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Abstract

We introduce a robust and high order strategy to perform the reinitialization in a level set framework.
The reinitialization by closest-points (RCP) method is based on geometric considerations. It relies on a
gradient descent to find the closest points at the interface in order to solve the eikonal equation and thus
reinitializing the level set field. Furthermore, a new algorithm, also based on a similar geometric approach, is
introduced to detect precisely all the ill-defined points of the level set. These points, also referred to as kinks,
can mislead the gradient descent and more widely impact the accuracy of level set methods. This algorithm
coupled with the precise computation of the closest points of the interface, permits the novel method to be
robust and accurate even when performing the reinitialization every time step after solving the advection
equation. Furthermore, they both require very few given parameters with the advantage of being based on
a geometrical approach and independent of the application. The proposed method was tested on various
benchmarks, and demonstrated equivalent or even better results compared to solving the Hamilton-Jacobi
equation.
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Highlights

• A geometric approach to reinitialize the level set function based on a gradient descent.

• Applicable every time step after transporting the level set field.

• Accurate detection of kink points of the level set field.

• Both algorithms rely on very few given constant geometrical criteria, independent of the application.

• Robust and accurate in 2D and 3D, from simple advection to two-phase flow subjected to surface
tension.

1. Introduction

The accurate representation of a geometrical surface and during its motion is essential in many applications.
Simulation of two-phase flows requires adequate numerical methods for localizing precisely each phase and
their interactions at the interface such as buoyancy forces and surface tension. The dynamics of such interfaces
can be relatively complex as they are subjected to high velocity gradients, shear and consequently topology
changes.

For this purpose, the Level Set Methods [1] (LSM) are largely used to capture evolving interfaces which are
implicitly represented through a scalar field φ, usually defined as a signed distance function, where the surface
is defined as its zero level set. Its simplicity of implementation and its robustness are the key advantages
of this method. Furthermore, LSM captures naturally topological changes without necessitating explicit
treatment of connections / disconnections of the surface. Nevertheless, the transport of φ, regardless of the
chosen numerical method, will lead to significant distortion of this field. To ensure accurate computation of
quantities linked to the interface such as the curvature and the normal, or the induced volume fraction of
each fluid, it is essential to perform a reinitialization process of the level set field. Several approaches exist,
among them the fast marching method [2] and fast sweeping methods [3] are based on an iterative process
for finding values of φ starting from the interface position, they however suffer of a lack of precision. Another
common approach consists in solving iteratively the Hamilton-Jacobi partial differential equation [4–6] whose
stationary solution is a signed distance function. Combined with well suited numerical schemes, this method
can give high order results.

On the other hand, applying this process too frequently will introduce undesirable displacement on
the interface position, a problem which can be reduced with modifications such as [6–8]. Even though, as
we will see in Sec. 6.8, this methodology can also introduce large errors on the interface dynamic when
topological changes occur. Hence, to reduce the displacement of the interface, it is common to perform this
reinitialization procedure after a few interface advection steps. Furthermore, this approach is sensitive to
the choice of how frequently it is applied. Too often it can lead to important deformation and diffusion
of the surface, too rarely the level set function will eventually be too heavily distorted. The choice of this
reinitialization frequency has seen no consensus in the literature and usually depends on the underlying
application.

The present work introduces a new robust strategy following a geometric approach to perform the
reinitialization procedure that can be applied to various applications. This method is principally based on
the minimal distance, also named closest point, to the surface which can be computed thanks to a gradient
descent. Chopp [9] used this principle to improve the fast marching method of Sethian [2], where the
closest points are computed through a modified Newton’s method. Later, Anumolu [10] applied a hybrid
reinitialization process with the closest point approach for the cells containing the surface and solved the
Hamilton-Jacobi equation farther. However, when topology changes, large distortions or under-resolved
zones eventually arise after the transport of the level set, those ill-defined regions will eventually disturb
the accuracy of the gradient descent. Those regions, also referred to as kinks [11], need to be detected and
treated adequately for the robustness of the method.
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We extend these closest point reinitialization approaches in an algorithm that fully takes advantage of
the gradient descent and that is applied as well for cells close and far from the surface, thus granting a better
accuracy for the overall level set methods. One of the main advantages of this method is that it can be safely
applied every time after transporting the level set without compromising the underlying interface dynamic.
Conjointly, a new algorithm is also introduced to detect the kinks.

The performance of the method will be tested on a series of benchmarks. First, we study the cases of pure
advection of various surfaces and assess the capabilities of the method on simple and complex geometries
with thin layers, under-resolved regions or discontinuities. Then, we will consider test cases coupled with
Navier-Stokes equations with surface tension to demonstrate the capacity of the method to capture accurately
the behaviour of inviscid two-phase flows.

2. The Level Set Method coupled with Navier-Stokes equations

2.1. Level set definition

Let us consider a spatial domain Ω, composed by two subdomains Ω− and Ω+ separated by an interface
Γ. In a level set framework, Γ is represented implicitly by a scalar function φ : Ω→ R which is commonly
defined as a signed distance function:

φ(x) =
{
−dist(x,Γ) if x ∈ Ω−
+dist(x,Γ) if x ∈ Ω+ with Γ = {x ∈ Ω | φ(x) = 0} .

where dist(x,Γ) is the Euclidean distance of x to the interface, defined by the zero level set of φ. Furthermore,
in that particular case, φ is solution of the eikonal equation :

|∇φ| = 1. (1)

2.2. Navier-Stokes equations for incompressible two-phase flows

We considered the incompressible form of the Navier-Stokes equation where the momentum equation can
be written in a conservative form as:

∂ρu
∂t

+∇ ·(ρu⊗ u) = −∇p+∇ ·(2µD) + f (2)

where u is the fluid velocity, ρ its density, µ its dynamic viscosity, p the pressure, D =(∇u +∇Tu)/2 is the
deformation tensor and f encompasses external body forces. Under the assumption of incompressibility, the
continuity equation reduces to a divergence-free constraint on the velocity field:

∇ · u = 0.

In the case of an immiscible two-phase flow simulation where a discontinuity in density and viscosity appears
at the interface Γ. This discontinuity is numerically treated following the one fluid model, first introduced in
[12]. In the case where the density and viscosity are constant within each phase, ρ and µ are expressed as:

ρ(x) = ρ2 + (ρ1 − ρ2)c(x)
µ(x) = µ2 + (µ1 − µ2)c(x)

(3)

where ρ1 (resp. ρ2) and µ1 (resp. µ2) are the values of the first (resp. second) phase and c a characteristic
function, also referred as the volume fraction.
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Level set coupling. In a level set framework, c is expressed as a function of φ. Where, in order to obtain a
smooth representation of the interfacial region, a regularized form of the Heaviside function is usually used:

c(x) = Hε(φ(x)). (4)

with

Hε(φ) =


0 if φ < ε
1
2(1 + φ

ε + 1
π sin(π φε )) if |φ| ≤ ε

1 if φ > ε
(5)

Hence, the density and viscosity vary smoothly within a interfacial region of thickness 2ε, where usually ε is
proportional to the cell size h, i.e. ε = O(h).

The interface thickness problem. In the case where φ is a signed distance function and ε = kh, with k a real
number, the interfacial region is of thickness 2kh. Ensuring that this thickness remains constant is a crucial
criterion for the accuracy of the one fluid model and makes the reinitialization of the level set function an
essential matter. Hence, performing the reinitialization step systematically after transporting the level set
field is essential to maintain a constant interface thickness.

Surface tension model
Surface tension can be modeled as a pressure jump across the interface, from a volume point of view, as

fσ = σκΓnΓδΓ, where σ is the surface tension coefficient, κΓ the curvature of the surface and nΓ its normal
and δΓ is the Dirac function associated to the surface. Brackbill et al. [13] introduced the Continuum Surface
Force (CSF) which approximates this body force as:

σκnδΓ ' σκ∇c. (6)

Using the level set formulation, the normal n to the interface and the associated mean curvature κ are
defined as:

n = ∇φ
‖∇φ‖

and κ = ∇ · n = ∇ ·
(
∇φ
‖∇φ‖

)
.

The normal and curvature approximation problem. Hence the normal and the curvature are defined by
extension in the whole domain through the level set function φ. Consequently, a good regularity of φ in the
vicinity of the interface is necessary to accurately discretize the curvature and so reduce spurious currents
[14–16]. Hence, a frequent reinitialization of the level set act towards ensuring this property.

2.3. Level set transport

In this framework, the interface and the quantities associated with it are directly linked to the level set
function φ. Following the interface position over time is obtained by solving the advection equation, with an
underlying velocity field u , applied to the level set:

∂φ

∂t
+ u · ∇φ = 0 (7)

Yet, in a general case, resolving the advection equation will induce deviation of φ to be a signed distance
function and consequently will cease to be a solution of the eikonal equation 1. The reasons are twofold.
First, distortions come from numerical errors when resolving the advection Eq. (7). But most importantly,
as demonstrated by Trujillo et al. [17], these distortions are directly connected to the nature of the flow
field, regardless of the method used to evolve the level set. In fact, any transported function will have its
gradient and derivatives of higher degree stretched under the presence of a moving fluid with a non-zero
strain rate tensor. In a two-phase fluid simulation, the numerical thickness of the interface (see Sec. 2.2) will
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not remain constant and the curvature will be miscalculated. This will lead to large errors in the continuity
and momentum equation, as well as surface tension, and consequently in the pressure and velocity fields.
[16, 18]. Hence, after the advection of φ, it is essential for accuracy and stability to use a reinitialization
algorithm to preserve the signed distance function property (see Eq. (1)).

3. Level set reinitialization

3.1. Existing methods and their drawbacks

Level set reinitialization has been the subject of a lot of research and a variety of strategies has been
proposed. Among them, the fast marching method [2] or fast sweeping methods [3] consist on an iterative
process for extrapolating the distance function starting from the cells closest to the interface. They have the
main advantage of being relatively fast to compute but suffer from a lack of precision that is essential for
two-phase flow applications.

Another approach has been introduced by Sussman et al. [4], where a front propagates in the normal
direction from the interface by solving the PDE over a fictitious time τ :

∂ψ

∂τ
+ sgn(ψ0)(‖∇ψ‖ − 1) = 0 (8)

with the initial condition:

ψ0 ≡ ψ(τ = 0) = φ.

After integration of ψ over the pseudo time τ , the result is transferred back to φ. The complete reinitialization
of the level set function is the stationary solution of Eq. (8) which derives from the Hamilton-Jacobi equation.
Indeed, the solution is obtained when τ →∞. Until the end, Eq. (8) will be referred to as H-J equation.

Even if solving the H-J equation is expensive comparatively to the fast marching or fast sweeping method,
it gives accurate solutions thanks to the use of high order schemes. The principal drawback of this method is
the important number of parameters that will impact the solution. Hence, it requires adapted methods and
is subjected to a CFL condition on the pseudo time step dτ . Also, the number of iterations over which the
H-J equation needs to be solved is up to a convergence criterion that is, or should be, based on the deviation
of the level set field to the eikonal equation. This criterion is not trivial to evaluate explicitly, locally or
globally in the whole domain, leaving an important uncertainty when setting up a simulation.

Finally, and most importantly is the reinitialization frequency parameter, i.e. how frequently the level set
is reinitialized with the H-J equation. Ideally, one would want to apply it after every advection equation.
However, in practice, as pointed by the authors in [6, 7], this method introduces displacements of the interface
position because of numerical errors, leading to mass loss/gain; it also affects the geometrical properties of
the interface which, as we will see in Sec. 6.8, may impact significantly topological changes. Even if methods
exist to reduce the displacement of the surface [5–7] it is usual to reinitialize the level set field after solving
the advection equation a few times, to reduce the numerical errors introduced during the reinitialization
procedure. Hence, a question arises on the impact of the deviation of φ from a signed distance function
between two reinitializations.

To summarize, finding the right parameters is still bleary and depends largely on the underlying application.
In a recent work, Solomenko et al. [19] did a comparative study on some of these parameters and showed how
it may impact the level set when coupled with the Navier-Stokes equations in presence of surface tension.
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3.2. Objectives of the proposed approach

We believe that a geometry-based approach leads to a more natural construction of a level set function
solution of the eikonal equation. The main ambition of this article is to introduce a robust and accurate high
order reinitialization method with a straightforward numerical parameterization and free of the cumbersome
frequency parameter. Thus, it is applicable at every time step after solving the advection equation without
affecting negatively the dynamic of the underlying two-phase flow.

4. Leading idea of the method

The precursor works of [9, 10, 20] introduced an alternative and original strategy based on a geometrical
approach, consisting in performing a gradient descent algorithm to find the closest point to the interface,
used in a reinitialization procedure.

4.1. Our main contributions

Contrary to [9] and [10], wherein the authors enhanced the Fast Marching and HJ reinitialization with
closest points near the interface, i.e. restricting themselves to the cut-cells, we extend the closest point
computation to the whole region of interest where the level set has to be accurately computed. While [20]
have shown high order results on static cases, we propose a method that is robust and accurate with moving
interfaces and two-phase flow with topology changes, thanks to the use of a newly developed kink detection
algorithm and adequate treatment. Furthermore, the method is safely applied after every advection of the
interface. In the next sections, the proposed method will be referred to as the Reinitialization using the
Closest Point algorithm (RCP).

4.2. The closest point

In the general case of an arbitrary surface representation, finding the closest point to the interface requires
an optimization algorithm which seeks to minimize an objective function. Herein, for any point x of the
domain, finding a closest-point of x to the surface Γ consists in finding a point y on Γ which minimizes the
value ‖−→xy‖:

∀x ∈ Ω,y = CP(x), ‖−→xy‖ = min
y∈Γ

(‖x− y‖)

It is important to note that all points x which have more than one closest point define the medial axis of
a surface. This particular topic is subjected to a detailed discussion in section Eq. (11).

The gradient descent. Within the level set framework, in practice, the closest-point algorithm is implemented
to satisfy a twofold condition:

φ(y) = 0 and −→xy.ty = 0,

where ty is a vector part of the tangent plane of Γ at y. The first equation guarantees that y is on Γ and
the second ensures that the local tangent plane of the interface is orthogonal to the vector −→xy. Given a
sufficiently well-defined level set field, if both conditions are satisfied, y is defined as a closest point of x to
the interface.

A simple strategy consists in a variant of a Newton method that searches to minimize the absolute value
of φ by descending along the normal direction and then looking for the orthogonality in the tangent plane.
At each step of the algorithm, interpolations are needed in order to compute the value of φ and the normal.
Implementation details are given in [9, 16].
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4.3. Reinitialization with closest-points
Let ψdist(x) be the Eulerian distance between x and its closest point:

∀x ∈ Ω : ψdist(x) = ‖
−−−−−→
xCP(x)‖

and the sign function sgn as:

sgn(x) =

 −1 if x ∈ Ω−
0 if x ∈ Γ

+1 if x ∈ Ω+

which is equivalently the sign of the level set function. Multiplying ψdist by the sign function leads to:

ψ(x) = sgn(x) · ψdist(x) =


−‖
−−−−−→
xCP(x)‖ if x ∈ Ω−

0 if x ∈ Γ
+‖
−−−−−→
xCP(x)‖ if x ∈ Ω+.

(9)

which is the definition of the signed distance function given in Sec. 2.1. Conversely, this solution ensures that:

∀x ∈ Ω : ‖∇(sgn(x) · ψdist(x))‖ = 1

and proves that it is possible to successfully convert any function into a signed distance function capturing
the same surface, as long as one knows how to compute the closest point.

4.4. Towards the numerical discretization

In practice, φ will remain close to a signed distance function after the advection step, especially if the
reinitialization procedure is achieved systematically since maximal distortion will be limited by the CFL
restriction. Consequently, if the scalar field φ is sufficiently smooth and regular, particularly near the surface,
then gradient descent algorithm can be safely exploited. This approach leads to an efficient strategy that
gives a solution of the closest point at the precision of the objective function derivative evaluation. In practice,
this evaluation will be done thanks to high order interpolations as detailed farther.

Problems arise where, from a numerical point of view, φ is under-resolved (as the narrow tail of the
interface illustrated in Fig. 1) or close to a non-smooth region (for example, during a topological change).
Such particular configurations eventually arise with the dynamic motion of the surface and represent a
challenging problem as they can perturb the gradient descent. Indeed, when the first derivative of φ is non
differentiable, numerical interpolations will lead to large errors and hence the key ingredient of the method,
the closest point, is miscalculated. It is essential for the robustness of the method, as illustrated in Fig. 1, to
treat adequately such regions, named kinks, as will be detailed in the next sections.

5. Proposed method and implementation

For the sake of clarity, until the end of the article, it will be assumed that the level set field is discretized
on a uniform Cartesian mesh. Yet, as we will see below, the method is principally based on interpolations
and derivatives calculation of φ. Thus, it can be naturally extended on an arbitrary mesh. Furthermore,
all the algorithms are presented as if they were processed on a single processor, nevertheless they can be
adapted for a parallel application. In the result section 6, all the test cases were executed with more than
one processor. We will not detail further these two particular implementation details in this article.
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Figure 1: Illustration of the RCP algorithm result on the single vortex 2D case, without kinks treatment (left) and with kinks
treatment (right). The reference solution is drawn with black dashed lines. The absence of treatment of kinks leads to heavy
distortion of the interface and exhibits anti-diffusive behaviour. The interface is given at maximal deformation for a grid
resolution of 1282 cells.

5.1. Locality of the algorithm

As the surface is unambiguously defined by the level set thanks to a finite number of cells surrounding it,
the locality of the proposed algorithm is crucial to its efficient application. Conversely, the overall accuracy
of the method will not be increased by considering cells far from the interface and can then be ignored,
representing a significant gain in computational efficiency.

Similarly, to the concept of level set band, we will thus define an ensemble of sets of cells, at an increasing
distance of the surface, that will be used to locate different processes executed in the algorithm. For the
interface to be accurately captured, one key criterion is the necessity to preserve a certain number of cells
around the interface, i.e. within the employed interpolation/derivatives stencils. The higher the desired
accuracy, the larger the stencil. We define Scl to be the interpolation stencil surrounding a cell cl. For
example, in 2D, a fourth order interpolation requires 4× 4 cells. In that case, Scl encompasses a zone of 2
cells to the left/bottom of cl and 2 cells to the right/top of it.

We distinguish 4 nested sets of cells, as illustrated in Fig. 2:

– ΩΓ: all cells crossed by the surface Γ;

– ΩStencil: the union of all stencils Scl associated to all cells cl of ΩΓ;

– ΩCP : all cells where the closest point is computed;

– ΩBand: the largest band of cells where the level set function is required.

Where ΩCP and ΩBand are constructed iteratively by growing the band starting from the cells containing
the surface, i.e. ΩΓ, towards the desired distance, in a similar manner as described in [15].
Hence, ΩΓ ⊂ ΩStencil ⊂ ΩCP ⊂ ΩBand ⊂ Ω.

We then define two particular sets of cells that will be thoroughly detailed further:
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– ΩKink: all cells containing a kink (see Sec. 5.4.1);

– ΩPseudoLS : the region of cells where kinks need to be replaced by a tailor-made smooth function (see
Sec. 5.5.1).

The concept of kink, which is a key point of the proposed method, will be thoroughly defined and discussed
in the dedicated section 5.4.

Figure 2: Illustration of the four nested sets of cells. In black the underlying interface, blue ΩΓ, red ΩStencil, green ΩCP and in
orange ΩBand.

5.2. Proposed algorithm

The RCP procedure is applied after the advection of φ (see Eq. (7)) and preceded by the construction of
the sets described above. Algorithm 1 outlines the prime steps of the proposed method. First, a pre-process is
necessary in order to detect all cells (i.e. build ΩKink and ΩPseudoLS) that will require a particular treatment.
Then, a regularization through a pseudo level set is applied (1) for all ill-defined cells that are sufficiently far
from the surface (cells part of ΩPseudoLS). Thereafter, the closest points is computed (2a) for all cells in
ΩCP , except for particular cells at the interface for which the associated interpolation stencil contains at
least one kink i.e. (ΩKink ∩ Scl) 6= Ø. The reinitialized level set is then be computed (2b) thanks to Eq. (10).
Finally, a low-order HJ reinitialization procedure is applied (3) to all remaining cells. We present in next
sections the successive steps in more details, particularly the treatment of kink cells.

Algorithm 1 Outline of the RCP algorithm
1. Detection of kinks: build ΩKink (see algorithm 2);
2. ∀cell ∈ ΩPseudoLS (see Sec. 5.5.1);

(a) Compute a pseudo distance function;
(b) Apply a low-order HJ reinitialization;

3. ∀cell ∈ ΩCP \ {cl ∈ ΩΓ | (ΩKink ∩ Scl) 6= Ø}:
(a) Compute the closest point with gradient descent (see Sec. 5.3);
(b) Update the level set value with Eq. (10) (see Sec. 5.3 and Sec. 5.5.2);

4. ∀cell ∈ Ω \ ΩCP : apply a low-order HJ reinitialization (see Sec. 5.6).
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5.3. Research of the closest points

One of the key points of the method is the accuracy of the gradient descent to find the closest points.
Therefore and for all the following sections, the algorithm used is the one described by Coquerelle et al. [16]
where a fourth-order convergence accuracy is achieved thanks to high order interpolation schemes and an
orthogonality criterion. As presented by [20], it is worth noting that sixth-order accuracy can be obtained
for the gradient descent. Nevertheless, we found that a fourth-order accuracy is enough in all our test cases
section 6. Consequently, using higher order numerical schemes was not considered for efficiency reasons.

It should be noted that performing the algorithm for every cells in the domain would be time-consuming
and not relevant. Indeed, as explained in the previous section, all the physical quantities which are directly
linked to the level set such as the curvature or the volume fraction are only needed close to the surface.
Moreover, the precise position of the surface is captured by the cells surrounding it: for instance, a nth order
precision is expected with a stencil of nd cells, with d the dimension. However, cells far from the surface
should not interfere with it as long as they are treated adequately. Consequently, for computational efficiency
the closest points are only computed where accuracy on the level set is crucial, and thus in a narrow band
around the interface which is noted by ΩCP . This band is constructed iteratively by growing the band
starting from the cells containing the surface towards the desired distance, as described by [15]. Concretely,
we fix the width of the band to be 10h, i.e. 5 cells on each side of the surface, permitting to use accurately a
fifth order advection scheme.

Associated signed distance function. Once the closest point has been computed, equation 9 can be evaluated
from a discrete point of view through the equation:

ψ(x) = sgn(φ(x))‖
−−−−−→
xCP(x)‖. (10)

The associated resulting reinitialized level set is thus set accordingly.

5.4. Level set kinks

5.4.1. Definition
The reliability of the method is inherently linked to the accuracy of the closest point computation. It

may suffer from cells where φ is ill-defined or its derivatives undefined, namely at kinks, which can mislead
the gradient descent towards surfaces which could not be the closest one. We distinguish two types of kinks:

– inherent kinks: points that are part of the medial axis, as part of the level set representation;

– numerical kinks: points that are not part of the medial axis and that appear because of numerical
errors, after topological changes or near under-resolved regions.

Inherent kinks. The inherent kinks, as illustrated in Fig. 3, are points which are equidistant to at least two
surfaces, i.e. when they have two or more closest points. They define the medial axis of the interface and, as
also noted by [10, 11, 21], on those kinks the derivatives of φ are not defined. Hence, those kinks intrinsically
arise from the definition of the level set as a signed distance function and cannot be suppressed, even when
refining the mesh. From a discrete point of view, significant errors will be made if a kink lies inside the
stencil used to approximate derivatives or perform interpolation. Consequently, the closest point accuracy
will be impacted, as also noted by [10, 20].

Numerical kinks. The second type of kinks, referred as numerical kinks, can lead the descent algorithm
towards an undesired local minimum. We distinguish three different origins.

– First, such kinks arise when transporting under-resolved structures. For example, as illustrated in
figure Fig. 4, when a small structure such as a bubble vanishes due to numerical diffusion when solving
the advection, the underlying medial axis (in that case, reduced to a point), depicted as an extremum
in the level set field, is still present. However, the surface has indeed disappeared as φ is not crossing
the zero value anymore. In such case, a local minimum emerges in the level set field that can perturb
the interpolations.
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Figure 3: Illustration of the inherent kinks. On the top, a 2D visualization of two drops, the medial axis is drawn in red. The
middle plot represents the level set function over a 1D cut, the associated kinks are highlighted by the red arrows. The bottom
part is the associated discrete 1D mesh, the kink cells are filled in red.

– Secondly, numerical kinks also appear after topological changes, e.g. when two bubbles merge. In a
similar way as the first category, the medial axis which resides at mid-distance to the bubbles before
merging will also be transformed into a local minimum after the topology change.

– The last category comes from the stretching and compression due to the underlying velocity field which
make φ depart severely from a distance function, inducing local steep and flat variations of level sets
that will mislead numerical schemes.

Consequently, near kinks of the first or second type, the local derivatives and interpolations will be
miscalculated. More dreadfully, local minima can act as well potentials, where the gradient descent algorithm
will plunge and stop without reaching the surface. In consequence, to fulfil accuracy and robustness, it is
crucial to detect carefully those points.
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Figure 4: Creation of a numerical kink when a small structure, such as a bubble, vanishes due to numerical diffusion when
solving the advection equation Eq. (7). On the top a 2D visualization of the drop at different times and on the bottom a 1D cut
of the associated level set.
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5.4.2. Numerical detection of kinks
From a discrete point of view, we do not require the kink detection process to be fully accurate, but to

be reliable while not being too costly. Hence, a low order method can suffice to detect non smooth level
set regions. For detecting cells containing or close to a kink, we propose a new criterion that relates the
local ambiguity in the closest points around a point x: x is said to be close to a kink if, for two different
points xξ1 and xξ2 at a very small distance of x in directions

−→
ξ1 and

−→
ξ2 , the Euclidean distance between

their respective closest point is above a certain threshold ε. A geometric representation of the concept is
given in Fig. 5. In a compact form:

x is a kink if ∃(xξi ,xξj ),
∥∥CP (xξi)− CP

(
xξj
)∥∥ > ε. (11)

The choice of the threshold ε relates to the sensitivity of the detector and is discussed in details further
in this section. We can already note that it is of the order of the cell size, i.e. of the maximum radius of
curvature of the surface at the discrete level.

First order closest point approximation. Since there is no analytical method for computing the closest points
and we cannot enumerate all points xξ surrounding x, the criterion has to be approximated. For the first
matter, we propose to use a first order local approximation of the closest point:

CP (x) ' x− n (x) d (x) (12)

where n = ∇φ
|∇φ| is the normal and d the Euclidian distance to the surface. Again, within a first order

approximation, by using d ' φ
|∇φ| , Eq. (12) can be rewritten as:

CP (x) ' x− φ (x)
|∇φ (x)|2

∇φ (x) . (13)

which can be related to the first step of the general closest point algorithm based on the gradient descent,
described in Sec. 5.3, for which we will use, here, a first order gradient approximation. Once appropriately
discretized, this equation will be used to compare closest points in the surrounding of a point x and determine
whether it is close to a kink.

For efficiency reasons, we restrict the number of surrounding points xξ to an acceptable number. Further-
more, instead of using interpolation to evaluate the xξ in several directions, we simply approximate Eq. (13)
at a mesh cell center with off centered derivatives using the neighbouring cells. This is justified since, at a
kink, different off centered schemes (e.g. east or west biased for the x direction) used to approximate the
gradient ∇φ will vary significantly depending of the direction used to compute it, as if we had set a different
starting point to the gradient descent. This fact will lead the surrounding closest point approximations
to spread into disperse positions, attaining the desired property. Conversely, in smooth regions, all biased
gradient approximations will be numerically close and so will be their associated closest points.

Biased approximation of the closest point. Classical off centered schemes can thus be used to approximate
the gradient. For the sake of simplicity, we have only showed here the example for the south west direction.
The reader can easily build the remaining schemes based on the following formulation; the detailed derivation
has been reported in appendix Appendix A.

In 2D, if we consider a point xξSW = x + dl (−1,−1)T , with dl� h, at the south-west of x, where x is
the center of the cell Ωi,j , on a uniform grid, the gradient operator can be approximated with a first order
upwind-biased scheme in both x and y directions by:

∇φ(xξSW ) '
(
φi,j − φi−1,j

δx
,
φi,j − φi,j−1

δy

)
(14)

Similar schemes are designed for the three other neighbours (south-east, north-west and north-east). These
schemes are local and fast to compute and the 3D case is straightforward to obtain. In that case, the closest
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point biased in the south-west direction can be approximated by the formula:

CP (xξSW ) ' xi,j −
φi,j

|∇φ(xξSW )|2
∇φ(xξSW ). (15)

Γ Γ

medial axis

xξNW xξNE

xξSW xξSE

xi−1,j xi+1,j

xi,j−1

xi,j+1

Ω− Ω−

Ω+

Figure 5: Illustration of the kink detection algorithm on a 2D mesh in the vicinity of a medial axis. Three of the four closest
point approximations (SW, NW and SE) surrounding xi,j point towards a narrow region on the left most surface whilst the last
one (NE) is located on the right most surface. The distance between those CP being sufficiently large, the cell is detected as a
kink.

Kink detection algorithm. Based on these biased schemes, we can now compute the associated closest point
approximations in the four directions: CP (xξSW ), CP (xξSE ), CP (xξNW ) and CP (xξNE ), as illustrated on
Fig. 5. Finally, we evaluate the maximum relative Euclidean distance to detect if a pair is sufficiently distant
to consider the region to be near a kink. We have summarized the method in algorithm 2. It is worth to note
that this algorithm can be optimized by stopping it whenever the maximum Euclidean distance criterion
has been exceeded and thus avoiding the computation of unnecessary closest points. An illustration of the
resulting detected kink cells on the single vortex 2D test case (see Sec. 6.5) is shown in Fig. 6 and on the
Zalesak disk test case (see Sec. 6.4) in Fig. 7.

Detector threshold. The threshold ε used in algorithm 2 is a key point in the kink detection process. Ideally,
it has to be infinitely small. However, due to numerical approximations, even in a smooth region, the distance
between closest points computed with biased approximations of Eq. (13) can be of the order of h, where
h is the cell width. This is particularly true for points far from the interface where d ' φ/ |∇φ|, i.e. the
approximated distance to the surface is large, or for points near a surface of high curvature where the normal
vector varies fast. In consequence, we set ε = h/2. We have found this value to detect kinks with good
reliability while not introducing too many false positives. Indeed, we restrict the closest point algorithm to
points sufficiently close to the interface. Moreover, in regions of high curvature, i.e. κ ∼ O

(
h−1), more kinks

will indeed be detected. This is not a problem as those sensitive regions are usually under resolved and the
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Algorithm 2 Kink detection algorithm in 2D.
1. For all directions d ∈ {SW,SE,NW,NE}:

(a) Compute the biased closest point approximation CPd using eq. 13 with variations of formula 14
2. Initialize the maximum Euclidean distance: MED← 0
3. For all directions d1 ∈ {SW,SE,NW,NE}:

(a) For all directions d2 ∈ {SW,SE,NW,NE} with d2 6= d1:
i. MED← max (MED, ‖CPd1 − CPd2‖)

4. If MED > ε return true; else return false

Figure 6: Illustrations of the kink detection algorithm 2 on the 2D single vortex test case (see Sec. 6.5) at different instants, for
a grid resolution of 2562 cells. The surface is drawn in gray and the detected kink cells are marked in red. Over time, the kink
detector successfully captures all inherent kinks that appear as the tail is stretched and locates the medial axis.

use of high order interpolation with a large stencil would anyway suffer from including kink cells.

Discussion on another approach: the quality function Q(x). To detect kinks, another approach was introduced
by Macklin and Lowengrub in [21] wherein the authors defined a normal quality function Q(∇φ(x)) as:

Q(∇φ(x)) = |1− |∇φ||, (16)

which measures the deviation of φ to a distance function. If Q(∇φ(x)) > η for a relatively small positive
value of η, then the point x is considered to be near a kink. In their work, Macklin and Lowengrub fixed η at
0.1 and found this value reliable enough to detect kinks with few false positives. In the same way Ervik et al.
[11] used η = 0.005.

However, we found that this criterion could include more false positives than the one we proposed, based
on a geometrical approach. Indeed, the quality function highlights areas where φ deviates from a distance
function, which means that if the gradient of φ is solely stretched or compressed in those areas, i.e. ∇φ = α
with α ∈ R, then the it will indicate the presence a kink (depending on the relative values of η and α), while
there might be none. Actually, those areas may neither be inherent nor numerical kinks.

On the other hand, our geometrical approach is quite different since a kink is detected when the variation
of the closest point is more than a given threshold ε. This means that the sensitivity of our detector, i.e.
the choice of ε value, will straightly depend on the maximum acceptable threshold to detect under-resolved
structures. Herein, we have set ε = h/2: thus, we consider that a structure which has a radius of curvature
less than h/2 (in 2D) cannot be well detected with our closest point method and thus represents an under
resolved structure that would lead to unwanted numerical errors, as will be discussed in Sec. 5.5.2.
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Figure 7: Illustration of the kink detection algorithm 2 on the Zalesak test case (see Sec. 6.4), for a grid resolution of 642 (left),
1282 (center) and 2562 (right) cells, after 5/8 of rotation. The surface is drawn in gray, the detected kink cells are marked in
red and ΩCP in blue. As the cell size diminishes, the kink detector successfully captures all the cells part of the medial axis and
hence containing an inherent kink. Moreover, it can be seen that for the grid resolution of 1282 (center) and 2562 (left), few
other numerical kinks are detected. As represented in blue, those points are not part of ΩCP and consequently, they are not
reinitialized with the RCP method but are solely smoothed (see Sec. 5.6) and do not disturb the gradient descent.

5.5. Kinks treatment

5.5.1. Cells far from the interface
Kinks can deteriorate the level set regularity and can lead the gradient descent towards local minima.

Hence, they need to be smoothed adequately before applying the closest point algorithm. However, as the
accurate position of the interface are captured by the cells of ΩStencil, this treatment is only applied for
ill-defined cells sufficiently far from Γ, i.e. for the subset ΩPseudoLS defined as:

ΩPseudoLS = (ΩBand ∩ ΩKink+) \ ΩStencil (17)

where ΩKink+ is the set of cells of ΩKink augmented by their neighbours. We made this choice to increase
numerical stability in the vicinity of kinks. The smoothing procedure consists in two consecutive steps applied
on those cells: first the creation of a pseudo level set, followed by a fast low-order smoothing procedure.

The pseudo level set. The first step aims to give a sufficiently acceptable initial guess for the corrected
level set function that will be further smoothed. We defined the pseudo level set ψPseudoLS as a rough first
order approximation of a signed distance function, pointing towards the interface. This one is created by
iteratively growing a band starting from the interface. A cell part of the nth layer of that band is located at
an approximate distance nh to the interface, where h is the uniform cell size. Thus, to all cells cl part of
ΩPseudoLS , we set:

ψcl = nh× sign(φcl) (18)

Fast low-order smoothing. The second step consists in smoothing the pseudo level set with a fast reinitialization
algorithm that will guaranty a smooth solution regarding the concerned cells neighbours. Though several
strategies may be considered, we have found that the use of a low-order solving of the HJ equation 8 suffices
to obtain satisfactory results. As standing relatively far from the interface permits to loosen the accuracy
criterion, we have used a first order upwind scheme for the gradient evaluation and integrate the equation
over 20 iterations. This procedure leads to a very efficient strategy to clear kink perturbations while obtaining
a regularized function that points smoothly towards the interface, as required by the descent algorithm.
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5.5.2. Particular case near the interface
We chose not to alter cells that are close to the interface and which are in the vicinity of kinks, as prescribed

in the third step of algorithm 2, and formally defined as the subset ΩCP \ {cl ∈ ΩΓ | (ΩKink ∩ Scl) 6= Ø}
This is motivated by the fact that the presence of such local extrema has a great influence on the interface
capture, as they lie within the interpolation stencil. Hence, any alteration made to those cells will definitely
modify the surface position with no guaranty to give a more accurate approximation. This concurs with the
remarks of Trujillo [17] stating that reinitializing under-resolved areas will degrade more the level set function
than diminishing the degree of error. Moreover, these cells may continue to represent sub-mesh interfaces
that would be lost without a precise and specific treatment, a work that is beyond the scope of this article.
Consequently, all cells part of ΩCP \ {cl ∈ ΩΓ | (ΩKink ∩ Scl) 6= Ø} are not modified by the algorithm.

Some authors tried to resolve the issue of calculating accurate interpolations/derivatives near a kink
[11, 21]. Yet, the integration of such methods within the RCP algorithm could be the object of future works.

5.6. Smoothing outside the closest point band

Also, for numerical stability, we have applied the same fast low order smoothing procedure as a post-
process of the algorithm (see step 3 of algorithm 1) in cells part of Ω \ ΩCP . Concretely, a low-order HJ
equation is solved over 5 iterations, which we have found to be sufficient to maintain a smooth field far from
the interface.

6. Results

In this section, we detail the numerical framework used and propose a series of test cases which demonstrate
the accuracy and robustness of the method. For the latter, we will first test the capability of the method on
state of the art benchmarks using analytical velocity fields, from the simple test of a sphere deformation
to more complex ones involving thin layers or sharp corners. Then the coupling with the Navier-Stokes
equations will be considered to assess the capability of the method to accurately and robustly capture the
behavior of inviscid two-phase flows.

In order to gauge the results of the new method, all test cases will be compared two other approaches to
reinitialize the level set. The first is the H-J equation Eq. (8) solved after each advection step (noted HJ-1),
as it is done for RCP and, for the second, the same H-J equation is solved every 10 advection steps (noted
HJ-10).

As the overall strategy of RCP an H-J are quite different, the comparisons are only made as a guideline to
position the method amongst the family of numerical methods for level set reinitialization. Numerical details
of the implementation of the reinitialization with the H-J equation will be given in the following section.

6.1. Numerical methods

6.1.1. Flow solver
The method was implemented and tested using the massively parallel incompressible open-source CFD

code Notus [22], for which the following test cases are available or easily reproducible. The Navier-Stokes
equations are solved on a staggered grid within a finite volume framework and a time splitting correction
method for the velocity-pressure coupling [23]. A first order semi-implicit backward difference (SBDF-1)
scheme is used for the momentum equation. The inertial term is computed with a second order Runge-Kutta
integration and the associated spatial disctretization scheme will be specified for each particular test case.
Phase’s density and viscosity are expressed as a function of the level set and the Heaviside Hε from Eqs. (3)
to (5), where the regularization parameters is set to ε = 2h.
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6.1.2. Level set
In order to solve precisely the advection equation 7 for the level set, second order Runge-Kutta NSSP 3,2

integration coupled with a fifth order finite difference WENO scheme [24, 25], are used. When it’s considered,
the H-J equation is implemented based on the algorithm of [4], where the numerical parameters are fixed
based on the comparative study of [19] and adapted for this work to obtain an accurate reinitialization of the
level set. Hence, a second order Runge-Kutta integration coupled with a fifth order WENO scheme are also
used. The pseudo time step is fixed at δτ = 0.3δx and the maximum number of iterations for the temporal
integration is set to 16.

It should be stressed that other high order methods exist to reinitialize the level set when considering the
H-J equation, as well as other strategies to set the numerical parameters. Nevertheless, as stated previously,
the comparisons are made as a guideline to assess the accuracy of the introduced method.

6.2. Error measures

Several errors measurements are defined to assess the performance of the proposed method. Those
measures will either be computed on the whole domain Ω or only in the vicinity of the interface defined as
ΩEΓ of cardinal NEΓ . In practice, ΩEΓ encompasses all the cells inside a two cells band width centered on
the interface.

Shape errors. For known analytical solutions, we define the shape error, in a L2 or L∞ norm, as the variation
of φ to its exact value in the set of cells in ΩEΓ by:

EL2
shape =

√√√√ 1
NEΓ

∑
xl∈ΩEΓ

|φex(xl)− φ̃(xl)|2 and EL∞
shape = max

xl∈ΩEΓ

(|φex(xl)− φ̃(xl)|)

where φex(xl) is the expected value of the signed distance field at xl and φ̃(xl) is the computed numerical
value.

Volume conservation. The volume error EV can be defined as:

EV = |V (t)− V (t = 0)|
V (t = 0)

where the total volume of a phase is computed through the associated volume fractions ci (see Eqs. (4)
and (5)) associated to the cells of volume VCVi as: V =

∑NΩ
i ciVCVi .

Criterion for the deviation to a signed distance function. In the literature, a common manner to evaluate
the property of φ to be a signed distance function is to compute the L1 norm of the quality function from
Eq. (16) as:

E|∇φ| = 1
NΓ

∑
xl∈ΩEΓ

Q(∇φ(xl)).

Yet, while if gives good knowledge about the variations of the level set field, we have found this approach to
be insufficient to study the accuracy of the reinitialization process. An accurate criterion for the variation of
φ to a signed distance function has to be the same if φ has a slope of 2 (i.e. |∇φ| = 2) or if its slope is 1/2
(i.e. |∇φ| = 1

2 ).
In the general case, for φ̃ a field which deviates from the signed distance function φ likes φ̃(x) = α(x)φ(x),

with α(x) : Ω→ R, the local error measure e∇φ(x) needs to be the same for a factor α(x) and α(x)−1, i.e. :

e∇φ(α∇φ) = e∇φ(α−1∇φ)) (19)

In consequence, we define e∇φ as:
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e∇φ(∇φ̃) = | ln(|∇φ̃|)|

which satisfies Eq. (19). Following this definition, we propose the L2 norm of the global variation of φ̃ to the
signed distance function:

EL2
∇φ =

√√√√ 1
NΓ

NΓ∑
i

e∇φ(∇φ̃)2.

The L∞ norm of the error, noted EL∞
∇φ , is constructed similarly.

6.3. Disks rotation

First, a new benchmark is introduced to obtain a qualitative overview of the capacity of each method
to carry and conserve small to large structures from a mesh point of view i.e. depending on the number
of cells which represent this one. We consider multiple circles of different radius which are transported by
rigid body rotation. As demonstrated by [17], with this particular flow, the gradient of the level set should
remain unaltered and numerical errors are solely induced from the resolution of the advection equation and
the reinitialization procedure. Thus, the interface should remain unchanged and an analytical solutions for
the expected level set field can be found.

Hence, six circles denoted as {C0, C1, C2, C3, C4, C5}, with respective diameter of {D0, D0 + h,D0 +
2h,D0 + 3h,D0 + 4h,D0 + 5h} are initialized in a [0, 1]2 domain at a distance of 0.2 of the center, each other
separated by an angle of π/6. In order to study small structures D0 = 3h i.e. the smallest and reference
diameter D0 is 3 cells large. The mesh is made of 642 cells. The velocity field is given by :

(u, v) = 2π
T

(0.5− y, x− 0.5) (20)

where a full rotation of the circles is done at a time t = T . Here T is chosen to be equal to 500.
As represented by Fig. 8, after a full rotation, all the methods fail to preserve the circles C0 and C1.

In fact, even without re-initialization, C0 disappear due to the advection but C1 still remains with some
volume loses. For C2 only RCP retains the most volume and shape while HJ-1 fails totally to do it and
HJ-10 just partially. For C3, C4 and C5, RCP and HJ-10 have similar results, contrarily ton HJ-1 which fails
to preserve C3 and induce large errors in the shape on C4 and C5. Hence, only the RCP methods seems to
produce correct result when re-initializing the level set at each time step, compared to the HJ equations
which introduce more errors and thus need to be used less frequently. Qualitatively, this test case shows that
the RCP method exhibits better results for preserving structure with low resolution.

RCP HJ-1 HJ-10

Figure 8: Interface shapes after a full rotation for the disk’s rotation test case for a grid resolution of 642 cells, the reference
solution is plotted in gray dashed lines.
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6.3.1. Simple advection - One circle rotation
We now propose to study more quantitatively the impact of each method on a unique rotating circle

in the same setup as above. A mesh convergence is performed focusing on the capacity to conserve shape,
volume and on the capacity to reinitialize the level set to a signed distance function. The lowest resolution is
equivalent to describing the circle with a diameter of 8h, with a mesh size of N = 64. Time step is fixed set
to ∆t = 0.625 for coarsest mesh of 642 cells. For the other meshes, the time step is reduced in order to keep
a constant CFL number.

2−10 2−9 2−8 2−7 2−6

∆x

10−6

10−5

10−4

10−3

10−2

10−1

‖V
0
−
V
f
‖

V
0

2nd order convergence

3th order convergence

RCP

HJ-10

HJ-1

2−10 2−9 2−8 2−7 2−6

∆x

10−11

10−10

10−9

10−8

10−7

10−6

10−5

E
L
∞ |∇
φ
|

4th order convergence

5th order convergence

RCP

HJ-10

HJ-1

2−10 2−9 2−8 2−7 2−6

∆x

10−8

10−7

10−6

10−5

10−4

10−3

E
L

2

sh
a
pe

2nd order convergence

3th order convergence

4th order convergence

RCP

HJ-10

HJ-1

2−10 2−9 2−8 2−7 2−6

∆x

10−7

10−6

10−5

10−4

10−3

10−2

E
L
∞

sh
a
pe

2nd order convergence

3th order convergence

RCP

HJ-10

HJ-1

Figure 9: From left to right and top to bottom. Convergence rate, for the one circle rotation test case, of the volume conservation,
L∞ norm for the error on the deviation to be a signed distance function (EL∞

∇φ ) and the L∞ and L2 norm on for the shape
errors (EL∞

shape
and EL2

shape
)

As illustrated on Fig. 9, all methods exhibit similar results for the EL∞
∇φ . However, it is clear that the

RCP method exhibits a convergence rate that is one order higher than both HJ-1 and HJ-10 for the shape
errors and the enclosed volume conservation.

6.4. Zalesak Disk Advection
This test case follows the one proposed in [26] to appraise the capacity of the reinitialization method to

preserve sharp corners on the interface. In a [0, 1]2 domain, a slotted disk is initialized centred at the grid
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point (0.5, 0.75) with a radius of 0.15 and a slot of 0.5 of width and 0.20 of length. The velocity field, as
described above, is set to carry the slotted disk in a counterclockwise rotation around the point (0.5, 0.5) and
to perform of full rotation after T=500 units of time using Eq. (20).

The time step is fixed, set to ∆t = 1.25 for the coarsest mesh of 322 cells, and is reduced in order to keep
a constant CFL number for finer meshes. The simulation is stopped after one full rotation of the slotted disk.
In this test case, as in the previous ones, the numerical errors principally originate from the reinitialization.

322 642 1282

R
C
P

H
J-
1

H
J-
10

Figure 10: Interfaces shape after one rotation for the Zalesak disk case. The dashed line is the initial interface.

For the coarsest mesh, as illustrated in Fig. 10, we observe that both RCP and HJ-10 manage to conserve
the slot and a shape that is globally acceptable regarding the mesh resolution. On the other side, the frequent
reinitialization of HJ-1 introduces more smoothing/errors that lead(s) to a round shape that hardly captures
the expected solution. For the intermediate resolution, all methods succeed in preserving the round part
of the shape. Nevertheless, only the RCP method achieves to conserve a deep slot with relatively sharp
corners compared to HJ-1 and HJ-10. For the finest resolution, all methods accurately preserve the global
shape, while HJ-10 and RCP seem to to converge better towards the capture of sharp corners. This test case
confirms that care has to be taken on the reinitialization frequency using the H-J method. The RCP method,
even when applied at every time step, avoid undesired smoothing of the surface.

For analysing the numerical convergence, only shape error has been reported in Fig. 11. Indeed, precautions
must be taken since the four sharp corners can lead to a simultaneous volume loss and gain that can cancel
and thus bias the interpretations. Furthermore, the deviation of φ to be a signed distance function (i.e.
E∇φ) is also biased due to the presence of the four sharp corners which introduces error on that measure
because of the inherent kinks of the level set at those points. All methods show a similar convergence rate
around second order on the L2. However, for the L∞ norm, the convergence is highly impacted because of
the discussed sharp corners.
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Figure 11: From left to right . Convergence rate for the Zalesak disk case of the L∞ and L2 norm for the shape errors (EL∞
shape

and EL2
shape

)

6.5. Single vortex 2D

Following the widely studied test case [27–29] to test the ability of the level set method to resolve and
maintain thin filaments. A [0, 1]2 domain is considered, with a circle of a diameter D = 0.3 is initialized at
the coordinates (0.5, 0.75). The velocity field (u, v) = (∂Ψ

∂y ,−
∂Ψ
∂x ) is derived from the stream function:

Ψ = 1
π

sin2(πx) sin2(πy) cos(πt
T

).

The term cos(πtT ) which appears in the velocity field definition ensures that the flow returns to its initial
state at the time T and that the maximal deformation appears at T/2. We have fixed T = 8 and the time
step to ∆t = 1.6e-3 for the coarsest grid 1282. For the other meshes, the time step is reduced in order to
keep a constant CFL number.
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(a) Interface at t = T/2.
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(b) Interface t = T , the dashed line is the initial interface.

Figure 12: Interface shapes at t = T/2 (left) and t = T (right) for the single vortex 2D case.

Fig. 12 illustrates the aptitude of the advection equation coupled with the three reinitialization procedures
to conserve thin filaments at maximal deformation (Fig. 12a) and to correctly reverse to the initial circular
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shape (Fig. 12b). Globally, all methods suffer from large errors on the coarse grid, particularly on the trailing
and the heading of the deformed interface, errors that will diminish with mesh refinement. As emphasized by
Herrmann [15], the underlying reason is twofold. First, the errors arise from the advection of the level set
and from the displacement of the interface introduced by the reinitialization procedure. This can result in
the annihilation of thin filament structures. Secondly, because the trailing filament thickness falls below the
grid resolution and thus cannot be captured by standard advection methods.
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Figure 13: From left to right and top to bottom. Convergence rate of the single vortex 2D test cases, at t = T , for the volume
conservation, L∞ norm for the error on the deviation to be a signed distance function (EL∞

∇φ ) and the L∞ and L2 norm on for
the shape errors (EL∞

shape
and EL2

shape
)

All the methods have comparable results for maximal deformation and when the interface returns to its
initial shape. Nevertheless, we can notice that for the coarsest mesh, the RCP method seems to produce
better results for capturing the trailing interface.

When looking closely at the convergence rate when t = T , as reported in Fig. 13, all the tree methods
produce comparable results. For both the enclose volume and the L2 norm for the shape error, all the tree
methods exhibit 2nd order convergence rate and between 1st and 2nd order for the L∞ norm. However, for
the L∞ norm error on the deviation to be a signed distance function, the RCP method gives a higher order
converge rate of order 5th when the HJ-1 and HJ-10 are 3th order.
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6.6. Single vortex 3D

A 3D adaptation of the test case was proposed by LeVeque [28] and applied by Enright et al. [29] to tests
the ability of the level set method to resolve and maintain thin filaments with deformation in both x-y and
x-z planes.

The same configuration as in 2D is adapted here for a 3D test case. A [0, 1]3 domain is considered where a
sphere of radius 0.15 is initialized at the coordinates (0.35, 0.35, 0.35). The resulting velocity field is given by:

u = 2 sin2(πx) sin(πy) sin(πz) cos(πt
T

)

v = 2 sin(πx) sin2(πy) sin(πz) cos(πt
T

)

z = 2 sin(πx) sin(πy) sin2(πz) cos(πt
T

).

Where the same term cos(πtT ) ensures that the interface will go back to its initial state at t = T and that
maximal deformation is obtained at t = T/2. Here this term is fixed at T = 3.

Figure 14: Interface shape of the single vortex 3D for a grid resolution of 2562 cells, at t = T/2, using the reinitialization method
in red: HJ-1, green: HJ-10, blue: RCP

Fig. 14 and table 1 shows that the new method is robust also in 3D and gives similar results than the
ones obtained in the 2D case. Both HJ-10 and RCP present comparable results, while HJ-1 suffers from
volume loss resulting with errors on the final shape.

|V0−Vfinal
V0

| EL2
|∇φ| EL2

shape EL∞
shape

Method 1282 2562 1282 2562 1282 2562 1282 2562

RCP 8.80e-02 1.85e-03 2.46e-06 1.75e-08 3.30e-03 1.97e-04 1.55e-01 1.70e-02
HJ-1 3.89e-01 6.22e-02 4.33e-07 2.35e-07 4.15e-03 1.17e-03 1.59e-01 9.97e-02
HJ-10 5.15e-02 1.03e-02 1.57e-06 3.95e-08 1.98e-03 1.45e-04 8.68e-02 1.54e-02

Table 1: Numerical results of the single vortex 3D case on the enclosed volume error, the L2 norm on the deviation to be a
signed distance function (EL2

|∇φ|), the L2 norm on the shape error (EL2
shape

) and L∞ norm on the shape error (EL∞
shape

). The
results are given for the RCP, HJ-1 and HJ-10 methods, for a grid resolution of 1282 and 2562 cells, at a time t = T .
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6.7. 2D column at equilibrium - spurious currents
In order to validate that the proposed reinitialization method captures correctly surface tension forces

computation, which are dominant at small scales, we propose to study the parasitic currents arising from
discretization errors the static column test case. The equilibrium of a drop or bubble, at rest in the absence
of gravity, implies the absence of momentum and thus a null velocity field. In practice, because of numerical
errors emanating from the interface position, normal and curvature computation appearing in Eq. (6), so
called parasitic currents [14, 16, 18] indeed arise. Particularly, as explained by Francois et .al [14] using a
balanced-force approach within the CSF model while imposing an exact curvature should reduce parasitic
currents up to machine precision.

A 2D column at rest is considered, with a diameter D = 2R = 0.4 at the center of [0, 1]2 square. In order
to solely focus on surface tension, both density and viscosity are constant for all the simulation and equal to
1 in each phase. The Laplace number La = σρL/µ2 is obtained by varying the surface tension coefficient
σ, the reference length is chosen as L = D. No-slip conditions are applied to all boundaries. A centered
second order implicit scheme is used for the inertial term of Eq. (2). Simulations have been conducted until
a numerical steady state has been attained, i.e. when spurious currents appear to have reached a minimum.
The maximum capillary number Ca∗max = µ|u|max/σ is compared for various Laplace numbers for various
meshes. In practice, we study the scaled capillary number Camax = Ca∗max/Uσ where the characteristic
velocity Uσ is defined as Uσ =

√
σ/(ρD). Also, time is adimenzionalized as tσ = t/Tσ, with Tσ =

√
ρD3/σ.

The numerical time step is ensuring the revised capillary time step constraint from the work of Denner et al.
[18] regarding the stability of flows subjected to surface tension. For a static case, it leads to the following
condition:

∆tstaticσ ≤
√

(ρ1 + ρ2)h3

2πσ . (21)

6.7.1. Fixed Laplace number
The first study focuses on the spatial converge of parasitic currents for a given Laplace number (La = 120),

by considering a mesh refined from 162 to 2562 cells. The time step is kept constant for all resolutions, i.e.
∆t = 3e-6, thus always respecting the constraint given by Eq. (21) for the finest mesh.
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Figure 15: Convergence study of the 2D column at equilibrium for the enclosed volume variation (left) and Camax (right) at
La = 120 for HJ-1, HJ-10 and RCP when a steady state has been reached.

The convergence rates of the error on the enclosed volume and Capillary number are shown in Fig. 15.
As the surface is far from any kink, the RCP method gives a high order converge rate of 4 on the level set
volume error while the HJ-1 and HJ-10 exhibit 2nd order accuracy. The Camax diminishes at 2nd order rate
for all methods. Thus, the RCP method converges accurately for this surface tension test case.
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6.7.2. Varying Laplace number
Within the same set up, we study the dynamic response of our method with an increasing Laplace number,

i.e. increasing surface tension. For high Laplace numbers, small numerical errors will induce important
spurious currents that can eventually make simulations unstable.

The mesh size is fixed at 642. The time step is scaled along with the Laplace number to match with the
time step restriction: ∆t = {6e-5, 2e-5, 0.6e-5, 0.5e-5} for corresponding La = {120, 1200, 12000, 120000}.

Camax
Method 120 1200 12000 120000
RCP 9.63e-07 3.02e-06 9.58e-06 3.00e-05
HJ-1 1.78e-06 3.63e-06 1.02e-05 3.07e-05
HJ-10 9.82e-07 2.97e-06 8.97e-06 2.53e-05

Table 2: Camax for varying Laplace number with 322 cells. Numerical results of the static column case of the Camax values for
La = {120, 1200, 12000, 120000}, with a mesh size of 642.
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Figure 16: Camax when varying the Laplace number for HJ-1 (left), HJ-10 (center) and RCP (right) method in the interval
tσ ∈ [2.0, 3.0] for 642 cells.

Fig. 16 and table 2 show very similar results for all three approaches. It should be noted, as clearly visible
on the central graph of Fig. 16 concerning HJ-10, that performing the reinitialization process every 10 time
steps brings oscillations on Camax. Nevertheless, a question may arise on the possible impact of these small
oscillations on complex two-phase flow simulations. Conversely, performing the reinitialization at every time
step produces more continuous results as shown in the RCP and HJ-1 respective figures.

6.8. Impact of a droplet

We have noticed that, in some configurations, the HJ method may be unable to correctly capture
topological changes. This occurs, for example, when small droplets impact a liquid pool at low velocity.
Hence, we will test the capacity of the proposed method to adequately handle topological changes without
restriction by considering the simple test case of a falling small droplet positioned above a initially steady
volume of water surrounded by quiescent air. The purpose of this validation test is to capture the merging of
the drop with the underlying surface, and not to study the behaviour of the impact that occurs later.

For relating to a realistic configuration, the drop is initialized at terminal velocity (see [30] for more details).
In our case, the drop diameter is D = 0.06mm and the associated terminal velocity is U0 = 0.27m.s−1. For
the sake of simplicity, the initial velocity field is set uniformly to U0 inside the drop and null elsewhere.
No-slip conditions are applied on the boundaries. An explicit WENO 5, 3 scheme is used for the inertial
term of Eq. (2). Herein, surface tension and gravity have been taken into consideration. The physical
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properties of the two phases are the one of water and air used in the next section, as detailed in ??. The 2D
domain is of size [4D, 5D] and the pool depth is 2D above the bottom boundary. The mesh size is defined
by the value of Nc = D/h which represents the number of cells per drop diameter. The time step is set to
∆t = {9.604e-05, 3.395e-05, 1.200e-05} for meshes associated to Nc = {4, 8, 16}.

For the coarsest mesh as shown in Fig. 17, both methods resolving the H-J equation (HJ-1 and HJ-10) are
unable to capture the merging of the drop with the surface of water. It appears that the H-J reinitialization
introduces relatively important displacement of the interface position. In these cases, the drop acts as if
it was levitating above the surface of water and, moreover, loses volume over time and vanishes without
producing the expected cavity. On the other hand, the RCP method is able to correctly handle the merging
of water, as explained below, even though the reinitialization is performed at every time step. The results
for the medial mesh in Fig. 18 show that the HJ-1 still misses to capture the coalescence while both HJ-10
and RCP therein succeeded. For the finest mesh, as presented in Fig. 19, all methods produce satisfactorily
comparable results.

We deem that one of the possible reasons for the inability of the HJ equation to handle topological
changes for coarser meshes, in this configuration, comes from the presence of a kink between the two surfaces
before merging. It introduces too much perturbations in the reinitialization using the HJ equation. The use
of the kink detection conjointly with a HJ approach is beyond the scope of the article but could be explorer
in future works. The finer mesh is less impacted by the existence of the kink as the impacted region is therein
relatively smaller. Moreover, the less frequent the HJ equation is applied, the easier the two surfaces can
merge. As discussed in previous sections, this questions strongly the reinitialization frequency parameter that
appears to be dependent on the underlying interface dynamic and hence not trivial to determine. On the
other hand, the proposed approach permits to overcome these issues thanks to the accurate kink detection
algorithm coupled to the adapted geometrical reinitialization procedure.

t−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

H
J-
1

H
J-
10

R
C
P

Figure 17: Interface shape of the impacting drop case at time t = {0, 2.4e-3, 4.8e-3, 9.6e-3} for the coarse mesh with Nc = 4.

We believe that this issue may arise in various situations - and sometimes unnoticed - particularly when
topology changes happen at small velocity for small structures such as droplets, bubbles and thin films, for
example, during atomization, breaking waves or film instabilities. Consequently, when the HJ equation is
considered, it becomes difficult for such applications, to correctly set the reinitialization frequency since
many structures coexist at different sizes and velocities, relatively to the mesh refinement. The RCP brings a
robust method to correctly reinitialize the level set without compromising topological changes.
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Figure 18: Interface shape of the impacting drop case at time t = {0, 6.8e-3, 1.0e-2, 1.4e-2} for the medial mesh with Nc = 8.
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Figure 19: Interface shape of the impacting drop case at time t = {0, 7.2e-3, 1.1e-2, 1.6e-2} for the fine mesh with Nc = 16.

7. Conclusion

In this paper, we have presented a robust and high order strategy to perform reinitialization in a level
set framework. The proposed RCP method differs from the widely used Hamilton-Jacobi PDE approach
by following a geometric approach. We use a gradient descent to find the closest points at the interface, in
order to solve the eikonal equation, i.e. reinitializing the level set field. Furthermore, a new algorithm is
introduced to reliably detect inherent and numerical kinks, also based on a geometric strategy. The RCP
method is robust and accurate, even when performing the reinitialization systematically after solving the
advection equation. This ensures to obtain a precise signed distance function at every time step. These
conjoint methods both require very few given parameters, which are based on geometrical considerations.
The method is tested on various benchmarks, from simple advection to two-phase flow simulation with surface
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tension and coalescence. They demonstrate better or at least equivalent results compared to the classical H-J
approach. Finally, we show that the RCP method can successfully be used to simulate complex applications
such as the impacting droplet on a liquid pool, capturing various topology changes at different scales.

Appendix A. Level set kinks detection and approximation

Equation 13 gives a first order approximation of the closest point at any point x. In order to detect for
kinks, we need to evaluate that function for points in the vicinity of x. For that purpose, we first consider
Eq. (13) evaluated a point xξ:

CP (xξ) ' xξ −
φ (xξ)
|∇φ (xξ)|2

∇φ (xξ)

and an approximation of it, being at an infinitesimally small distance to x in the direction
−→
ξ , as:

CP (xξ) ' x− φ (x)∣∣∣∇̃φ(x,
−→
ξ )
∣∣∣2 ∇̃φ(x,

−→
ξ )

where ∇̃φ(x,
−→
ξ ) is a discrete off-centered approximation of ∇φ (xξ) in the bias direction

−→
ξ , not to be

confound with ∇φ ·
−→
ξ , the variation of φ in that direction.

Generalization and implementation. When searching for a limited number of closest points in the vicinity of
x, one can derive several strategies. We have considered to use diagonal directions instead of direct mesh
cells neighbours. This has the advantage to maximize the use of desired biases by considering diagonal cells
and augment their number to eight instead of six in 3D for increased accuracy.

Let xi,j,k be the center of the cell Ωi,j,k of a 3D Cartesian mesh. We consider the eight vertices of
that cell and associated directions, noted by variations of their index:

−→
ξ αx,αy,αz = (αx, αy, αz)t, where

αx = {−1,+1} (resp. αy and αz) represents the left or right bias for the x (resp. y and z) direction. Hence,
we can write a general formula for a biased first order scheme in the

−→
ξ αx,αy,αz direction for the gradient

computation:

∇̃φ(x−→
ξ αx,αy,αz

) '
(
αx
φi+αx,j,k − φi,j,k

δx
, αy

φi,j+αy,k − φi,j,k
δy

, αz
φi,j,k+αz − φi,j,k

δz

)t
which can be used similarly as Eq. (15) in algorithm 2 for computing the associated closest point approxima-
tions and hence detecting kinks.
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