
HAL Id: hal-03159963
https://hal.science/hal-03159963

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging teenagers feedback in the development of a
domain-specific language

Ankica Barisic, Cambeiro João, Vasco Amaral, Miguel Goulão, Mota
Tarquínio

To cite this version:
Ankica Barisic, Cambeiro João, Vasco Amaral, Miguel Goulão, Mota Tarquínio. Leveraging teenagers
feedback in the development of a domain-specific language. SAC 2018: Symposium on Applied Com-
puting, 2018, Pau France, France. pp.1221-1229, �10.1145/3167132.3167264�. �hal-03159963�

https://hal.science/hal-03159963
https://hal.archives-ouvertes.fr

Leveraging Teenagers Feedback in the Development of a
Domain-Specific Language
The Case of Programming Low-Cost Robots

Ankica Barišić, João Cambeiro
NOVA LINCS, DI, FCT

Lisboa, Portugal
a.barisic@campus.fct.unl.pt
jmc12976@campus.fct.unl.pt

Vasco Amaral, Miguel Goulão
NOVA LINCS, DI, FCT

Lisboa, Portugal
vma@fct.unl.pt
mgoul@fct.unl.pt

Tarquínio Mota
Artica Creative Computing

Caparica, Portugal
tarquinio@gmail.com

ABSTRACT
Domain Specific Languages (DSLs) empower end-users to express
software tasks that were traditionally developed by software engi-
neers. DSLs allow users to express themselves in terms closer to
the way they think about their problems, rather than in compu-
tational terms. However, conceiving a DSL with an adequate user
experience for its end-users is not a trivial task, and the process
of engineering that adequacy tends to be performed ad-hoc. The
Gyro Creator Language (GCL) is an open-source DSL for control-
ling low-cost rover-like Arduino robots, designed for being used
by teenagers with no previous computing skills, so they can be
introduced to programming in a fun way. In this paper, we discuss
an iterative process building on teenagers’ early feedback, collected
in a series of empirical evaluations with 128 teenagers, and how
this has helped us driving GCL to a competitive level in terms of
usability, when compared to well-established alternatives such as
Lego, or Scratch.

CCS CONCEPTS
• Software and its engineering→ Software usability;Domain
specific languages; Visual languages;

KEYWORDS
Programming languages for children, Robotics Programming

ACM Reference format:
Ankica Barišić, João Cambeiro, Vasco Amaral, Miguel Goulão, and Tar-
quínio Mota. 2018. Leveraging Teenagers Feedback in the Development of
a Domain-Specific Language. In Proceedings of SAC 2018: Symposium on
Applied Computing , Pau, France, April 9–13, 2018 (SAC 2018), 9 pages.
https://doi.org/10.1145/3167132.3167264

1 INTRODUCTION
The increasing software pervasiveness fosters a growing concern
for making some of its development accessible to end-users with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167264

no formal training in programming. Creating Domain-Specific Lan-
guages (DSLs) for empowering end-users is challenging, as we need
to bridge the gap between computation concepts and the concepts
mastered by the end-users. Two complementary ways of bridging
this gap are (i) nurturing ‘computational thinking’ [37] skills in
end-users, and (ii) devising adequate metaphors that hide the unnec-
essary complexity of computational concepts from those end-users.
We were contacted by a company interested in developing an open
source web-based DSL, called Gyro Creator Language (GCL), for-
mally known as Visualino, targeted to teenagers, to empower them
to control low-cost rover-like Arduino robots. The challenge was
how to assess the DSL in a timely way, so that end-user feedback
could lead to a competitive product. In particular, the company was
concerned with the user-friendliness of the DSL.

However, the development process of DSLs lacks a systematic
and iterative approach to evaluating and detecting usability issues
since the early stages of the DSL construction. Therefore, we add to
the common iterative life cycle of DSL development an evaluation
task involving the end-users, to be performed in each iteration. The
teenagers’ feedback is used to help to steer the GCL’s evolution
through the identification of several improvement opportunities in
the language. This evaluation stage in each iteration is often not
reported in the context of developing DSLs but is key for our devel-
opment effort. In this assessment, we contrast GCL with two popu-
lar DSLs that are used to control rover-like robots: a commercial
competitor (Lego)[22] and an open source initiative (Scratch)[32].

We report on the design and results of the empirical studies
used in this evaluation that helped us identifying the language’s
strengths and weaknesses. We discuss how this lead to the improve-
ment of the GCL language. To help to achieve this higher level goal,
we answer two more detailed research questions:

• RQ1: How does the current GCL (GCL2) compare to baselines
(a previous version of GCL (GCL1), Lego and Scratch) regard-
ing the Effectiveness of the teenagers when programming a
robot?

• RQ2: How does the current GCL (GCL2) compare to baselines
(a previous version of GCL (GCL1), Lego and Scratch) regarding
the Satisfaction of the teenagers when programming a robot?

The chosen baselines are aimed at providing a comparison basis
with (1) a previous version of GCL (GCL1), so that we can assess
the extent to which the feedback collected with that previous ver-
sion has helped in its evolution and (2) two popular competitor
languages, so that we can assess how competitive the GCL can be,
when contrasted with those languages.

https://doi.org/10.1145/3167132.3167264
https://doi.org/10.1145/3167132.3167264

SAC 2018, April 9–13, 2018, Pau, France A. Barišić et al.

2 RELATEDWORK
2.1 Language Usability
Language usability is the degree to which a language can be used
by specific users to meet their needs to achieve specific goals with
effectiveness, efficiency and satisfaction in a specific context of use
(adapted for the particular case of languages from [13]).

User-centered design (UCD) [28, 36] can contribute to more us-
able DSLs. For example, [1] presented an innovative visualisation
environment, which eases and makes more effective the experimen-
tal evaluation process, implemented with the help of UCD. A visual
query system was also designed and implemented following the
UCD approach [6]. Although there is a lack of general guidelines
and best practices to conduct language usability evaluations, they
are slowly being recognised as an important step in the Language
Engineering life-cycle [20]. An iterative approach allows us to trace
usability requirements and the impact of usability recommenda-
tions througout the DSL development process [3].

2.2 User characterization and evaluation
Teenagers who are familiar with computers and technologies tend
to be more successful in new computer-related tasks [12]. Also,
they are likely to work and play in groups, (e.g. sharing a single
computer) [8]. Involving teenagers as subjects in empirical studies
is a valid option to evaluate usability on software products targeted
to teenagers [34] but also challenging, as teenagers have a high
variability in cognitive and development abilities at a given age
[7]. Nevertheless, it has been shown that teenagers can identify
and report usability problems using methods like ‘think aloud’,
interviews or questionnaires [25].

Previous studies (e.g. [15, 18, 31]) concentrate on issues related
to K12 courses curricula (i.e. covering from kindergarten to 12 years
of basic education), the motivation of students to engineering, and
education of computational teaching. Teenagers have been used
in the past as subjects for language-related studies. For example, a
hybrid approach combining text and visual notations offers the best
compromise to increase efficiency and effectiveness of teenagers
while using that language [19]. However, we are not aware of
other formal studies concerned about improving software language
usability, involving teenagers as subjects.

2.3 Programming languages for teenagers
Current robot platforms offer Application Programming Interfaces
(APIs) for programming with languages such as Java (e.g. [9]), [30])
or .NET Framework languages (e.g.[14]). These languages may ex-
clude many teenagers who are not (yet) proficient in programming.
Without proper training, it is hard for them to program and mas-
ter a textual programming language with a complex syntax full
of technical concepts. This is true even with the help of powerful
Integrated Development Environments (IDEs). We argue it is far
from trivial to design a DSL for teenagers (and even more so for
younger children).

There are several programming languages designed specifically
for children (including teenagers). Examples include Alice [10],
Blockly [11], Lego [22] and Scratch [32]. We used for comparison
purposes with GCL Lego, one of the most widely used languages

Figure 1: LegoMS Figure 2: Scratch

for programming toy robots, and Scratch, a popular visual program-
ming language for teaching programming concepts to children
which can also be used for controlling rover-like robots.

2.3.1 Lego. Inspired by Papert’s seminal work [29], Lego Mind-
storms (LegoMS) is one of the most well-known technologies, in
educational robotics for children. Several case studies have been
done for this technology in order to understand which are the
main individual needs of the children, when working with robots.
LegoMS’s technology combines hardware and software, so that
users can develop and deploy programs specifying behavior to be
executed by the Lego robot.

Lego Mindstorms NXT 2.0, used in our usability trials, presents
building blocks (like bricks) as elements to build a program. Each
block represents a programming concept, such as an execution con-
trol element, e.g. loops, conditions, arithmetic, or an actuate block
that interacts with the robot components, e.g.motors. The sequence
of blocks is constructed by a behavior flowchart, structuring the
program’s blocks.

LegoMS has an appealing notation and is used only with rela-
tively expensive Lego robots. However, the development of com-
plex behaviors may become difficult [26]. The increasing number
of blocks and the size of the diagram make it difficult to analyze
and read the program solution. Non-trivial behaviors are difficult
to implement in a visual programming language like this. Fig. 1
exemplifies the move back and forth example. The diagram contains
two composition elements describing how the robot should move.

2.3.2 Scratch. Scratch [32] relies on actions (Blocks) to operate
specific objects (Sprites). They can be seen as a visual abstraction to
the Object Oriented programing paradigm with some restrictions
(no support for custom objects and the dynamic generation of
sprites). Open source tools like mBlock [33] and Enchanting [21],
are built upon Scratch, and meant to be simple and used for robot
programming. mBlock is a solution which compiles to the Arduino
open source hardware platform, which makes it suitable for our
assessment study, as it uses the same hardware as GCL.

Fig. 2 illustrates how to program the robot to move forward dur-
ing one second and to go backwards during one second. However,
as this language is general purpose, it does not have abstractions
of operations like move forward or backwards. Therefore, the user
needs to detail the movement operator. This includes to describe
the pins of each motor on the Arduino board and deal with concepts
like motor rotation directions, rotation speed, angular velocity.

Leveraging Teenagers Feedback in the Development of a Domain-Specific Language SAC 2018, April 9–13, 2018, Pau, France

Figure 3: Arduino Robot
Figure 4: GCL1 - Back and
Foward

3 CONTEXT
GCL is a visual language that allows the user to implement programs
for robot behavior, through the manipulation of visual elements, or
objects. This manipulation is expected to help the user to under-
stand quickly the programming mechanisms. Visual languages are
thought useful for introducing programming concepts to children
[16], while robots perform the developed code in the real world.
The observation of the program running on a physical robot pro-
vides an engaging feedback on the implications of changes in the
program.

The robot is an Arduino board with a set of sensors and actuators.
Arduino is an open-source prototyping platform [2]. The low-cost
robot (see Fig. 3) which works with GCL has the following con-
figuration: (i) An infra-red distance sensor; (ii) Two bumpers (e.g.
collision detectors sensors); (iii) One motor for each wheel; (iv) A
Servo motor that actuates under the distance sensor; (v) A simple
LED light.

Programming the Arduino textual code requires technical skills
not owned by most teenagers. To mitigate this problem, the ro-
bot may be programmed using GCL, which is then automatically
translated into the Arduino textual code.

GCL’s visual syntax is based on the behavior tree paradigm [24],
a mathematical model of plan execution, used for a diversity of
areas including robotics, control systems and software games. A
complex behavior is mapped into smaller and simpler behaviors
through its branches. This descending order of complexity provides
a structured way of defining complex behaviors (which are used to
define objectives) through simple tasks defined hierarchically. Each
node may have a specification that determines how the actions of
its children will be executed (in parallel, or sequentially). The child
node returns its status to the parent node, and this successively
happens until the root of the tree.

Fig. 4 illustrates how to program the robot to move back and
forth. The root node is decomposed into a single sequential node
(highlighted with a red circle). The sequential node runs all its
children (in this case, the leaf nodes) in depth first traversal order.
Leaf nodes represent the most primitive actions that could be taken
by an agent. In Fig. 4 the nodes represented by arrows pointing
downwards are outputs actions. In this case they are left and right
motors commands. The outputs can also be visual using LEDs or
audio using a buzzer. Both nodes displayed by 2 round timer shapes
are wait commands in which the execution of the next node is
delayed by the duration determined by the end user for each node.

Figure 5: GCL2 - Back and Foward
with bumpers

3.0.1 From GCL0 to GCL1. The first development iteration of
GCL GCL0 started with a domain analysis, followed by the design,
implementation, and evaluation, in order to quickly deploy an early
prototype. The last phase involved 22 (10+12) children, with the age
range from 8 to 12, as subjects included in an exploratory study [23].
Children under 10 had a hard time learning GCL. Further develop-
ment resulted in the next release GCL1 (Fig. 4), which improved
the interaction model and provided a web based solution.

3.0.2 From GCL1 to GCL2. GCL1 was evaluated experimentally
and compared to the one of the most popular commercial competi-
tors in the market, LegoMS. Based on the results of this empirical
study, some improvements were suggested and applied to GCL.
The focus was on improving the user interface providing better
readability of the programs being developed and improving error
prevention. The suggestions were:

• Improve error feedback and suggestions to solve problems.
• Add auto-alignment of new nodes added to a sequence node,
preventing situations where the visual order of nodes from
left to right did not match the order of their execution.

• Highlight when a user selects a new node to add to the
diagram the nodes that are available to form a connection.
This provides better user assistance and error prevention.

• Allow the users to create blocks of tree structures. This
feature promotes reuse of previously developed structures
and allows to share and slowly introduce more complex
behaviours to novice users.

• Show the Icon’s label with mouse-over events. This helps
the user to recognize the available options.

• Introduce a different method of collapsing and expanding
tree structures. The use of the keys "+" and "-" for these
operations was not clear to the user.

• Introduce new zooming options to allow an easier navigation
of the tree structure by introducing a fit to screen operation
of the entire tree structure or only the selected nodes.

These suggestions lead to the release of a new improved version
of the language GCL2 (Fig. 5). Finally, GCL2 was compared with
Scratch.

4 EXPERIMENT PREPARATION
In this section, we describe the experiment protocol. Additional
materials can be found in this paper’s companion site [4]. We had
two runs of the same experiment, with the second prototype re-
lease (GCL1) which we compared to Lego; and second GCL version

SAC 2018, April 9–13, 2018, Pau, France A. Barišić et al.

(GCL2) which was compared to Scratch. The experiment was an-
nounced as a robot programming challenge to engage teenagers to
participate.

During the first run, GCL1 was compared to the best product in
the area but appropriate only for costful Lego robots. Therefore, the
robots used in this run were different. However, during the second
experiment run, both GCL2 and Scratch programs were running on
the same robot (see Figure 3). The two different experiment runs
were designed as two parts of the same experiment. Both partici-
pant’s profile and the tasks were similar, so that, in practice, we can
think of them as a single experiment with four different languages
(two of which are different versions of the same language).

4.1 Experiment objectives
The high-level objective of our study is to evaluate the usability
of GCL, “Usability of Programming the robot”, as it is expected to
be used by a broad group of people that are not expected to have
previous programming skills.

As we already have different generations of a functional proto-
type of GCL, we measure GCL’s effectiveness and satisfaction. The
metrics for these usability requirements are defined in Table 1. We
are not particularly concerned with other requirements such as
efficiency or learnability at this point because we are at a stage of
the language development where we want to know if the teenagers
can program the robot, which is a prerequisite for measuring other
characteristics. The experiment objectives follow the GQM template
[5] and are defined as follows:

G1 -Analyse the effect of GCL2, for the purpose of evaluation,
with respect to its impact on the effectiveness in programming a
robot when compared to three baselines, namely GCL1, Lego and
Scratch, from the point of view of researchers, in the context
of an experiment conducted with secondary school subjects.

G2 -Analyse the effect of GCL2, for the purpose of evaluation,
with respect to its impact on the satisfaction in programming a
robot when compared to three baselines, namely GCL1, Lego and
Scratch, from the point of view of researchers, in the context
of an experiment conducted with secondary school subjects.

Table 1: Usability requirements

Requirement Metric

Effectiveness: Is the <User>

able to correctly imple-

ment a given <Use Case>?

PCorrUCInst - percentage of correctly implemented concepts (i.e.

garanteeing that an expected outcome is reached) in a given <Use

Case>

Satisfaction How much

is the user satisfied with

GCL?

ConfLevel - self rated confidence score in a Likert scale

LikeLevel - self rated likeability score in a Likert scale

LearnLevel - self rated learnability score in a Likert scale

In particular we test the following (null) hypotheses:
• H10: Using GCL2 has no influence in the effectiveness of
programming the robot when compared to programming
the robot with the baselines GCL1, Lego and Scratch.

• H20: Using GCL2 has no influence in the satisfaction of pro-
gramming the robot when compared to programming the
robot with thebaselines GCL1, Lego and Scratch.

4.2 Experiment design
We used a between groups design where participants were randomly
assigned to the task of either programming a robot using GCL1
or Lego, in the first run, or GCL2 or Scratch, in the second run.
Each participant only participated in one of the four alternatives to
avoid learning effects. The experimental process was similar for all
runs and subject groups, starting with a learning session that lasted
30 minutes, during which the participants filled in a background
questionnaire and learned about programming robots using their
assigned language. Then, the participants had 15 minutes to solve
a programming challenge. The contents of the computer screen
during the session were recorded. Finally, there was a feedback
session, taking up to 5 minutes, to collect the teenager’s subjective
opinions about using the language they were assigned to.

4.2.1 Participants, teams and groups. The participants were high
school students recruited through convenience sampling, among
the visitors of two different open doors days in the same university.
In each day, participants were randomly assigned to one of the two
groups: in the first day, there was a group with GCL1 and another
one with Lego; in the second day, there was a group with GCL2
and another one with Scratch. Students and their teachers were
aware of this study and volunteered to participate. Two lecturers
guided each language’s groups. The teenagers were requested to
participate, in teams of up to three elements, using their assigned
language and corresponding robots. Each group had a maximum of
5 teams participating in the same session. Undergraduates helped
in the experiment, while a researcher monitored the data collection
process.

4.2.2 Technical, social and physical environment. Each team
worked on a desktop computer with OS Windows 7 Professional
(Athlon 64x2 Dual Core 5000 2.6 GHZ processor, 4 GB RAM and a
17-inch monitor with a screen resolution configured at 1280x720)
to implement the applications. The interaction between user and
computer was achieved by the use of keyboard, mouse, and screen,
and was captured by Debut video recorder [27].

The atmosphere was set up to be challenging and educative, but
also playful and entertaining, to keep the teenagers still interested
to participate and to reduce the sensation of failure. Team members
were allowed to talk to each other. They could seek help if they had
technical issues with the robots.

4.2.3 Exercises and Challenge. During the learning sessions,
participants solved three basic robot programming exercises. They
tested each of those exercises on the corresponding robot. Further-
more, they were encouraged to ask questions and to ask for help if
necessary.

The first exercise was to program the robot to move forward and
then move back (see Fig. 6). It gave the participants a notion of how
to program the robot to move in a basic way. The numbering in
Figures 6 through 10 represents the order in which the sequential
commands would be executed. The second exercise was to program
the robot to move along a path similar to a ‘5’ (see Fig. 8).

In each turn, the robot needed to execute the move operation
using the same amount of time and then to make a 90o angle turn.
The third exercise was to program a robot to move forward until
it bumped into some object, then it would move back and stop (see

Leveraging Teenagers Feedback in the Development of a Domain-Specific Language SAC 2018, April 9–13, 2018, Pau, France

Figure 6: Exercise 1 Figure 7: Exercise 3

Figure 8: Exercise 2 Figure 9: Challenge 1

Figure 10: Challenge 2

Fig. 7). During this exercise, participants learned how to use the
detector sensors and to compose their behaviour in a sequence with
other modelling elements.

The challenge in the first experiment was to program the robot
to make a shape of ‘5’ but the robot would only turn when it would
hit the bumper (see Fig. 9). It was composed by basic user story
actions of the exercises. The challenge in the second experiment
was slightly different (see Fig. 10). The robot was expected to detect
if it hits the obstacles with the left or the right bumper, and it was
supposed to turn accordingly to the opposite direction. It either
executed the instructions associated with hitting the right bumper,
or those associated with hitting the left bumper.

When the team thought they had a solution, they were invited
to physically test it in the arena with a given robot. If they were
not happy with the result of the test, they could go back and try to
fix whatever was wrong with their solution.

4.3 Experimental instruments and
measurements

During the experiment, we used survey forms, video recordings and
a competition arena to collect data for further analysis. The survey
forms were composed of “Smileyometers” which are found to be
appropriate for teenagers questionnaires [35]. While answering to
the forms, the teenagers were assisted by an adult (one of the exper-
iment assistants), to ensure that there were no misinterpretations
of questions and answers and to confirm that the participants did
not experience reading problems. As we grouped the participants
into teams, the participants’ individual answers to questionnaires
were merged. We computed the mean response within each group,
for each answer.

Table 2: Instruments and Scales

Instrument Value

Profile Background Questionnaire 0 / 0.5 / 1

Effectiveness Video recording 0 / 1

Satisfaction Satisfaction Questionnaire -1 / 0 / 1

Profile is a measure influenced by Experience factors on Com-
puter Games, Programming or Programming a robot, and Tendency
factors reflecting the teenager’s tendency to Mathematics, Physics
or to Learn programming. The data for calculating the Profile was
collected through the background questionnaire, that consisted of
questions designed to assess those pre-defined factors. Each answer
was encoded in three possible answers: ’Yes’ (with a score of 1),
’Intermediate’ (0.5), and ’No’ (0).

We used the recorded videos to evaluate the Effectiveness. The
challenge could be solved by composing elements of the training
exercises, which are marked as Success (S) or Failure (F). Effective-
ness measures the percentage of modelling elements correctly built
and composed to achieve the solution.

Satisfaction is characterized by: a Confidence factor, reflecting
ConfLevel metric that tells how confident teenagers were about
their solution; Likeability factor, reflecting LikeLevel metric that
tells how interesting and enjoyable they found the challenge it-
self; and, Learnability factor, reflecting LearnLevel metric that tells
how useful they found what was taught during the learning ses-
sion which helped them to face the final challenge. The data was
collected trough a satisfaction questionnaire, that consisted of ques-
tions designed to assess the defined factors. A ‘Yes’ scored 1 point,
‘Intermediate’ scored 0, and ‘No’ scored -1.

5 RESULTS
5.1 Descriptive statistics
Table 3 presents the descriptive statistics for the metrics collected in
our data analysis. In the Characteristic column we present the prop-
erty under scrutiny. For each of these characteristics, we show four
rows, one for each Language (in the second column). We further de-
tail themean, standard deviation, skewness, kurtosis, and the p-value
for the Shapiro-Wilk normality test. The number of participant
teams is not always the same for all languages. The shape of the
distributions concerning most of the variables suggests that, in gen-
eral, normality is not a reasonable assumption (p-value < 0.05). The
exceptions are metrics concerning profile, experience and tendency,
where, for most languages, normality is a reasonable assumption
(p-value >= 0.05). The visual inspection of boxplot diagrams, Q-Q
plots and kernel density plots (omitted here for the sake of brevity)
further reinforced our assessment concerning data normality. As
several of the variables have a non-normal distribution, we assume
this for the remainder of our analysis. Note also that all teams ex-
pressed the maximum confidence level on their solution for GCL2,
as well as the maximum likeability level for GCL2 and Scratch.

The variance of the distributions is not similar, when comparing
the characteristics metrics distributions for the different languages,
as shown in table 4.

SAC 2018, April 9–13, 2018, Pau, France A. Barišić et al.

Table 3: Descriptive statistics

Characteristic Language N Mean Std. Dev. S-W

Age

Scratch 8 16.7062 1.23782 0.023
GCL2 9 16.3689 0.91408 0.180
GCL1 17 16.6059 1.31694 0.018
Lego 14 16.4429 1.28465 0.039

Profile

Scratch 8 0.6875 0.17107 0.542
GCL2 9 0.6019 0.13029 0.213
GCL1 17 0.6225 0.16435 0.455
Lego 14 0.6250 0.22349 0.201

Experience

Scratch 8 0.5625 0.23465 0.241
GCL2 9 0.4259 0.14699 0.338
GCL1 17 0.5294 0.24463 0.214
Lego 14 0.4643 0.31473 0.042

Tendency

Scratch 8 0.8125 0.18767 0.197
GCL2 9 0.7778 0.20412 0.122
GCL1 17 0.7157 0.20211 0.059
Lego 14 0.7857 0.2210 0.004

Effectiveness

Scratch 8 0.8000 0.23905 0.041
GCL2 9 0.9556 0.08819 0.000
GCL1 17 0.3765 0.40548 0.001
Lego 14 0.7857 0.32783 0.000

Satisfaction

Scratch 8 0.9583 0.05893 0.002
GCL2 9 0.9630 0.07349 0.000
GCL1 17 0.6275 0.23221 0.085
Lego 14 0.8571 0.22746 0.000

Confidence

Scratch 8 0.9688 0.05786 0.000
GCL2 9 1.0000 0.00000 -
GCL1 17 0.5000 0.30619 0.234
Lego 14 0.8571 0.25409 0.000

Learnability

Scratch 8 0.9063 0.12939 0.000
GCL2 9 0.8889 0.22048 0.000
GCL1 17 0.4412 0.42875 0.023
Lego 14 0.7500 0.37978 0.000

Likeability

Scratch 8 1.0000 0.00000 -
GCL2 9 1.0000 0.00000 -
GCL1 17 0.9412 0.24254 0.000
Lego 14 0.9643 0.13363 0.000

Table 4: Test of Homogeneity of Variances

Characteristic Levene Statistic df1 df2 Sig.

Age 0.353 3 44 0.787
Profile 1.758 3 44 0.169
Experience 3.588 3 44 0.021
Tendency 0.537 3 44 0.660
Effectiveness 6.975 3 44 0.001
Satisfaction 2.892 3 44 0.046
Confidence 8.079 3 44 0.000
Learnability 2.828 3 44 0.049
Likeability 1.711 3 44 0.178

5.2 Dataset preparation
The video recordings were analysed following a protocol previ-
ously established by the research team. Apart from (i) assessing
the success, we checked if the team (ii) reused the concepts from
previous exercises, (iii) experienced technical problems or func-
tional errors, (iv) had interaction difficulties (e.g. using copy/paste
for visual objects or connecting the same objects in sequence), (v)
reused previously constructed sequences (within the same exercise),
or (vi) used any other additional language features (e.g. zooming).
The remaining data was extracted from the questionnaires [4].

5.3 Hypotheses testing
For testing our hypotheses, we used the Welch t test, as it is robust
to deviations from the normal distribution, different sample sizes
and different variance in the samples, thus following the recent rec-
ommendations on data analysis for Software Engineering empirical
evaluations (which summarises best practices in statistical analysis
on other domains) [17]. Table 5 summarizes the results of these
tests. Note that, because Confidence and Likeability had a constant
value (the top possible score for each of them, the corresponding
lines are not filled in table 5.

Table 5: Welch t test scores

Statistic df1 df2 Sig.

Age .170 3 21.109 .915
Profile .423 3 20.891 .739
Experience .921 3 21.381 .448
Tendency .527 3 20.597 .669
Satisfaction 10.723 3 24.108 .000
Confidence - - - -
Learnability 5.678 3 23.334 .005
Likeability - - - -
Effectiveness 10.886 3 20.483 .000

We used a Games-Howell post-hoc test to determine which lan-
guages were significantly different from which languages, accord-
ing to our set of characteristics under scrutiny. Table 6 summarises
this test’s result, for the comparisons involving either GCL1 or
GCL2, or both. We observe that GCL1 lead to a significantly lower
Satisfaction and Effectiveness when compared to Scratch, GCL2 and
Lego. GCL1 was also significantly harder to learn than Scratch
and GCL2, but not significantly different when compared to Lego.
In contrast, GCL2 was consistently as good as Lego and Scratch,
while superior to GCL1 in terms of Satisfaction, Learnability and
Effectiveness.

Table 6: Games-Howell test

Characteristic (I)Tool (J)Tool MD(I-J) Std. Err. Sig.

Satisfaction

GCL2 Lego .10582 .06554 .397
GCL2 Scratch .00463 .03216 .999
GCL2 GCL1 .33551 .06142 .000
GCL1 Lego -.22969 .08287 .046
GCL1 Scratch -.33088 .06005 .000

Learnability

GCL2 Lego .13889 .12531 .689
GCL2 Scratch -.01736 .08657 .997
GCL2 GCL1 .44771 .12734 .009
GCL1 Lego -.30882 .14531 .169
GCL1 Scratch -.46507 .11360 .003

Effectiveness

GCL2 Lego .16984 .09242 .293
GCL2 Scratch .15556 .08948 .362
GCL2 GCL1 .57908 .10264 .000
GCL1 Scratch -.42353 .12967 .018
GCL1 Lego -.40924 .13171 .021

RQ1: How does the current version of GCL (GCL2) compare to the
used baselines (GCL1, Lego and Scratch) regarding the Effectiveness
of the children when programming a robot?

As seen in table 5, there was a statistically significant difference
among languages, with respect to the overall Effectiveness, with
GCL2 (M=.9556; SD=.08819), Scratch (M=.8; SD=.23905) and Lego

Leveraging Teenagers Feedback in the Development of a Domain-Specific Language SAC 2018, April 9–13, 2018, Pau, France

Figure 11: Effectiveness results

(M=.7857; SD=.32783) clearly allowing the teenagers using it to out-
perform those using GCL1 (M=.3765; SD=.40548), as detailed in table
6. This suggests that GCL2 has achieved a similar level of Effi-
ciency compared to the two commercial baseline languages,
and has significantly improved when compared to its previ-
ous iteration, GCL1, in this aspect. Figure 11 illustrates this. As
such, we can reject our null hypothesis H01.

RQ2: How does the current version of GCL (GCL2) compare to the
used baselines (GCL1, Lego and Scratch) regarding the Satisfaction
of the teenagers when programming a robot?

As seen in table 5, there was a statistically significant difference
among languages, on the overall satisfaction, with Scratch (M=.9583;
SD=.05893), GCL2 (M=.963; SD=.07349) and Lego (M=.85710; SD=.22746)
providing a higher satisfaction than GCL1 (M=.62750; SD=.23221).
This suggests that GCL2 has achieved a similar level of Satis-
faction compared to the two commercial baseline languages,
and has significantly improved when compared to its previ-
ous iteration, GCL1, in this aspect. Figure 12 illustrates this. As
such, we can reject our null hypothesis H02.

We can further break down this observation with a closer look
to the components of Satisfaction: Confidence, Learnability and
Likeability. Confidence obtained a perfect score (M=1.0; SD=.0) for
GCL2, closely followed by Scratch (M=.96880; SD=.05786) and Lego
(M=.8571; SD=.25409), but contrasting to GCL1 (M=.5; SD=.30619).
Concerning Learnability, Scratch (M=.90630; SD=.12939) and GCL2
(M=.8889; SD=.22048) had a statistically significantly higher score
than GCL1 (M=.4412; SD=.42875), but not significantly higher than
Lego (M=.75; SD=.37978). Finally, the perfect scores of Scratch and
GCL2 conderning Likeability (M=1.0; SD=.0) were not statistically
significantly different from those of Lego (M=.9643; SD=.13363) and
GCL1 (M=.9412; SD=.24254).

Participants Background:
We also need to stress that the observed differences are not

attributable to different participant backgrounds. Indeed, the results
from the background questionnaires indicate a comparable profile
of participants for all languages. This is visible from table 5, where
none of the properties Age, Profile, Experience and Tendency are
statistically significantly different for any of the languages, i.e., they
are essentially comparable.

Most participants had some experience in playing computer
games, but very few of them had previously programmed a robot
(see Figure 13). Some of the participants also had some knowledge
of programming. These three factors gave an average Experience
score for teams. The motivation to participate in the challenge was
high. Most subjects expressed their tendency to learn to program,

Figure 12: Satisfaction feedback

mathematics and physics, leading to a high Tendency score for all
groups. The Profile score, calculated as an average of Experience and
Tendency, indicates balanced teams regarding their background.

Figure 13: Profile analysis

6 DISCUSSION
We presented a systematic usability evaluation of the GCL lan-
guage. In this section, we discuss the contributions to the software
language engineering process, evaluation results and finally the
implications for the further development.

6.1 Contributions to the development cycle
By designing the systematic experimental study, it was necessary
to describe the context of use of GCL during the experiment and its
goals explicitly. We have identified “Who will use the language?”
and characterised the intended group of end users by the Profile,
where each of the relevant characteristics was measured with a
particular set of questions and can be further reused and analysed
for selection of experimental subjects and specification of GCL’s au-
dience. We explicitly tackle the question “Where will the language
be used?” by defining its technical, social and physical environment.
Also, we systematically analysed the working environment of the
GCL’s competitors’ tools to further identified both limitations and

SAC 2018, April 9–13, 2018, Pau, France A. Barišić et al.

advantages of GCL. Further, we explicitly expressed “How will the
language be used?” through user stories. (see [4]). Developers per-
formed the functional testing of these user stories, and the teaching
artefacts (i.e. presentation documents and videos) were produced,
which can be now be reused as a part of language documentation.
The readability and understandability of these presentation materi-
als were validated during pilot experiment sessions and materials
can be reused in further evaluations.

Additionally, we address the question “Why will the language be
used?” by defining the usability requirements and their GQM defini-
tion. Our high-level goal to evaluate usability is context-dependent,
and therefore we see that its success is linearly related to the vali-
dated requirements (e.g. effectiveness and satisfaction) and a given
context (e.g. evaluating a Challenge scenario in a similar experi-
ment with LegoMS, in the first run of the comparative evaluation,
using GCL1, and Scratch in the second run of the experiment, this
time competing with GCL2). The trial design was successful and
can be reused and save time in further evaluation sessions. The
experiment results helped in making the further design decisions
and identifying the pros and cons of the previous implementation.

6.2 Evaluation results
RQ1: How does GCL2 compare to the baselines (GCL1, Lego
and Scratch) in terms of the Effectiveness of the teenagers
when programming a robot? Based on the results obtained in
the first run we conclude that programming the robots with GCL1
resulted in lower Effectiveness scores when compared to program-
ming the robot with Lego. However, thanks to the evaluation with
the GCL1 prototype, we found that GCL was already usable to
some extent by teenagers. The feedback and observations of that
initial run gave us insights into particular features that should be
implemented to improve GCL’s usability. This helped to steer the
development of GCL2, that was then tested in the second run of
the experiment, this time using Scratch as a competitor (although,
in practice, both GCL1 and Lego can be seen as competitors). The
feedback collected in the previous iteration proved extremely valu-
able, leading to a significant improvement of the effectiveness from
GCL1 to GCL2, which is now on par to Lego and Scratch.

RQ2: How does GCL2 compare to baselines (GCL1, Lego
and Scratch) in terms of the Satisfaction of the teenagers
when programming a robot? Results showed that both GCL1
and Lego were rated as satisfactory, with Lego providing a more
intense satisfaction level. This shows that, although not being as
successful as with Lego, the teams solving the challenge using GCL1
still had an entertaining and motivating experience. Concerning
Satisfaction, GCL2 is significantly more competitive than GCL1 and
on par to Scratch and Lego.

6.3 Implications for the development of GCL
As a consequence of the analysis of all the data collected and the
observation of the interaction of the experiment’s participants with
the GCL language, the GCL development team identified that new
features are needed, and they will be included in future releases.

The focus is on improving the following areas:
Error Prevention and program readability needs: 1) Improve errors’

feedback (including suggestions on how to solve the problems

found); 2) When a user selects a new node to add to the diagram,
the nodes that are possible to connect to the new node should
become highlighted; 3) The users should be able to create blocks
of tree concepts (this will promote reuse and facilitate the sharing
and introduction of complex behaviours to novice users); 4) To
prevent misinterpretations of the execution of a sequence node, an
auto-alignment of new nodes added to a sequence node feature
has to be introduced; and, 5) Icon Labels should be presented on
mouse-over events (this should improve the user recognition of the
available options).

Diagram navigation: A fit to screen of the entire program or only
the selected nodes should be available; an improved tree collapse
and expand feature (the former approach, using keys “+” and “-”
was not clear to the user) should be added.

7 THREATS TO VALIDITY
Usually, it is not safe to rely on teenagers self-rating questions. To
maximise the reliability of the responses, we had adult helpers in-
terviewing them. This helped to ensure the validity and integrity of
results and gave strength to design recommendations or decisions.

We did not have participants using both languages. Although
this design prevents learning effects, it does create the risk of, by
accident, having more “competent” teams using one language, or
the other. However, by obtaining similar background scores (Profile
and Age) in the four groups, we are confident that this threat was
mitigated.

We compared two approaches with different robots, in the first
experiment run: one using Arduino, and the other using Lego hard-
ware. This might have introduced a bias in the results if one of the
robots was easier to program than the other for some reason not
directly associated with the programming language. To mitigate
this threat, the second run of the evaluation contrasted GCL2 with
the Scratch for Arduino language. So, in this second run, the robot
was the same for both languages (and also the same used with
GCL1).

The choice of LegoMS NXT as the platform to test against GCL1
can also be regarded as a potential threat. Lego recently released
theMindstorms EV3 platform that introduces improvements in their
development software and robots. However, in the second run of
the experiment, we used a different, but also quite popular language
(although not EV3), so GCL2 is progressively being compared to
other alternative languages, rather than just to LegoMS NXT. This
diversity is expected to mitigate the effects of using a single com-
parison point.

8 CONCLUSION
We reported how we involved teenagers, the end users, in several
iterations of the engineering process of a programming language
for low-cost robots and performed usability studies. This language,
GCL, was contrasted with LegoMS and Scratch.

The evaluation described in this paper, thanks to the involvement
of the end-users (teenagers) since early stages of the development
process of the language, was helpful to timely detect, prioritise,
and improve crucial usability aspects of GCL by identifying its
strengths and weaknesses. We observed the convergence of the
visual language to the degree of usability (regarding satisfaction

Leveraging Teenagers Feedback in the Development of a Domain-Specific Language SAC 2018, April 9–13, 2018, Pau, France

and effectiveness) achieved by existing mature and commercial
languages.

As future work, we intend to apply the same described technique
in the development of DSLs for other purposes and for different
end-user profiles. Also, we foresee the need for developing tools to
support software language developers to deal with the significant
overhead of the assessments and track the improvements on the
different features of the language.

ACKNOWLEDGMENTS
The authors would like to thank the NOVA LINCS Research Labora-
tory (Grant: FCT/MCTES PEst UID/ CEC/04516/2013) andDSML4MA
Project (Grant: FCT/MCTES TUBITAK/0008/2014).

REFERENCES
[1] Marco Angelini, Nicola Ferro, Giuseppe Santucci, and Gianmaria Silvello. 2014.

VIRTUE: A visual tool for information retrieval performance evaluation and
failure analysis. Journal of Visual Languages & Computing 25, 4 (2014), 394–413.

[2] Arduino. 2017. Arduino. (2017). Retrieved November 30, 2017 from http://www.
arduino.cc/

[3] Ankica Barišić, Pedro , Vasco Amaral, Miguel Goulão, and Miguel Pessoa Mon-
teiro. 2012. Patterns for Evaluating Usability of Domain-Specific Languages. In
Proc. 19th Conference on Pattern Languages of Programs (PLoP), SPLASH 2012. ACM,
Tucson, Arizona, 14:1–14:34. http://dl.acm.org/citation.cfm?id=2821679.2831284

[4] Ankica Barišić, João Cambeiro, VascoAmaral, Miguel Goulão, and TarquínioMota.
2017. Gyro Creator Language - Companion Site. (2017). Retrieved November 30,
2017 from https://sites.google.com/view/vl-empiricalstudy/home

[5] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 2001. Goal Question
Metric Paradigm. Encyclopedia of Software Engineering 1 (2001), 528–532.

[6] Emanuela Bauleo, Serena Carnevale, Tiziana Catarci, Stephen Kimani, Mariano
Leva, and Massimo Mecella. 2014. Design, realization and user evaluation of
the SmartVortex Visual Query System for accessing data streams in industrial
engineering applications. Journal of Visual Languages & Computing 25, 5 (2014),
577–601.

[7] Natacha Borgers, Edith De Leeuw, and Joop Hox. 2000. Children as respondents
in survey research: Cognitive development and response quality. Bulletin de
methodologie Sociologique 66, 1 (2000), 60–75.

[8] Amy Bruckman and Alisa Bandlow. 2002. Human-Computer Interaction for
Kids. In The Human-Computer Interaction Handbook: Fundamentals, Evolving
Technologies, and Emerging Applications, Julie Jacko and Andrew Sears (Eds.).
Lawrence Erlbaum and Associates, Boca Raton, FL, USA.

[9] Lejos Community. 2017. Lejos. (2017). Retrieved November 30, 2017 from
http://www.lejos.org/

[10] Wanda P Dann, Stephen Cooper, and Randy Pausch. 2011. Learning to Program
with Alice (w/CD ROM). Prentice Hall Press, Upper Saddle River, NJ, USA.

[11] Google. 2017. Blockly. (2017). Retrieved November 30, 2017 from https://
developers.google.com/blockly/

[12] Maria Hatzigianni and Kay Margetts. 2012. ’I am very good at computers’:
young children’s computer use and their computer self-esteem. European Early
Childhood Education Research Journal 20, 1 (2012), 3–20.

[13] International Standard Organization. 2011. ISO/IEC FDIS 25010:2011 Systems
and software engineering – Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality models. (March 2011). Re-
trieved November 30, 2017 from http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=35733

[14] Jared Jackson. 2007. Microsoft robotics studio: A technical introduction. Robotics
& Automation Magazine, IEEE 14, 4 (2007), 82–87.

[15] J. Johnson. 2003. Children, robotics, and education. Artificial Life and Robotics 7,
1 (2003), 16–21.

[16] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys (CSUR) 37, 2 (2005), 83–137.

[17] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton,
Stuart Charters, Shirley Gibbs, and Amnart Pohthong. 2017. Robust statistical
methods for empirical software engineering. Empirical Software Engineering 22,
2 (2017), 579–630. https://doi.org/10.1007/s10664-016-9437-5

[18] Frank Klassner and Benjamin Schafer. 2014. Using the New Lego MindStorms
EV3 Robotics Platform in CS Courses (Abstract Only). In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education (SIGCSE ’14). ACM,
New York, NY, USA, 745–746. https://doi.org/10.1145/2538862.2539024

[19] Roxane Koitz and Wolfgang Slany. 2014. Empirical Comparison of Visual
to Hybrid Formula Manipulation in Educational Programming Languages for

Teenagers. In Proceedings of the 5th Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU ’14). ACM, New York, NY, USA,
21–30. https://doi.org/10.1145/2688204.2688209

[20] Tomaž Kosar, Marjan Mernik, and Jeffrey Carver. 2012. Program comprehension
of domain-specific and general-purpose languages: comparison using a family
of experiments. Empirical Software Engineering 17, 3 (2012), 276–304. https:
//doi.org/10.1109/MS.2003.1231149

[21] Lego. 2017. Enchanting. (2017). Retrieved November 30, 2017 from http://
enchanting.robotclub.ab.ca/

[22] Lego. 2017. Lego Mindstorms. (2017). Retrieved November 30, 2017 from
http://mindstorms.lego.com/en-us/Software/Default.aspx

[23] Pedro Leonardo. 2013. Child Programming : An adequate Domain Specific Lan-
guage for programming specific robots. Master’s thesis. Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa.

[24] Xiao-Wen Terry Liu. 2005. An intuitive and flexible architecture for intelligent
mobile robots. Ph.D. Dissertation. The University of Manitoba.

[25] Panos Markopoulos and Mathilde Bekker. 2003. On the assessment of usability
testing methods for children. Interacting with computers 15, 2 (2003), 227–243.

[26] Myles McNally, Michael Goldweber, Barry Fagin, and Frank Klassner. 2006. Do
Lego Mindstorms Robots Have a Future in CS Education?. In Proceedings of the
37th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’06).
ACM, New York, NY, USA, 61–62. https://doi.org/10.1145/1121341.1121362

[27] NCH Software. 2016. Debut Video Capture Software. (2016). Retrieved November
30, 2017 from http://www.nchsoftware.com/capture/

[28] Donald A Norman and Stephen W Draper. 1986. User centered system design.
Lawrence Erlbaum Associates, Hillsdale, NJ, USA.

[29] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., United Kingdom.

[30] Pololu. 2017. Pololu 3pi. (2017). Retrieved November 30, 2017 from https:
//www.pololu.com/product/975/

[31] Uvais A Qidwai. 2007. A LAMP-LEGO Experience of Motivating Minority
Students to Study Engineering. SIGCSE Bull. 39, 4 (Dec. 2007), 41–44. https:
//doi.org/10.1145/1345375.1345411

[32] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[33] Eric Rosenbaum, Evelyn Eastmond, and David Mellis. 2010. Empowering Pro-
grammability for Tangibles. In Proceedings of the Fourth International Conference
on Tangible, Embedded, and Embodied Interaction (TEI ’10). ACM, New York, NY,
USA, 357–360. https://doi.org/10.1145/1709886.1709974

[34] Gavin Sim, Brendan Cassidy, and Janet C. Read. 2013. Understanding the Fidelity
Effect when Evaluating Games with Children. In Proc. 12th International Con-
ference on Interaction Design and Children (IDC ’13). ACM, New York, NY, USA,
193–200.

[35] Gavin Sim and Matthew Horton. 2012. Investigating Children’s Opinions of
Games: Fun Toolkit vs. This or That. In Proceedings of the 11th International
Conference on Interaction Design and Children (IDC ’12). ACM, New York, NY,
USA, 70–77. https://doi.org/10.1145/2307096.2307105

[36] Karel Vredenburg, Ji-Ye Mao, Paul W. Smith, and Tom Carey. 2002. A Survey of
User-centered Design Practice. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’02). ACM, New York, NY, USA, 471–478.
https://doi.org/10.1145/503376.503460

[37] Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (March
2006), 33–35. https://doi.org/10.1145/1118178.1118215

http://www.arduino.cc/
http://www.arduino.cc/
http://dl.acm.org/citation.cfm?id=2821679.2831284
https://sites.google.com/view/vl-empiricalstudy/home
http://www.lejos.org/
https://developers.google.com/blockly/
https://developers.google.com/blockly/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1145/2538862.2539024
https://doi.org/10.1145/2688204.2688209
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149
http://enchanting.robotclub.ab.ca/
http://enchanting.robotclub.ab.ca/
http://mindstorms.lego.com/en-us/Software/Default.aspx
https://doi.org/10.1145/1121341.1121362
http://www.nchsoftware.com/capture/
https://www.pololu.com/product/975/
https://www.pololu.com/product/975/
https://doi.org/10.1145/1345375.1345411
https://doi.org/10.1145/1345375.1345411
https://doi.org/10.1145/1709886.1709974
https://doi.org/10.1145/2307096.2307105
https://doi.org/10.1145/503376.503460
https://doi.org/10.1145/1118178.1118215

	Abstract
	1 Introduction
	2 Related work
	2.1 Language Usability
	2.2 User characterization and evaluation
	2.3 Programming languages for teenagers

	3 Context
	4 Experiment preparation
	4.1 Experiment objectives
	4.2 Experiment design
	4.3 Experimental instruments and measurements

	5 Results
	5.1 Descriptive statistics
	5.2 Dataset preparation
	5.3 Hypotheses testing

	6 Discussion
	6.1 Contributions to the development cycle
	6.2 Evaluation results
	6.3 Implications for the development of GCL

	7 Threats to validity
	8 Conclusion
	References

