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Phase sensitive amplifiers (PSA), contrary to usual phase insensitive amplifiers (PIA), are in
principle capable to achieve noiseless amplification, i.e. exhibit a quantum-limited noise figure (NF)
of 0 dB. When implemented using four-wave mixing (FWM) in a nonlinear fiber, extra waves can
be generated by undesired FWM processes, which may introduce extra input ports for vacuum
fluctuations, thus potentially degrading the NF. In this situation, we give here a general analytical
quantum derivation of the PSA NF, valid for an arbitrary number of nonlinearly coupled modes.
This expression is usable as soon as a linear input-output relation can be found for the annihilation
and creation operators of the involved modes. It predicts that the noise level depends on the
number of interacting waves. We illustrate the usefulness of this expression in the case of six waves,
corresponding to four interacting quantum modes. In this example the signal NF is degraded by 0.4
dB, compared to 10 dB obtained for PIA operation of the same scheme.

I. INTRODUCTION

The evolution of today’s fibre optical communication
systems strongly depends on the noise performances of
the optical amplifiers and on the fibre nonlinearities.
Conventional phase-insensitive amplifiers (PIAs), whose
gain is independent of the signal phase, exhibit a mini-
mum quantum-limited noise figure (NF) of 3 dB at high
gain, meaning that the signal-to-noise ratio (SNR) is
degraded by at least 3 dB. Phase-sensitive amplifiers
(PSAs), whose gain depends on the signal phase, have
a quantum limited NF of 0 dB, offering therefore the
possibility of noiseless amplification of the signal, i.e.
without degradation of the SNR [1, 2]. Thanks to this
unique phase sensitive property and the associated noise-
less amplification capability, transmission systems based
on PSAs have gained a considerable attention. This
have given rise to a large variety of potential applications
such as generation of squeezed states [3–5], low-noise am-
plification [6, 7], phase and amplitude regeneration [8],
wavelength conversion [9] and all-optical signal process-
ing [10].

In recent years, various research groups have focused
on the quality of optical amplifiers in terms of noise, and
several in-depth theoretical studies of the noise figure for
both PIA and PSA systems have been proposed [11–14].
Most of these investigations rely on the 3-wave or 4-wave
models, leading with pump non-depletion approximation
to the so-called two-mode model (TM). However, in prac-
tice, even if only 3 or 4 waves are launched at the input of
the optical fibre, extra waves may be generated due to the
large nonlinearity of the fibre. Intuitively, as a paramet-
ric amplifier generates extra waves, it also introduces ex-
tra noise during the amplification process. Therefore, the
analysis of the noise performances taking the existence of
high-order waves into account is needed. To this aim, in

Ref. [15], McKinstrie & al. have studied analytically the
noise figure in the framework of a 6-wave model. With
extra approximations (no pump depletion and negligi-
ble dispersion) this led them to the so-called four-mode
model (FM) from which they could derive a generalised
expression of the NF for a PIA system in many-mode
configuration. More recently, in Ref. [16], Inoue devel-
oped a semi-analytical approach to calculate the noise
figure in the framework of 7-wave model for a dual-pump
PSA system. His approach describes the signal evolu-
tion quantum-mechanically, while the classical pump de-
pletion is treated numerically. However, both of these
previous works do not provide a complete theoretical de-
scription for the NF in PSA configuration when multiple
waves are accounted for. Investigating the NF in the
case of many-mode model is a major challenge for two
main reasons: First, as the many nonlinear interaction
processes between the propagating waves occur simulta-
neously along the fibre, it is difficult to end up with an
analytical solution for the nonlinear coupled equations,
and most of the attempts made during the past few years
relied on some simplifying assumptions. Second, as the
number of interacting waves taken into account increases,
the expression of the NF becomes difficult to calculate,
compared to the two-mode model.

Consequently, the present paper aims at addressing the
second reason and proposes a generalised expression that
facilitates the calculation of the NF in the case of many-
mode PSA systems, while assuming that the amplifier
is operating in the linear regime where the input modes
are related to the output modes by a transfer matrix,
i.e., an input-output linear relation. This work is thus
an extension to the study tackled in Ref. [15], in which a
general form of the NF in many-mode PIA systems was
derived.

The paper is structured as follows: Section II reminds
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the basic features of PSAs based on nonlinear fibers.
Then, in Section III, the classical and quantum equa-
tions that describe the propagation of the field mode in
fibres are recalled, and the assumptions used to derive an
input-output linear relation for some particular models
are discussed. In Section IV, the noise properties of both
two-mode and three-mode models are explicitly analysed
by means of the quantum approach, and their results are
used to deduce a generalised expression of the noise figure
for models involving a large number of modes. In Section
V, the generalised NF expression introduced in Section
IV is applied to the four-mode model, and the results
are discussed for both PIA and PSA configurations. A
summary is given in Section VI.

II. BASIC ASPECTS OF PSAS AND THEIR
APPLICATIONS

Parametric gain originates from nonlinear wave-mixing
between several waves due to the modulation of the
medium parameters, mainly the refractive index. It can
be obtained through three-wave mixing (TWM) in χ(2)

nonlinear materials, e.g., KTP-crystals [17], periodically
poled lithium niobate (PPLN), either in bulk or waveg-
uide architecture [18, 19], or through four-wave mixing
(FWM) in χ(3) non-linear materials such as highly non-
linear fibers (HNLFs) [20, 21] or silicon waveguides [22].
Parametric gain through FWMmechanism is obtained by
the amplification of signal and idler waves by two strong
pump waves, in a manner such that the energy conserva-
tion is satisfied. An amplifier utilizing parametric gain in
optical fibers is called a fiber optical parametric amplifier
(FOPA). Depending on how the frequencies of the inter-
acting pump, signal and idler waves are chosen at the
input of the FOPA, two schemes are usually preferred,
as shown in Fig. 1, namely (a) the single-pump FOPA,
and (b) the dual-pump FOPA. Both configurations have
been widely investigated theoretically [23–27], and exper-
imentally [28–32]. Comparing the two configurations, it
has been shown that with appropriate pump frequency
allocation and optimized zero-dispersion frequency fluc-
tuations, a dual-pump FOPA can achieve a flatter gain
profile over a wider frequency range with less power for
each pump, compared to the single-pump case [33–35].
This feature makes dual-pump FOPAs very attractive for
optical telecommunication applications [36].

In addition, FOPAs are capable of operating either
as PSAs or PIAs. If the idler is injected at the input
along with the signal and pump waves (see Fig. 1), the
FOPA operates as a PSA, for which the amplifier gain
depends on the relative phase between the interacting
waves. However, in absence of the idler at the input,
the FOPA operates as a PIA, where the gain is inde-
pendent of the initial phase of the signal. Most conven-
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Figure 1: (a) Single-pump and (b) dual-pump FOPAs.

tional optical amplifiers such as EDFAs, Raman ampli-
fiers, semiconductor optical amplifiers (SOA) are PIAs.
Owing to the unique phase-sensitive property of PSAs, a
6 dB gain improvement compared with PIAs was demon-
strated [21, 37, 38]. Aside from the capability of am-
plifying the signal with large gain over the desired op-
tical frequency range, the PSA is able to amplify one
quadrature of the signal field wave, while de-amplifying
the orthogonal quadrature [39]. This leads to the fact
that the SNR on the amplified quadrature is not de-
graded, providing thus an amplification of the signal with
a quantum-limited NF of 0 dB, compared to 3 dB for con-
ventional PIAs. This squeezing property has an essential
importance in several applications e.g., pulse reshaping
[40], soliton-soliton interaction [41], and quantum noise
suppression [42]. In practical implementations, the main
challenge for the realization of PSAs is the need of phase
locking among the interacting waves, especially if the
waves are widely separated in frequency. Other chal-
lenges are polarization alignment, time synchronization
of the interacting waves, and suppression of stimulated
Brillouin scattering (SBS). Nowdays, the basic features
of PSAs are well understood, and many challenges have
been solved from the application point of view, while oth-
ers still remaining to be solved.

III. EVOLUTION OF THE FIELD AND BASIC
PRINCIPLES

In this section, we first recall the classical and quantum
equations that describe the propagation of the field mode
in fibres, and the definitions associated with the NF. We
then discuss the linear input-output relations for different
models.

A. Propagation of classical and quantum fields

fibre optical parametric amplifiers (FOPAs), based on
Kerr non-linear interaction in optical fibres, use four-
wave mixing (FWM) to achieve amplification. The gain
mechanism is based on energy exchanges between sev-
eral interacting optical fields in a fully elastic manner,
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i.e., without energy storage inside the medium.
The total electric field propagating through the optical

fibre along the z direction is defined as:

E(x, y, z, t) =
f(x, y)

2

{
A(z, t)e−i(ω0t−β(ω0)z)+c.c.

}
, (1)

where c.c. denotes the complex conjugate, f(x, y) rep-
resents the transverse mode profile, A(z, t) is the slowly
varying complex amplitude of the propagating field and
β(ω) is the propagation constant at frequency ω. Its
frequency variation is usually described by a Taylor ex-
pansion around the center frequency ω0 [43].

First, we have assumed in Eq. (1) that the electrical
field maintains its polarisation along the fibre length and
can thus be considered as a scalar quantity. Second, we
move to the reference frame that travels at the group
velocity vg of the wave field, leading to a change of time
variable T = t − z/vg. Then, starting from Maxwell’s
equation, the propagation of the field envelope in the fibre
is shown to be governed by the nonlinear Schrödinger
equation (NLSE) [43]:

α

2
A+

∂A

∂z
+ i

n∑
k=2

βk
k!

∂kA

∂T k
= iγ|A|2A , (2)

where βk is the k-th order derivative of β with respect
to ω taken at ω0 and γ and α is the nonlinear coefficient
and attenuation of the fibre.

The time dependence in Eq. (2) can be neglected if the
light spectrum is narrow enough to allow dispersion to
be neglected, leading to:

α

2
A+

∂A

∂z
= iγ|A|2A . (3)

In Heisenberg representation for quantized fields, the
slowly varying amplitude A of the field is replaced by the
slowly varying annihilation operator â, whose evolution
satisfies the following equation [44]:

dâ

dt
=

1

i~
[â, Ĥ] , (4)

where Ĥ is the Hamiltonian. In order to account for the
spatial evolution of the field over z, Eq. (4) is modified
by replacing dt by n

c dz, with n is the effective refractive
index [45].

It is worth noting that the Heisenberg equation (4) is
the quantum counterpart of the classical coupled-wave
equation (3). The transition from the classical theory to
quantum mechanics can be readily achieved, by replac-
ing the classical amplitude A and its complex conjugate
A∗ by the annihilation and creation operators â and â†,
respectively [46–48].

In the present paper, the classical equation (3) will be
used to derive a linear relation between the input and
output modes of the field, which will be used afterwards
to calculate the noise figure from the corresponding quan-
tum operators.

B. Noise figure

The noise added to the signal by the amplifier can be
quantified using the noise figure NF [49] defined as:

NF =
SNRin

SNRout
, (5)

where SNRin and SNRout are the input and output
signal-to-noise ratios, respectively.

In terms of photon number, Eq. (5) becomes:

NF =
〈N〉2in〈∆N2〉out
〈N〉2out〈∆N2〉in

, (6)

where 〈N〉in and 〈N〉out are the input and output
mean photon numbers, respectively, and 〈∆N2〉in and
〈∆N2〉out are the corresponding variances.

The average number of photons is expressed as:

〈N〉 = 〈â†â〉 = 〈ψ| â†â |ψ〉 , (7)

where |ψ〉 is an initial state. Its fluctuation is given by
the variance of 〈N〉 according to:

〈∆N2〉 = 〈N2〉 − 〈N〉2 . (8)

By assuming that the initial state is a coherent state,
one can take |ψ〉 = |α〉, with α = |α|eiθ is a complex
number, |α| and θ are the amplitude and phase of the
state |α〉.

In the following sections, the NF of Eq. (6) will be
calculated by evaluating the mean and variance of the
photon number at the input and output of the amplifier.
Thus, a linear system linking the input and output modes
is needed.

C. Input-output linear relations

As mentioned above, the nonlinear propagation of light
modes in the fibre is well described by Eq. (3), which can
be solved analytically and/or numerically depending on
the number of interacting modes. When analytical solu-
tions can be derived, input-output linear relations can be
thus obtained, which can be used to calculate the noise
figure using Eq. (6). In the case of a dual-pump ampli-
fier, Figure 2 shows the three different configurations that
we consider in this paper. Since the two pumps will be
treated classically, we denote these configurations by the
number of quantum modes that they exhibit. They are
thus called respectively the two-mode model [Fig. 2(a)],
the four-mode model [Fig. 2(b)], and the three-wave toy
model [Fig. 2(c)]. We discuss these schemes separately
below, and find out under which conditions analytical
solutions can be found for the input-output relations.
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Figure 2: Schematic representation of different parametric amplifier models with non-degenerate pumps and
non-degenerate signal and idler; (a) the 4-wave model, also called two(-quantum)-mode model, (b) the 6-wave

model, also called four-mode model, (c) the three-mode model. Process A: annihilation of one pump 1 photon and
one pump 2 photon, with creation of one signal photon and one idler photon. Process B: Annihilation of two

photons from pump 2 and creation of one idler photon and one sideband 1 photon. Process C: annihilation of one
pump 2 photon and one signal photon and creation of one sideband 1 photon and one pump 1 photon. Modes 1 and

2 refer to the signal and idler, respectively, and modes 3 and 4 to sidebands 1 and 2, respectively. The pumps are
not counted as quantum modes since they are treated as classical fields. When A2 = 0 at the input, the parametric

amplifier operates as a PIA.

1. Two-mode amplifier

Figure 2(a) corresponds to the case where the non-
degenerate signal and idler waves are amplified by FWM
interaction with two strong pump waves. If pump de-
pletion and fibre attenuation can be neglected, this situ-
ation becomes the so-called two-mode model, for which
exact solutions have been extensively investigated in the
literature [43, 48]. When the pumps are treated as con-
stant classical fields, it can be summarised as the follow-
ing input-output linear relation:(

b̂1
b̂†2

)
=

(
µ11 µ12

µ21 µ22

) (
â1
â†2

)
, (9)

where A = (â1, â
†
2)T and B = (b̂1, b̂

†
2)T are vector oper-

ators for the input and output modes, respectively. The
coefficients µjk of the transfer matrix M = [µjk], with
j, k = 1, 2, are in general complex.

By evaluating the commutator [b̂j , b̂
†
j ] = 1 for each

mode j, the coefficients µjk have to satisfy the following
relations: {

|µ11|2 − |µ12|2 = 1 ,

−|µ21|2 + |µ22|2 = 1 .
(10)

These relations imply that the total number of photons
is conserved. From a classical point view, Eqs. (10) are
known as the Manley-Rowe relations [50].

When pump depletion, fibre attenuation, and disper-
sion are neglected, the explicit expressions of the µjk’s

are given by [48]:
µ11 = cosh

(√
3γPz

)
+ i√

3
sinh

(√
3γPz

)
,

µ12 = 2i√
3

sinh
(√

3γPz
)
,

µ21 = − 2i√
3

sinh
(√

3γPz
)
,

µ22 = cosh
(√

3γPz
)
− i√

3
sinh

(√
3γPz

)
,

(11)

where P ≡ P1 = P2 is the power of the two pumps.
This two-mode model has been extensively investigated
in order to predict and understand the gain and noise
performances of the two-mode parametric amplifier [13,
14, 51, 52].

2. Four-mode amplifier

In practice, launching inside the fibre two strong pump
waves with a signal and idler waves, as shown in Fig. 2(a),
can lead to the creation of many extra waves by cas-
caded FWM interaction. The two first waves generated
by FWM are the so-called sidebands 1 and 2 shown in
Fig. 2(b), which are created symmetrically to the idler
and signal with respect to pump 2 and to pump 1, re-
spectively. The six coupled-wave equations governing the
evolution along the fibre of the amplitudes of these six
interacting waves can be found in [48, 53]. Their analyti-
cal solutions are complex and still unsolved in the general
case, in contrast with the two-mode model. However,
some attempts have been performed along this direction
[15, 48, 53] and, under some assumptions, analytical so-
lutions have been derived. If we suppose that the two
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pumps are not depleted, the signal, idler, sideband 1 and
sideband 2 constitute the so-called four-mode model. In
Ref. [15], McKinstrie & al. have proposed an analytical
solution for this four-mode model for the particular case
where dispersion is neglected, leading to the following
input-output linear relation:

b̂1
b̂†2
b̂3
b̂†4

 =


µ11 µ12 µ13 µ14

µ21 µ22 µ23 µ24

µ31 µ32 µ33 µ34

µ41 µ42 µ43 µ44



â1
â†2
â3
â†4

 , (12)

where indices 1 and 2 denote the signal and idler, re-
spectively, and indices 3 and 4 refer to the sidebands 1
and 2 (see Fig. 2(b)). The transfer matrix M containing
coefficients µjk with (j, k = 1, ..4) is given by [15, 48]:

M(z) =


1 + iγPz 2iγPz 2iγPz iγPz
−2iγPz 1− iγPz −iγPz −2iγPz
2iγPz iγPz 1 + iγPz 2iγPz
−iγPz −2iγPz −2iγPz 1− iγPz

 .

(13)
Similarly to Eq. (10), the coefficients µ1k that corre-

spond to mode 1 have to satisfy the following condition:

|µ11|2 − |µ12|2 + |µ13|2 − |µ14|2 = 1 , (14)

with similar conditions for modes j = 2, ..4.
This four-mode model will be used in SectionV below

in order to predict the gains and noise figures of the four
interacting modes.

3. A toy model: the three-mode amplifier

The four-mode model of the preceding subsection leads
to much more complicated calculations than the simple
two-mode model of subsection III C 1. An intermediate
toy model can be designed if we neglect one of the side-
bands, for example sideband 2, in the scheme of Fig. 2(b),
leading to the scheme of Fig. 2(c). Of course, this model
does not correspond to any realistic physical situation,
but we will use it as an intermediate step between the
two-mode model and more general and useful situations
in the quantum noise calculations.

Reducing Eq. (12) to this situation, we describe the
three-mode model by the following input-output linear
relation: b̂1b̂†2

b̂3

 =

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 â1â†2
â3

 (15)

where j, k = 1, 2, 3 refer to the signal, idler, and side-
band 1, respectively (see Fig. 2(c)). Notice that Eq. (14)
reduces, with µ14 = 0, to:

|µ11|2 − |µ12|2 + |µ13|2 = 1 . (16)

The explicit expressions of the µjk’s are not given here
because, as stated above, this three-mode model does not
correspond to any realistic physical situation in a dual-
pump parametric amplifier. Nevertheless, we will use it
in the following section as an intermediate step in the
calculation of the noise figure.

IV. QUANTUM TREATMENT OF THE NOISE
FIGURE

In this section, we adopt the quantum approach intro-
duced by earlier researchers [1, 2, 54–56] to evaluate the
noise figure defined by Eq. (6). This approach treats the
electric field of each mode as an operator, leading to the
appearance of an intrinsic quantum noise accompanying
the gain mechanism.This leads to an extra photon noise,
which is evaluated by means of Eq. (8), while the change
in average photon number in the amplification process
is obtained using Eq. (7). By the use of this quantum
approach, our motivation is to derive a generalised ex-
pression of the noise figure for many-mode models. How-
ever, before we move on to the general case, we discuss
the noise properties of the particular cases presented in
Section III C. Indeed, in the following, we first recall the
familiar NF calculation for the two-mode model. Second,
as pointed out earlier, we make use of the three-mode
model, as an intermediate step, to analyse the noise figure
when three interacting modes are accounted for. Then,
by comparing the results of both models, we deduce the
general NF expression that works for many-mode mod-
els. The noise figure for the case of the four-mode model
is discussed later in Section V.

We underline the fact that the derivation of the noise
figure is performed below for both phase insensitive and
phase sensitive amplification. For the case of the PIA,
the results of our derivation can be compared with the
one already discussed in Ref. [15]. On the contrary, the
derivation in the case of the PSA has no equivalent in
the literature.

A. Two-mode amplifier

We make use of the input-output relation (9) to evalu-
ate the noise figure of the two-mode model (Fig. 2(a)) for
both PIA and PSA configurations. In terms of quantum
noise, this model has been thoroughly investigated in the
literature [11, 13, 14]. Here we remind the NF calcula-
tion in this case for the sake of comparison with the other
models discussed in this paper.
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1. Phase insensitive amplification

When only the two pumps and the signal are present
at the input of the fibre, the two-mode model in Fig. 2(a)
operates as a PIA. Thus, the initial state is the tensor
product of a coherent state of complex amplitude α1 =
|α1|eiθ1 for the signal and the vacuum state for the idler,
i.e., |ψ >= |α1, 0 >.

Since we assume that the initial signal state is a coher-
ent state, the photon number has a Poissonian distribu-
tion, for which the variance is equal to the mean photon
number:

〈N1〉in = 〈∆N2
1 〉in = |α1|2 . (17)

The output mean photon number of mode j is defined
as:

〈Nj〉out = 〈b̂†j b̂j〉out , (18)

Using the input-output relation (9), Eq. (18) leads to the
following expressions for the output mean photon num-
bers for the signal and idler:

〈N1〉out = |µ11|2|α1|2 + |µ12|2 , (19)

〈N2〉out = |µ21|2
(
1 + |α1|2

)
. (20)

Equation (19) shows that the mean photon number of
the signal consists of two components: the first term cor-
responds to the amplified signal photons, and the second
term corresponds to vacuum fluctuations, stemming from
the interaction between the signal and idler by means of
the two-mode process A shown in Fig. 2(a). The vac-
uum fluctuation term 1× |µ12|2 in Eq. (19) is due to the
so-called parametric fluorescence phenomenon, existing
even when both the signal and idler are absent at the in-
put as shown by Eqs. (19) and (20). In Eq. (20), the out-
put mean photon number for the idler does not contain
any amplified idler term due to the absence of idler power
at the input. However, it depends on the input signal
photon number |α1|2 through process A (see Fig. 2(a)),
and includes a parametric fluorescence term in the form
1× |µ21|2.

The variances of the output signal and idler are defined
by Eq. (8) and expressed as:

〈∆N2
1 〉out = |µ11|4|α1|2 + |µ11µ12|2

(
1 + |α1|2

)
, (21)

〈∆N2
2 〉out = |µ21|4|α1|2 + |µ21µ22|2

(
1 + |α1|2

)
. (22)

As an example, we detail the physical interpretation
of Eq. (21), as follows: the first term comes from the
amplification of the input signal photons. The second
term 1 × |µ11µ12|2 is due to the parametric fluorescence
in the two modes. Finally, the third term |µ11µ12|2|α1|2
results from the nonlinear interaction between the input
signal and the quantum fluctuations of the idler.

In the following, all the terms due to parametric fluo-
rescence only will be neglected in the calculation of the
noise figure, by assuming that |α1|2, |α2|2 � 1.

The NF for the two interacting modes is calculated
using Eq. (6). If the mode j is present at the fibre input,
like the signal (j = 1) in the present case, we consider
the same mode at the input and output of the amplifier,
leading to:

NF1 =
〈N1〉2in
〈∆N2

1 〉in
· 〈∆N

2
1 〉out

〈N1〉2out
. (23)

However, in the case where we want to evaluate the
amount of noise injected in a mode j that was not fed
at the fibre input, like the idler (j = 2) in the present
case, we can no longer use Eq. (6) because the input
signal-to-noise ratio is zero. Following Refs. [57, 58], we
thus generalise the definition of Eq. (6) by normalising
the output signal-to-noise ratio of the considered mode j
to the input signal-to-noise ratio for the signal:

NFj =
〈N1〉2in
〈∆N2

1 〉in
·
〈∆N2

j 〉out
〈Nj〉2out

. (24)

As an example, by substituting Eqs. (17, 19, 21) into
Eq. (23), and by supposing a relatively strong input signal
intensity |α1|2 � 1, the signal NF in the case of the two-
mode PIA is found to be equal to:

NF1,PIA = 1 +
|µ12|2

|µ11|2
. (25)

Besides, using Eqs. (9, 10), the phase insensitive signal
gain in this case is:

G1,PIA = |µ11|2 = |µ12|2 + 1 . (26)

Hence, Eq. (25) can be rewritten in the following form:

NF1,PIA = 2− 1

G1,PIA
, (27)

which is the well-known result for the two-mode PIA
noise figure, approaching 3 dB in the high-gain regime.

2. Phase sensitive amplification

Let us now consider the case where the amplifier of Fig.
2(a) operates as a PSA, i.e. when both the signal and
idler are present at the input. The input field state is thus
|ψ〉 = |α1, α2〉, where α1 = |α1|eiθ1 and α2 = |α2|eiθ2 .

Similarly to the PIA case, Eq. (18) leads to the follow-
ing output average photon numbers for the signal and
idler:

〈N1〉out = |µ11|2|α1|2 + |µ12|2
(
1 + |α2|2

)
+
(
µ11µ

∗
12α1α2 + µ∗11µ12α

∗
1α
∗
2

)
, (28)
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〈N2〉out = |µ21|2(1 + |α1|2) + |µ22|2|α2|2

+
(
µ21µ

∗
22α1α2 + µ∗21µ22α

∗
1α
∗
2

)
. (29)

Their variances are found to be:

〈∆N2
1 〉out = |µ11|4|α1|2 + |µ12|4|α2|2

+ |µ11µ12|2
(
1 + |α1|2 + |α2|2

)
+
(
|µ11|2 + |µ12|2

)(
µ11µ

∗
12α1α2 + µ∗11µ12α

∗
1α
∗
2

)
, (30)

〈∆N2
2 〉out = |µ21|4|α1|2 + |µ22|4|α2|2

+ |µ21µ22|2
(
1 + |α1|2 + |α2|2

)
+
(
|µ21|2 + |µ22|2

)(
µ21µ

∗
22α1α2 + µ∗21µ22α

∗
1α
∗
2

)
. (31)

Equations (28-31) can be interpreted in a similar way
as equations (19-22), the difference relying in the pres-
ence of the idler at the input, which gives rise to new
terms like |µ22|2|α2|2 in Eq.(29) and |µ11µ12|2|α2|2 in
Eq.(30). These terms merely originate from the ampli-
fication of input idler photons, and the interaction be-
tween the idler photons and the fluctuations of the input
signal, respectively. Another important difference is the
presence of the term (µj1µ∗j2α1α2 + c.c.), which depends
on the input signal phase, confirming thus the phase de-
pendence property of PSAs, as compared to PIAs.

The NF can be deduced from Eq. (6) for the signal and
idler. For brevity, we reproduce here only the NF ex-
pression for the signal assuming that |α1|2 = |α2|2, with
|α1,2|2 � 1. Taking µ11 = |µ11|eiθ11 , µ12 = |µ12|eiθ12 and
substituting Eqs. (17, 28, 30) into Eq. (23), the signal NF
is found to be given by:

NF1,PSA =
{
|µ11|4 + |µ12|4 + 2|µ11µ12|2

+ 2|µ11µ12|
( 2∑
k=1

|µ1k|2
)

cos Θ
}

× 1(
|µ11|2 + |µ12|2 + 2|µ11µ12| cos Θ

)2 , (32)

with Θ = θ11−θ12+θ1+θ2 the relative phase between the
pumps, signal and idler. The phases θ11 and θ12 indeed
depend on the input phases of the pumps.

From the linear relation (9), the phase sensitive gain
for the signal is found to be:

G1,PSA = |µ11|2 + |µ12|2 + 2|µ11µ12| cos Θ . (33)

Hence, using Eqs. (26, 33), the signal NF of Eq. (32) can
be rewritten as:

NF1,PSA =
2G1,PIA − 1

G1,PSA
, (34)

which is the classical expression for a two-mode PSA.

B. Three-mode amplifier

Using the input-output relation (15), we now evaluate
the NF in the case when three interacting modes are con-
sidered (Fig. 2(c)). We follow the analysis of Section IVA
and we consider as well the two amplifying scenarios.

1. Phase insensitive amplification

When the three-mode scheme of Fig. 2(c) operates as
a PIA, the initial state is given as |ψ〉 = |α1, 0, 0〉. The
idler and sideband 1 are injected with vacuum.

The mean photon numbers at the amplifier output are
evaluated using Eq. (18), leading to:

〈N1〉out = |µ11|2|α1|2 + |µ12|2 , (35)

〈N2〉out = |µ21|2
(
1 + |α1|2

)
+ |µ23|2 , (36)

〈N3〉out = |µ31|2|α1|2 + |µ32|2. (37)

Compared to the two-mode model, in which only
one fundamental parametric process is considered (see
Fig. 2(a)), the present toy model involves two extra pro-
cesses (see Fig. 2(c)). Consequently, some new terms ap-
pear in equations (35-37) giving the mean output photon
numbers.

Let us interpret these equations separately. First, the
signal in the toy model of Fig.2(c) is amplified through
the two processes labeled A and C. Process A is respon-
sible for the term 1×|µ12|2 in Eq.(35), due to parametric
fluorescence. Process C, also called frequency conversion,
is a noiseless process, explaining why the term 1× |µ13|2
is absent in Eq. (35).

Second, the idler is amplified by means of two pro-
cesses A and B. Process A is responsible of the first term
of Eq.(36), where the value ‘1’ refers to parametric fluo-
rescence. Process B introduces the term 1×|µ23|2, which
comes from the vacuum fluctuations injected in sideband
1.

Third, sideband 1 is amplified by the processes B and
C. Process B gives rise to the term 1 × |µ32|2, which
originates from the fluctuations of the idler. Conversely,
the frequency conversion process C, which gives rise to
the term |µ31|2|α1|2, does not contain any fluctuation
term, since it is a noiseless process.

The output variances are expressed as:

〈∆N2
1 〉out =|µ11|4|α1|2 + |µ11µ12|2

(
1 + |α1|2

)
+ |µ11µ13|2|α1|2 + |µ12µ13|2 , (38)

〈∆N2
2 〉out =|µ21|4|α1|2 + |µ21µ22|2

(
1 + |α1|2

)
+ |µ21µ23|2|α1|2 + |µ22µ23|2 , (39)

〈∆N2
3 〉out =|µ31|4|α1|2 + |µ31µ32|2

(
1 + |α1|2

)
+ |µ31µ33|2|α1|2 + |µ32µ33|2 . (40)
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These equations can be interpreted in a similar way as
equations (21,22). The difference here comes from the
existence of new terms associated with sideband 1 and
its interaction with the other modes.

We notice that Equations (35-40) become more and
more difficult to obtain analytically when the number
of interacting modes increases. We thus developed the
Mathematica code given in the supplementary informa-
tion to calculate the mean and the variance of the dif-
ferent photon numbers. This code can be used for an
arbitrary number of interacting modes.

The signal NF for the three-mode PIA is obtained from
Eqs. (23,35,38) and reads, for |α1| � 1, as:

NF1,PIA = 1 +
|µ12|2 + |µ13|2

|µ11|2
. (41)

2. Phase sensitive amplification

In this case, the field initial state is |ψ >= |α1, α2, 0 >.
Following the same analysis as previously, the output
mean photon numbers of the three modes are found to
be:

< N1 >out= |µ11|2|α1|2 + |µ12|2
(
1 + |α2|2

)
+
(
µ11µ

∗
12α1α2 + µ∗11µ12α

∗
1α
∗
2

)
, (42)

< N2 >out= |µ21|2(1 + |α1|2) + |µ22|2|α2|2

+ |µ23|2 +
(
µ21µ

∗
22α1α2 + µ∗21µ22α

∗
1α
∗
2

)
, (43)

< N3 >out= |µ31|2|α1|2 + |µ32|2
(
1 + |α2|2

)
+
(
µ31µ

∗
32α1α2 + µ∗31µ32α

∗
1α
∗
2

)
. (44)

And their output variances are expressed as :

< ∆N2
1 >out= |µ11|4|α1|2 + |µ12|4|α2|2

+ |µ11µ12|2
(
1 + |α1|2 + |α2|2

)
+ |µ11µ13|2|α1|2

+ |µ12µ13|2
(
1 + |α2|2

)
+
(
|µ11|2 + |µ12|2 + |µ13|2

)(
µ11µ

∗
12α1α2 + µ∗11µ12α

∗
1α
∗
2

)
, (45)

< ∆N2
2 >out= |µ21|4|α1|2 + |µ22|4|α2|2

+ |µ21µ22|2
(
1 + |α1|2 + |α2|2

)
+ |µ21µ23|2|α1|2

+ |µ22µ23|2
(
1 + |α2|2

)
+
(
|µ21|2 + |µ22|2 + |µ23|2

)(
µ21µ

∗
22α1α2 + µ∗21µ22α

∗
1α
∗
2

)
, (46)

< ∆N2
3 >out= |µ31|4|α1|2 + |µ32|4|α2|2

+ |µ31µ32|2
(
1 + |α1|2 + |α2|2

)
+ |µ31µ33|2|α1|2

+ |µ32µ33|2
(
1 + |α2|2

)
+
(
|µ31|2 + |µ32|2 + |µ33|2

)(
µ31µ

∗
32α1α2 + µ∗31µ32α

∗
1α
∗
2

)
. (47)

For brevity, we give here only the expression of the NF
for the signal mode. Following the same assumption used
for Eq. (32), and substituting Eqs. (42,45) into Eq. (23),
the signal NF is found to have the following expression:

NF1,PSA =
{
|µ11|4 + |µ12|4 + 2|µ11µ12|2 + |µ11µ13|2

+ |µ12µ13|2 + 2|µ11µ12|
( 3∑
k=1

|µ1k|2
)

cos Θ
}

× 1(
|µ11|2 + |µ12|2 + 2|µ11µ12| cos Θ

)2 , (48)

where Θ = θ11 − θ12 + θ1 + θ2 is the input relative phase
between the pumps, signal, and idler.

C. Comparison between the models

By comparing the results obtained for both of the two-
mode (Figure 2(a) and Section IVA) and three-mode
(Figure 2(c) and Section IVB) models, one can see that
the increase of the number of involved modes gives rise
to additional couplings between these modes, and thus
leads to additional terms in the expressions of the mean
and variance of the output photon number.

From these expressions, one can find that for both PIA
and PSA configurations, there are terms that depend on
the |αj |2’s, which are related to the contributions of the
modes present at the fibre input. Additionally, there are
some other terms, of the forms 1×|µjk|2 with (j 6= k) and
1 × |µjlµjm|2, which are purely quantum contributions.
These latter terms are associated with the generation of
fields out of vacuum fluctuations in the initially empty
modes. They depend of course on the type of involved
operators, i.e. on whether these operators are of the same
type (both creation or both annihilation operators), or of
opposite types (one creation operator and one annihila-
tion operator). As an example, in Eqs. (42-47) of Section
IVB2, the average and the variance of the output photon
numbers of modes 1 and 3 are composed of quantum con-
tributions that are related to mode 2, whereas for mode
2, these quantum contributions are related to modes 1
and 3. The difference between the PIA and PSA ampli-
fying configurations lies in the presence of terms of the
form µj1µ

∗
j2α1α2 + c.c. in the expressions obtained for

the PSA. These terms depend on the input phases of the
pumps, signal, and idler. As a result, the NF expressions
(32) and (48) for the PSA are found to depend on the
relative phase Θ.

We point out that, although the derivation of the
NF for both two-mode and three-mode models remains
achievable analytically, the situation gets much more
complicated in the case of the four-mode model and, a
fortiori, for more than four modes. The Mathematica
code given in the supplementary information can calcu-
late the average and the variance of the output photon
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numbers for an arbitrary number of interacting modes.
However, it does not give the final expression of the noise
figure. For these reasons, we propose in the following a
generalised expression of the noise figure for many-mode
models, for both amplifying scenarios.

D. Generalisation: Many-mode amplifier

Based on the results of the previous subsections, we
derive in this section a general expression of the NF
for models involving many interacting modes. For this
derivation, we assume that the many-mode amplifier is
described by the following input-output linear relation:

b̂1
b̂†2
...

b̂n or b̂†n

 =


µ11 µ12 . . . µ1n

µ21 µ22 . . . µ2n

...
...

. . .
...

µn1 µn2 . . . µnn




â1
â†2
...

ân or â†n

 ,

(49)
where A = (â1, â

†
2, ..ân or â†n)T and B =

(b̂1, b̂
†
2, ..b̂n or b̂†n)T are vector operators for the in-

put and output mode operators, respectively. By
convention, we choose mode number 1 as the signal.
The last line of the input and output vectors is an
annihilation or creation operator depending on the
parity of the number of modes. The coefficients µjk of
the transfer matrix M = [µjk], with j, k = 1, 2, ..n are in
general complex.

From Eqs. (10,14,16), the coefficients µjk for n inter-
acting modes have to satisfy the following condition:

n∑
k=1

|µjk|2sjk = 1 , (50)

where sjk is equal to 1 when the operators labeled by the
integers j and k in Eq. (49) are of the same type (both
creation or both annihilation operators), or to −1 when
they are of opposite types (one creation operator and one
annihilation operator).

We take the input state of the many-mode field
launched in the amplifier as:

|ψ〉 =

n∑
j=1

|αj , αj+1, ..., αn〉 , (51)

where |αj〉 = |0j〉, if no field is injected into mode j at
the amplifier input.

1. Phase insensitive amplification

From Subsections IVA and IVB above, we deduce the
generalised expression of the mean and the variance of

the output photon number for a given mode j:

〈Nj〉out = |µj1|2|α1|2 +

n∑
k=1

|µjk|2σjk , (52)

〈∆N2
j 〉out = |µj1|4|α1|2 +

n∑
k=2

|µj1µjk|2|α1|2

+

n∑
k=1

n∑
l=k+1

|µjkµjl|2σkl , (53)

where j = 1 refers to the signal mode, j = 2, .., n refers
to the other generated modes. The number σjk is equal
to 0 when the operators labeled by the integers j and k
in Eq. (49) are of the same type (both creation or both
annihilation operators), or to 1 when they are of oppo-
site types (one creation operator and one annihilation
operator).

From Eqs. (25) and (41), we deduce the expression of
the NF for the many-mode model in PIA configuration:

NFj,PIA = 1 +

n∑
k=2

|µjk|2

|µj1|2
. (54)

This equation has already been derived in Ref. [15]. We
remind it here for the sake of comparison. However, the
generalisation to the case of the PSA has not been derived
in Ref. [15], and is the subject of the following Subsection.

2. Phase sensitive amplification

We suppose that both the signal (mode 1) and idler
(mode 2) are injected with a coherent state at the input
of the fibre, the other modes being injected with vacuum
state. The general expressions of the mean value and the
variance of the output number of photons of mode j are
deduced from subsections IVA and IVB and generalised
as:

〈Nj〉out =

n∑
k=1

|µjk|2
(
|αk|2 + σjk

)
+

n∑
k=1

n∑
l=k+1

(
µjkµ

∗
jlαkαl + µ∗jkµjlα

∗
kα
∗
l

)
, (55)
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〈∆N2
j 〉out =

n∑
k=1

|µjk|4|αk|2

+

n∑
k=1

n∑
l=k+1

|µjkµjl|2
(
|αk|2 + |αl|2 + σkl

)
+

n∑
k=1

n∑
l=k+1

(
µjkµ

∗
jlαkαl + µ∗jkµjlα

∗
kα
∗
l

)
×
(
|µjk|2 + |µjl|2 +

n∑
m=l+1

|µjm|2
)
. (56)

Substituting Eqs. (17), (55), and (56) into Eq. (23), and
considering that the signal and idler are injected at
the fibre input with the same input number of photons
|α|2 � 1, the generalised form of the PSA NF in the case
of the many-mode model is given by:

NFj,PSA =

{
2∑
k=1

|µjk|4 +

n∑
k=1

n∑
l=k+1

|µjkµjl|2
(
yk + yl

)
+2|µj1µj2| cos Θ

(
|µj1|2 + |µj2|2 +

n∑
m=3

|µjm|2
)}

×

 1
2∑
k=1

|µjk|2 + 2|µj1µj2| cos Θ


2

, (57)

where yk = 1 if mode k is injected at the input, i.e.,
k = 1, 2, otherwise yk = 0, and Θ = θj1− θj2 + θ1 + θ2 is
the input relative phase between the pumps, signal, and
idler.

Now, we address the more general case where we sup-
pose that an arbitrary number p of modes, including the
signal, are injected with a coherent state at the input of
the fibre, the rest being injected with the vacuum state.
Then, the general expressions of the mean value and the
variance of the output number of photons of mode j are
obtained using the Mathematica code given in the sup-
plementary information:

〈Nj〉out =

n∑
k=1

|µjk|2
(
|αk|2 + σjk

)
+

n∑
k=1

n∑
l=k+1

Akl
(
µjkµ

∗
jlαkαl + µ∗jkµjlα

∗
kα
∗
l

)
+

n∑
k=1

n∑
l=k+1

Bkl
(
µ∗jkµjlαkαl + µjkµ

∗
jlα
∗
kα
∗
l

)
+

n∑
k=1

n∑
l=k+1

Ckl
(
µjkµ

∗
jlαkα

∗
l + µ∗jkµjlα

∗
kαl
)

+

n∑
k=1

n∑
l=k+1

Dkl

(
µjkµ

∗
jlα
∗
kαl + µ∗jkµjlαkα

∗
l

)
, (58)

〈∆N2
j 〉out =

n∑
k=1

|µjk|4|αk|2

+

n∑
k=1

n∑
l=k+1

|µjkµjl|2
(
|αk|2 + |αl|2 + σkl

)
+

{
n∑
k=1

n∑
l=k+1

Akl
(
µjkµ

∗
jlαkαl + µ∗jkµjlα

∗
kα
∗
l

)
+

n∑
k=1

n∑
l=k+1

Bkl
(
µ∗jkµjlαkαl + µjkµ

∗
jlα
∗
kα
∗
l

)
+

n∑
k=1

n∑
l=k+1

Ckl
(
µjkµ

∗
jlαkα

∗
l + µ∗jkµjlα

∗
kαl
)

+

n∑
k=1

n∑
l=k+1

Dkl

(
µjkµ

∗
jlα
∗
kαl + µ∗jkµjlαkα

∗
l

)}

×
(
|µjk|2 + |µjl|2 +

n∑
m=l+1

|µjm|2
)
, (59)

where we have introduced the following notations:

• Akl = 1 when the operator labeled by the integer k
in Eq. (49) is an annihilation operator and the oper-
ator labeled by the integer l is a creation operator,
otherwise Akl = 0.

• Bkl = 1 when the operator labeled by the integer k
is a creation operator and the operator labeled by
the integer l is an annihilation operator, otherwise
Bkl = 0.

• Ckl = 1 when the operators labeled by the integers
k and l are both annihilation operators, otherwise
Ckl = 0.

• Dkl = 1 when the operators labeled by the inte-
gers k and l are both creation operators, otherwise
Dkl = 0.

Substituting Eqs. (17), (58), and (59) into Eq. (23), and
considering that only the p first modes (j = 1 · · · p), with
p ≤ n, are injected at the fibre input with the same
coherent state |α〉 with |α|2 � 1, the generalised form of
the PSA NF in the case of the many-mode model is given
as:

NFj,PSA =

{
p∑
k=1

|µjk|4 +

n∑
k=1

n∑
l=k+1

|µjkµjl|2
(
yk + yl

)
+

p−1∑
k=1

p∑
l=k+1

2|µjkµjl|
(
Akl cos ΘA +Bkl cos ΘB + Ckl cos ΘC

Dkl cos ΘD

)(
|µjk|2 + |µjl|2 +

n∑
m=l+1

|µjm|2
)}
×

(
1

Ω

)2

,

(60)
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where Ω is given by the following expression:

Ω =

p∑
k=1

|µjk|2 +

p−1∑
k=1

p∑
l=k+1

2|µjkµjl|
(
Akl cos ΘA

+Bkl cos ΘB + Ckl cos ΘC +Dkl cos ΘD

)
, (61)

The relative phases between the pumps and the modes
labeled k and l are expressed as:

ΘA = θjk − θjl + θk + θl
ΘB = −θjk + θjl + θk + θl
ΘC = θjk − θjl + θk − θl
ΘD = θjk − θjl − θk + θl

(62)

where θk and θl are the input phases of the modes k and
l, respectively.

Equations (57) and (60) permit a direct calculation of
the NF in the case of many-mode PSAs, without resort
to cumbersome analytical calculations of the mean and
the variance of the photon number. Equation (57) can
be used when only the signal and idler are injected with
coherent states at the input (p = 2), while Eq. (60)
can be used for an arbitrary number of injected modes
(p = 1, ..n). In the case where the hypothesis that all the
excited modes are injected with the coherent state |α〉 is
not fulfilled, one can still use Eqs. (55), (56), (58), and
(59).

We note that equations (57) and (60) can be used for
different frequency schemes of parametric amplifiers, and
different degeneracy cases. Our choice of a dual-pump
configuration with non degenerate signal and idler (see
Fig. 2) is guided by the fact that this scheme is the one
discussed in Ref. [15]. Thus, for the sake of comparison,
we focus in the following on this particular scheme.

V. APPLICATION TO THE FOUR-MODE
AMPLIFIER AND DISCUSSION

In this section, we make use of the general expressions
of the noise figure derived in the preceding section, Eqs.
(54) and (57), to investigate the noise figure in the case
of the four-mode scheme of Fig. 2(b).

As mentioned in Section (III C 2), when fibre disper-
sion is neglected, an analytical solution of the four-mode
model can be found consisting in linear input-output re-
lations. Therefore, using Eqs. (12) and (13), we calculate
and plot the gains and noise figures of the four interact-
ing modes for both PIA and PSA configurations. The
case of the PIA was already investigated in Ref. [15], but
not the case of the PSA, which is of particular interest
for applications.
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Figure 3: PIA configuration. Evolution of (a) the gains
and (b) the noise figures versus γPz. Dotted black line:
signal in the two-mode model; Full orange line: signal in
the four-mode model; Dashed blue line: sideband 2 in
the four-mode model; Dot-dashed magenta line: idler

and sideband 1 in the four-mode model.

A. Phase insensitive amplification

Here, we consider that the idler and the two sidebands
1 and 2 in Fig. 2(b) are not injected at the fibre input.
Thus, from Eq. (12), the gain of mode j is defined as:

Gj,PIA =
|b̂j |2

|â1|2
= |µj1|2 , (63)

where j = 1 denotes the signal mode, and j = 2 . . . 4
denote the idler and sideband modes. Note that since no
light is injected in the idler and sideband modes, the so-
called gains Gj,PIA for j = 2 . . . 4 are actually the conver-
sion efficiencies from the signal to the considered mode.

Using Eq. (54), the noise figures for the signal, idler,
and sideband modes are given by:

NFj,PIA = 1 +
|µj2|2 + |µj3|2 + |µj4|2

|µj1|2
. (64)

Figure 3(a) represents the evolution of the gains pre-
dicted by the two-mode and four-mode models as a func-
tion of the nonlinear phase γPz. For the two-mode
model, the signal gain (dotted curve) is plotted using
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Eq. (26), while for the four-mode model, the gains of the
four interacting modes are plotted using Eq. (63). Since
we are neglecting the fibre dispersion (see Eqs. (11) and
(13)), one can see that signal gains (dotted and full lines
for the two-mode and four-mode models, respectively) in
Fig. 3(a) grow quadratically as a function of γPz when
the incident signal power is very small.

Figure 3(b) reproduces the evolution of the noise fig-
ure versus γPz, in the same situations as in Fig. 3(a).
Equation (25) is used to calculate the signal NF in the
framework of the two-mode model, while the plots for
the four-mode model are based on Eq. (64). From this
figure, one can see that the signal NF (dotted curve)
for the two-mode case takes the well-known value of 3 dB
when the gain becomes large for a PIA. However, the sig-
nal NF (solid curve) for the four-mode case exceeds 3 dB
and takes a value of 10 dB. This enhancement of the NF
is due to the coupling from input vacuum noises com-
ing from the idler and the two sidebands. Besides, a NF
value equal to 10 dB is predicted for sideband 2 (dashed
curve), which is larger than the value of 4 dB predicted
for the idler and sideband 1 (dot-dashed curve).

One notices that when γPz becomes large, the signal
(full line) and sideband 2 (dashed line) converge to the
same gains and the same noise figure value (10 dB). This
is due to the strong modulation instability that occurs
for the small frequency differences that we consider here
between the pump and the signal [43, 52, 58]. Indeed, as
the signal propagates with the pump 1 along the fibre,
the modulation instability process produces sideband 2,
whose power equals the signal’s one for large values of
γPz (see Fig. 3).

Besides, one notices that the mechanisms that lead to
the creation of the idler and sideband 1 out of vacuum
fluctuations have the same efficiency and lead to the same
powers and noise figure (4 dB) for these two modes, as
shown in Fig. 3.

B. Phase sensitive amplification

In the case of PSA operation, both the signal and idler
are present at the input of the amplifier (Fig. 2(b)) and
have equal amplitudes. Then, the gain of mode j is given
by:

Gj,PSA =
|b̂j |2

|â1|2
= |µj1|2+|µj2|2+2|µj1||µj2| cos Θ , (65)

where j = 1, 2, 3, and 4 denote the signal, idler, sideband
1, and sideband 2, respectively.

By using Eq. (57) for p = 2, the noise figures of the four
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Figure 4: PSA configuration. Evolution of (a) the gains
and (b) the noise figures versus γPz. Dotted black line:
signal and idler in the two-mode model; Full orange
line: signal and idler in the four-mode model; Dashed
blue line: sidebands 1 and 2 in the four-mode model.

interacting modes are given by the following expression:

NFj,PSA =

{
|µj1|4 + |µj2|4 + 2|µj1µj2|2

+ |µj1µj3|2 + |µj1µj4|2 + |µj2µj3|2 + |µj2µj4|2

+ 2|µj1µj2|
( ∑
k=1,..4

|µjk|2
)

cos Θ

}

× 1(
|µj1|2 + |µj2|2 + 2|µj1µj2| cos Θ

)2 . (66)

Figure 4 shows the evolutions of the gains (Fig. 4(a))
and noise figures (Fig. 4(b)) versus γPz for the two-mode
and four-mode models in the case of PSA operation. The
gains are computed using Equations (33) and (65) for the
two-mode and four-mode models, respectively, while the
noise figures are based in Equations (32) and (66), re-
spectively. All calculations are performed with the value
Θ = 0 of the relative phase between the four waves at
the input of the fibre.

Contrary to Fig. 3, when the fibre dispersion is ne-
glected, the models predict a linear increase of the gain
for small values of γPz.
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Figure 5: Signal gain (dashed line) and signal NF (solid
line) versus relative phase Θ for (a) the two-mode

model, (b) the four-mode model, (γPz = 2).

Concerning the noise figure results, Fig. 4(b) shows
that the signal and idler NF in the two-mode model (dot-
ted curve) takes a value of -3 dB when γPz is large. This
well known results is explained by the fact that only one
of these waves is supposed to be detected. If the sig-
nal and idler were jointly detected, the input SNR would
be increased by 3 dB and thus the NF would reach the
well-known quantum limited value of 0 dB.

The four-mode model predicts a degradation of the
signal and idler noise figures [see the full line in Fig. 4(b)]
with respect to the two-mode model. The discrepancy
between the two models occurs when the nonlinearity is
large enough (typically γPz ≥ 0.2) for the powers of the
sidebands to be no longer negligible with respect to the
signal and idler powers (see Fig. 4(a)). This degradation,
which reaches 3.4 dB for large values of γPz, is due to
a transfer of the vacuum fluctuations that are injected
in the sideband modes, which becomes efficient when the
modulation instability creates significant sidebands.

For such a relatively large value of γPz, Fig. 5 shows
the evolution versus the relative phase Θ of the signal
gain and NF in the case of the two-mode [Fig. 5(a)] and
four-mode [Fig. 5(b)] models for the PSA. Figure 5(b)
shows that the presence of the two sidebands, leads to

the fact that the PSA gain is always larger than 0 dB
for all values of the phase Θ. This leads in particular to
the fact that the minimum gain is no longer the inverse
of the maximum gain. This is similar to the features
already observed in the framework of a seven-wave model
[59]. This phenomenon is also accompanied by a strong
degradation of the maximum gain obtained for Θ = 2kπ,
where k is an integer.

Concerning the noise figure, the fact that the minimum
gain remains positive in the case of the four-mode model
leads to the fact that maximum value of the NF is not as
strong as in the case of the two-mode model. Moreover,
as already seen in Fig. 4, the degradation of the mini-
mum noise figure associated with the maximum gain is
significant but not dramatic, leading to a NF equal to
0.4 dB.

VI. SUMMARY

In summary, we derived generalised analytical expres-
sions of the noise figure for many-mode phase insensitive
and sensitive amplifiers using a quantum approach. The
method of derivation was based on the existence of a
linear relation between the input and output mode oper-
ators, which served as a starting point. We then started
from some particular models involving a limited number
of modes, the linear input-output relation of which could
be found under certain assumptions, to derive an expres-
sion of the noise figure. We then extrapolated from these
results to deduce a more general expression for the NF
in the case of an arbitrary number of modes.

As an application of this generalised NF expression, we
predicted the noise figure in the case of the four-mode
model for both PIA and PSA schemes. We found that
the signal exhibits a higher noise level than the one ex-
pected from the conventional two-mode model, due to
the vacuum fluctuations coupled to the signal from the
high-order modes. In spite of this degradation of the
noise figure, we could predict that a PSA in multi-mode
configuration can still exhibit relatively low NF values,
and in particular much lower than in PIA configuration.

Beyond applications to telecom and microwave pho-
tonics systems, the present work opens interesting per-
spectives to low-noise amplification of frequency combs
[60] and low-noise spectral replication [61, 62], for many
applications such as metrology, THz regeneration, signal
coherent communications, etc., where low noise levels are
mandatory.
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