log scale according to the condition number.

Fig. 2: Relative error for random vectors of size 400 for the
four estimators according to the condition number.

We observe that all four estimators are above (overestima-
tion) the true error (in blue) for problems of condition number
less than 224. For problems of condition numbers greater
than this bound, we observe that the mixed estimator follows
through a straight line the real error. The true computed bound
(in grey) presents a singularity for problems of condition
number greater than 214. This is due to the validity condition
of the estimator (|ŝb32| > (n − 1)ub32B̂bf16). Finally, the
approximate estimator (yellow) behaves as the mixed estimator
for problems of condition numbers less than 224. For problems
of larger condition numbers, the estimator saturates at an
error 210. Even though this estimator is wrong in this case,
it still indicates that all bits are lost in the result, which is an
important information.

A. Comparing numerical quality

In this section, we illustrate how the approximated estimator
Eapprox can be used to compare the numerical quality of two
computed results. We have generated 105 random vectors of
size 400. We counted the number of times the approximated
estimator makes a correct prediction to determine which of two
results presents the smallest relative error. Results are reported
in Figure 3. It represents the percentage of correct predictions
according to the condition number of both vectors, indicated
in xy-coordinate.

We observe that the estimator correctly predicts which result
is the most accurate as long as the difference is significant

Fig. 3: Percentage of time that BF16 shadow computation
make a correct prediction when comparing the relative error
of two summation problems with condition number varying
between 26 and 250.

(diagonal) and the condition number for at least one vector is
less than 223 (lower right square) . The difference has to be
significant between the two vectors for problem of condition
number less than 223 as this corresponds to a sharp estimator
(yellow line in fig. 2) and a reference relative error that may
be better than expected (wide set of blue dots for a given
condition number). For the lower right square, this corresponds
to the place where the estimator predict that all bits of accuracy
are lost without being able to distinguish the ”less worse”
among the two.

VI. CONCLUSION

In this article we proposed a computable estimator for the
relative error in the case of the summation problem. This
illustrates how BF16 computation resources can be used to add
information on numerical quality to a Binary32 computation.
Through tests, we have shown that the estimator follows
the optimal bound for problems of condition number less
than the number of bits available in the mantissa. When the
condition number is larger, the estimator remains useful by
indicating that all bits of information are lost. Finally, we have
shown how the estimator successfully predicts which of two
computed results is the most accurate, as long as the difference
is significant. As future work, we plan to investigate how the
estimator can be used to help remove the rise of computer
zero during pivoting in LU factorisation [3].

REFERENCES

[1] Intel Architecture Instruction Set Extensions and Future
Features Programming Reference - 319433-042 Decem-
ber 2020.

[2] Community portal for automatic differentiation, 2021.
[3] J. M. Chesneaux. The equality relations in scientific

computing. Num. Algo., 7:129–143, 1994.
[4] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk.

Numerical reproducibility for the parallel reduction on

multi- and many-core architectures. Parallel Computing,
49:83–97, 2015.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann. Mpfr: A multiple-precision binary floating-
point library with correct rounding, 2005.

[6] S. Graillat, P. Langlois, and N. Louvet. Algorithms
for accurate, validated and fast polynomial evaluation.
October 01 2009.

[7] G. Henry, Ping Tak Peter Tang, and A. Heinecke.
Leveraging the bfloat16 artificial intelligence datatype
for higher-precision computations. In 2019 IEEE 26th
Symposium on Computer Arithmetic (ARITH), pages 69–
76. IEEE, 2019.

[8] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-
double precision floating point arithmetic. In Proc. 15th
IEEE Symposium on Computer Arithmetic, pages 155–
162. IEEE Computer Society Press, Los Alamitos, CA,
USA, 2001.

[9] N. Higham. The accuracy of floating point summation.
SIAM J. Sci. Comput., 14:783–799, 1993.

[10] N. J. Higham and T. Mary. A new approach to prob-
abilistic rounding error analysis. SIAM J. Sci. Comput,
41(5):A2815–A2835, 2019.

[11] N. J. Higham and T. Mary. Sharper probabilistic back-
ward error analysis for basic linear algebra kernels with
random data. SIAM Journal on Scientific Computing,
42(5):A3427–A3446, 2020.

[12] D. Kalamkar et al. A Study of BFLOAT16 for Deep
Learning Training, 2019.

[13] U. W. Kulisch. Mathematics and speed for interval
arithmetic: A complement to ieee 1788. ACM Trans.
Math. Softw, 45(1):5:1–5:22, 2019.

[14] M. O. Lam and B. L. Rountree. Floating-point shadow
value analysis. In ESPT@SC, pages 18–25. IEEE, 2016.

[15] B. N. Mills, T. Znati, and R. G. Melhem. Shadow
computing: An energy-aware fault tolerant computing
model. In ICNC, pages 73–77. IEEE, 2014.

[16] D. Stott Parker. Monte Carlo arithmetic: exploiting
randomness in floating-point arithmetic. Technical Re-
port CSD 970002, Department of Computer Science,
University of California, Los Angeles, Los Angeles, CA,
USA, 1997.

[17] Siegfried M. Rump. Error estimation of floating-point
summation and dot product. BIT Numerical Mathematics,
52(1):201–220, March 2012.

[18] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor
Csendes, editor, Developments in Reliable Computing,
pages 77–104. Kluwer Academic Publishers, Dordrecht,
1999. http://www.ti3.tuhh.de/rump/.

[19] J. Vignes. A stochastic arithmetic for reliable scientific
computation. Math. Comp. Simul., 35:233–261, 1993.

[20] N. Wang, J. Choi, D. Brand, C. Y. Chen, and
K. Gopalakrishnan. Training deep neural networks with
8-bit floating point numbers. NeurIPS, 2018.

