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PROBABILISTIC LOCAL WELL-POSEDNESS FOR THE SCHRODINGER
EQUATION POSED FOR THE GRUSHIN LAPLACIAN

LOUISE GASSOT AND MICKAEL LATOCCA

ABSTRACT. We study the local well-posedness of the nonlinear Schréodinger equation associated
to the Grushin operator with random initial data. To the best of our knowledge, no well-
posedness result is known in the Sobolev spaces H* when k < % In this article, we prove that
there exists a large family of initial data such that, with respect to a suitable randomization in
H* ke (1, %], almost-sure local well-posedness holds. The proof relies on bilinear and trilinear

estimates.
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1. INTRODUCTION

1.1. The Schrodinger equation on the Heisenberg group and the Grushin equation.
We consider the Grushin-Schrédinger equation

(NLS-G) i0u — Agu = |ul*u,

where (t,z,y) € R x R? and Ag = 0y + 220,,. The natural associated Sobolev spaces in this
case are the Grushin Sobolev spaces H, ’é on R?, defined by replacing powers of the usual operator
vV/—A by powers of v/—Ag.

This equation is a simplification of the semilinear Schrodinger equation on the Heisenberg
group in the radial case

(NLS-H!) 10 — Agnu = |ul?u,

where (t,2,y,s) € R x H!. In the radial case, the solution u only depends on t,|z + iy| and s
and the sub-Laplacian is written Agn = (040 + 0yy) + (2% + y?)ss. Our simplification of this
equation consists in removing one of the two variables x, y since they play the same role, leading
to (NLS-G).

When k > k¢ where ko = 2 (resp. ko = 3 for (NLS-G)), one can use the algebra property
of the spaces H*(H') (resp. HZ)) and solve the Cauchy problem associated to (NLS-H') (resp.
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2 LOUISE GASSOT AND MICKAEL LATOCCA

(NLS-G)) locally in time, see Appendix A.2 for details. However, the conservation of energy only
controls the H* norm when k = 1, and since no conservation law is known for k& > 1, we have
no information about global existence of maximal solutions in the range of Sobolev exponents
k> kc.

For Sobolev exponents below the critical exponent k¢, existence and uniqueness of general
weak solutions is an open problem. To go further, the Schréodinger equation on the Heisenberg
group displays a total lack of dispersion [BGX00], implying that the flow map for (NLS-H')
(resp. (NLS-G)) cannot be smooth in the Sobolev spaces H* when k < ko. We refer to the
introduction of [GG10] and Remark 2.12 in [BGT04] for details.

1.2. Main results. In this subsection we will only introduce the needed notations to state our
main result, we refer to Section 2 for precise definitions.
Fix ug in some Sobolev space Hé for k£ > 0. Then u decomposes as a sum

(1.1) ug = Z UL m 5

(I,m)€22xN

where the ur,, will be defined by (2.2).

Let (€2, A, P) be a probability space. We consider a sequence (X7,) (1 m)c2zxn of independent
and identically distributed Gaussian random variables and define the measure 1, as the image
measure of P under the randomization map

(1.2) weQ—uf = Z Xrm(w)urm -
(I,m)€22xN

For k > 0 and p > 0, we introduce the subspace X pk of H 5 in which we will prove almost-sure
local well-posedness. Denoting (x) = v/1 + 22, the space Xf corresponds to the norm

(1.3 ol = X (L @+ DD D s
(I,m)€22xN

The powers (1 + (2m + 1)I)¥ refer to the Sobolev regularity: for instance, when p = 0, then

[luol| X~ |luol| HE- However, the powers (I)” only corresponds to partial regularity with respect

to the last variable, see the precise definition of decomposition (1.1) in Section 2 and Remark 2.4
for details.
Our main result is the following.

Theorem A (Local Cauchy Theory for (NLS-G)). Let k € (1,3] and up € Xf C HE.

(i) For any { € (%,k + %), for almost-every w € €1, there exists T > 0 and a unique local
solution with initial data u§ to (NLS-G) in the space

eitAGutéJ + CO([O,T)y Hé) C CO([OvT)a Hg) :

More precisely, there exists ¢ > 0 such that for all R > 1, outside a set of probability at
—<R* one can choose T > (R||u0||X1k)_2.

(ii) (Non-smoothing under randomization) If uo € HE\ (U0 HngE), then

supp(pu,) C HE \ (| HE™)
e>0

most e

(7ii) (Density oflmeasures with rough potentials) Let ¢ > 0, then there erists vy € X\
(Uorso HETE) such that

supp(fhoy) N BHE (ug,€) # .
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Remark 1.1 (Consequences of (7)). For every k > 1+42¢ > 1 and ug € Xf+2€+1_k, the continuous
embedding X{“+28 L1k X} implies that for almost-every w € Q, the initial data u§ gives
rise to a unique local solution

. 3
u € ety 1+ 00, T), HE ™),

where we check that £ =3 +¢ € (3,1 + 2+ 3).

Therefore, in the case k = %, we observe that the limiting almost-sure well-posedness space is
3 3 3
Neso X f+€. We recall that for k = %—1—5, local well-posedness is known to hold in H é+£ = X7 e
2

It is interesting to note that our approach looses an exponent p = 1, since we do not recover

27
the same limit space in the limit £ — %

Remark 1.2 (Decomposition of the solution). In (%), we claim that it is possible to construct
local solutions to (NLS-G) in the space C([0,T), HE) for small values of k. However, uniqueness
holds only on a smaller subset, as a consequence of an a priori decomposition of the solution
as sum of the solution to the linear equation (LS-G) with initial data uf and a smoother
part. This decomposition can be interpreted as a more nonlinear decomposition of the solution
than seeking v € HE, as we seek for u in an affine space eA¢u§ + H, instead of a vector
space. Such a decomposition is the simplest nonlinear decomposition, akin to [BT08a], and is
a key feature in most random data well-posedness works. More recently, even more nonlinear
decompositions for the solutions to some dispersive equations have been exhibited in [DNY19]
(see also [GIP15,Hail3, Hail4] in the context of stochastic equations).

Remark 1.3 (Regularity and density of the measures). Parts (i7) and (ii7) give regularity prop-
erties of the measures fi,,. In fact, (#) ensures that the measure p,, does not charge solutions
which are more regular than ug. Actually, the measure f,,, charges solutions that have regularity

Wgrl/ 44 on LP based Sobolev spaces, but no better regularity bound is expected to hold (see
Proposition 3.1 and Remark 3.5), so this estimate alone is not enough to establish Theorem A.
Statement (7ii) goes even further since we prove that

U{swpp(i) | vo € X\ (1 HE™)}

e>0

is dense in H 5 This result is related to the support density in the Euclidean case. Indeed, for
the nonlinear Schrodinger equation on the torus, probabilistic local well-posedness holds with
respect to measures which are dense in Sobolev spaces, see for instance Appendix B of [BT08a]
and [BT14].

Remark 1.4 (Admissible initial data). When wug only has a finite number of modes m, the
assumption ug € XF is equivalent to the condition ug € Hé“, but since k +1 > ko = %, the
result is void. For this reason, our result does not extend to the nonlinear half-wave equation
Oyu £ /—Au = |u|*u, which also admits a similar decomposition to (1.1) but only with a finite
number of modes m. However, we will see in Remark 2.4 that the condition ug € &F still allows
a general set of low regularity initial data in our context.

Remark 1.5 (Defocusing case). One can replace equation (NLS-G) by its defocusing variant and
get the exact same local well-posedness theory. Indeed, we only address local well-posedness,
which mainly depends on the order of magnitude of the nonlinearity and not its sign.

Remark 1.6 (Randomization). The measures i, are defined in (1.2) with Gaussian random
variables. However, most of the results in this article are stated for more general subgaussian
random variables (see Definition 2.11), except when using the Wiener chaos estimates from
Corollary 2.15, which is stated only for Gaussian random variables.
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Note that the randomization along on a unit scale in the variable m is quite classical, as this
is the variable along which we establish our bilinear estimates. However, the variable I plays a
different role which allows us to only take a randomization on a dyadic scale. One could compare
this choice with the construction of adapted dilated cubes in [BOP15b].

1.3. Further work. We expect that for the Schrédinger equation (NLS-H') on the Heisenberg
group, the local well-posedness theory for the randomized Cauchy problem holds with a same
gain of almost % derivative compared to the critical exponent ko = 2. More precisely, for
up € H*MHY), k € (3,2], there holds a decomposition similar to (1.1). Assuming that ug
belongs to a space similar to (1.3), we conjecture that there exists a unique local solution with
random initial data u§ in the space e®utug + CO([0,T), HY(H")) c C°([0,T), H*(H')) with
le (2,k+ %) This will be the object of a subsequent work. In the non radial case, we would
have to tackle the additional terms in the expression of the sub-Laplacian on the Heisenberg

group £ = Ay + (y0, — x0,)0s.

1.4. Deterministic and probabilistic Cauchy theory for (NLS-H'). As mentioned at the
beginning of this introduction, the nonlinear Schréodinger equation on the Heisenberg group lacks
dispersion, therefore the dispersive paradigm cannot be applied for lowering the critical well-
posedness exponent below ko = 2 (resp. k¢ = 5 for (NLS-G)) given by the Sobolev embedding.
More precisely, the lack of dispersion precludes the usual way in which Strichartz estimates are
proven, that is a combination of a dispersive estimate and a duality 77" argument. The result
in [BGX00] goes even further, as the non smoothness of the flow map for (NLS-H') in H* for
k < ko makes it impossible to implement a fixed point argument.

The lack of dispersion and the lack of Strichartz estimates for the Schrédinger equation on the
Heisenberg group have been recently investigated in [BG20] and [BBG19]. In these works, the
authors prove that there exist anisotropic Strichartz estimates [BBG19], local in space versions
of the dispersive estimates (Theorem 1 in [BG20]) and local version of Strichartz estimates
(Theorem 3 in [BG20]). These results follow the general strategy of Fourier restriction methods
for proving Strichartz estimates, dating back to Strichartz [Str77], and use the Fourier analysis
on the Heisenberg group [BCD18, BCD19]. We also refer to [Miil90] for restriction theorems on
the Heisenberg group.

Probabilistic methods have proven to be very useful to break the scaling barrier in the context
of dispersive equations. Such a study has been pioneered in [Bou94]: the purpose is to construct
global solutions for nonlinear Schrédinger equations posed on the torus, using invariant measures
and a probabilistic local Cauchy theory. In [BT08a,BT08b], the authors extend these results to
other dispersive equations, opening the way to a very active area of research and leading to an
immense body of results.

Invariant measure methods mostly reduce their scope to compact spaces, the setting of the
torus being used on many works. For non-compact spaces, the probabilistic method of [BT08a]
remains largely adaptable through the use of Gaussian random initial data. We refer for example
to [BOP15b, BOP15a] where probabilistic local well-posedness is obtained for the nonlinear
Schrédinger equations on R, and to [OP16,Poc17] for similar results with the wave equation.

Several works go beyond the Euclidean Laplacian. For instance, in [BTT13] the authors
replace the standard Laplacian —A with a harmonic oscillator —A + 22 and study the local
Cauchy theory for the associated nonlinear Schrodinger equation. Our work is partly inspired
from this work, and also subsequent works [Den12, BT20, Lat20]. Indeed, in our case, rescaled
harmonic oscillators parameterized by one of the variables appear when one considers a partial
Fourier transform of the equation.

We point out that although no progress had been obtained in the direction of local well-
posedness up to now, traveling waves and their stability have been studied in [Gas21, Gas20].



GRUSHIN-SCHRODINGER EQUATION 5

1.5. Outline of the proof and main arguments. In this section, we briefly review the main
ideas leading to the proof of Theorem A.

1.5.1. General strategy for almost-sure local well-posedness. We follow the probabilistic approach
to the local well-posedness problem from [BT08a] in order to study (NLS-G). We fix ug € HE,
where 0 < k < k¢ = 2, and consider the randomization u§ defined in (1.2). We seek for solutions
to (NLS-G) under the form

u(t) = eAGus + o(t)

3
where v(t) belongs to some space Hé+5, € > 0, on which a deterministic local well-posedness
theory is known to hold. Plugging this ansatz in the Duhamel representation of (NLS-G) leads
to

. vt ., !
u(t) = e"Aouf — /0 =186 (| ey + o(t) 2 B0ug + u(t'))) dt,

, 3
so that with the notation 2% () = e*A¢u¥, we expect that v(t) = ®v(t) € Hé+€, where

o (t) = —i /0 il (1) + o) P((F) + o(t))) dt'.

In view of the lack of Strichartz estimates, the best known bounds on ®v are the trivial estimates
(we take t < T and forget time estimates, as we only give heuristic arguments)

1200 g 00+ 200, S 10 e+ 0GP+ 172070 g+ I

3
The term v is handled using the algebra property of the space H, é+€, since v has high regularity.

3
The terms involving 2% are mode difficult because z* € H, ’é \ H5+6 only has HF regularity since
the randomization does not gain derivatives, as stated in Theorem A (i) and proven in Section 3.
A first approach would be to estimate
H(Z“)gHH?E ~ H<_AG>%+%ZW(ZW)2HL%; S HZ“’HW(%,OOHZ“H?%,

thus it is important to study the effect of the randomization on ug in terms of regularity in LP
based Sobolev spaces. As proven in Proposition 3.1, linear estimates in Wé’p spaces gain up to
i derivatives. However, the linear estimates alone are not sufficient to gain the % derivatives in
regularity and therefore deal with low values of k in Theorem A.

In order to improve our estimates, we establish bilinear estimates: we prove that given the
random solutions z* with initial data in H’é to the linear Schréodinger equation

(LS-G) 10z — Agz =0,

k41
then almost-surely we have (2¥)? € H, G+2' In this article, we prove the following bilinear and
trilinear estimates in the spaces X pk, which could be of independent interest.

Theorem B (Bilinear and trilinear estimates for random solutions). Let k € (1,3] and ug €
XF C HE (see (1.3)). Let u§ as in (1.2), and let us denote by 2% = Ay € CO(R, HE) the
solution to (LS-G) associated to uy. Then there exists ¢ > 0 such that the following statements
hold. Fiz q € [2,00). For T >0, denote L%, := L([0,T1).

i) For all R>1 and T > 0, outside a set of probability at most e=°R*  one has
(i) ; P y :

(1.4) 1P, g + 1P

2t 2
kil S R T‘IHUOHX{C,
G

H G

T LTH

1
(1.5) 2Pl ey < BT ol

LrHg
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(ii) We further require that ug € Xlk—i-eo for some g9 > 0. Let £ < k+%. For all R > 1 and

T > 0, there exists a set Er 1 of probability at least 1 — e~ such that the following
holds. Fix w € Egr and v,w € L‘:’FOHE , then

1
(1.6) e vl s, < RTT Nuollag,. Wl ool e,
Note that v and w may depend on w.

Remark 1.7. The time variable does not play an important role. Indeed, in the course of the
proof, we establish deterministic pointwise estimates in the time variable, and the L. norm
instead of L only appears in order to apply the Khinchine inequality and Wiener chaos esti-
mates from part 2.4. In comparison, bilinear smoothing estimates for the nonlinear Schrédinger
equation on R? crucially exploit the time variable, as the smoothing occurs in time averages.

The heuristic explained above for proving Theorem A by using Theorem B is implemented
rigorously in Section 8.

1.5.2. Mltilinear random estimates. The bulk of this paper aims at establishing Theorem B,
thus we briefly outline the main aspects of the proof.

First, because of the random nature of the z*, we use random decoupling in order to reduce
the estimates to “building block estimates”, that is estimating products HuavbwcHH% . for ug,

vp and w, obtained by restricting the Sobolev frequencies of u, v and w around the C\;/alues a, b
and c. This reduction is a consequence of Corollary 2.15.

In the Euclidean setting, the Bernstein estimates and the Littlewood-Paley decomposition
would justify the heuristics V(ugvpwe) =~ V (ug)vpwe + 1V (vp)we + uqvp V(w,) and thus reduce
the analysis of HuavbwcHH% .. to that of ||uqvywe|| rz- In our case, this results still holds, but

G
rigorous justification is more intricate and is the content of Section 4.
The purpose of Section 5 is to prove “building-block” estimates of the form

[uavell Lz, € ————lluallrz lvs]l 2, -
¢ max{a, b}% ¢ ¢
To give the main idea of the proof, it is instructing to see that in partial Fourier transform along
the last variable, we can think of u, and v, as

Fyora(ua) @,m) = F)han(In]?2) and Fyos(v9) (@,m) = g(n)ha(|n] 7).
where h,,, h, are Hermite functions. Thus we can see that estimating uqu; involves estimating
convolution products of rescaled Hermite functions. The key fact is now that Hermite functions,
due to their localization and normalization, enjoy bilinear estimates that are better than trivial
Hoélder bounds, see [BTT13], relying on pointwise estimates from [KKT05], see also [KTZ07].

1.5.3. Bilinear random-deterministic estimates. It turns out to be more difficult to prove a
multilinear estimate on probabilistic-detemrinistic products such as u“vw, where v and w are
deterministic, which is the content of (1.6). In this case, one should pay attention that the
required set of w constructed in Theorem B (i) does not depend on v and w. This precludes a
direct use of decoupling offered by Corollary 2.15 as exploited in the proof of Theorem B (7). To
understand the difference between the treatment of |2|?2% and z*vw, remark that for example
in (6.6) the set of w which is removed depends on the zj,,, that is on z, which is fixed in
Theorem B. In the case of 2“v? this would remove a set of w depending on v and w.

In order to circumvent such a difficulty, the idea is to apply probabilistic decoupling only
on terms involving the random part z*. The implementation of this strategy is carried out
in Section 7 and relies on a preparatory step introduced in Section 7.1 aiming at splitting the
analysis of z“vw into a deterministic part K := K(v,w) and a probabilistic part J¥ = J(z*),
which are treated in Section 7.2 and Section 7.3.
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2. NOTATION AND PRELIMINARY ESTIMATES

The purpose of this section is twofold. First we introduce decomposition (1.1), which is due
to the structure of the Grushin operator. Then, we recall some useful estimates, such as Sobolev
embeddings, product laws, eigenfunction estimates and probabilistic decoupling estimates.

We will use the notation f < g to denote that there exists C' > 0 such that f < Cg.

2.1. Decomposition along Hermite functions for the Grushin operator. In this sub-
section we give an explicit description of the Grushin operator Ag = 92 + a:28§, acting on
L?(R?).

Let us consider the orthonormal basis of L?(R) given by the Hermite functions (hy,)m>0- By
definition, the Hermite functions are eigenfunctions of the harmonic oscillator: for all m > 0,
we have

(=02 + 2 hpm = 2m + 1Ay, .
Taking the Fourier transform in y, with Fourier variable 7, we observe that for all n € R, we
have
(=02 + &1 ) (0] 22) = (2m 4 1)l (0] 22)
Therefore, one can decompose the Fourier transform F,_,(u)(-,n) of u € Hf along the basis
(hm(|17|%~))m>0, so u becomes a sum
Fyon(@(@,n) = 3 fa)h(nl2e).
m=0

Moreover, this decomposition is invariant by the action of the Grushin operator —Ag, so that
we can explicitly write the Hg norm as

1)l = 100 -86) 53, = 3 [ (4 m ot Dl )l

m=0

Remark 2.1. The quantity (2m-+1)|n| plays the role of “taking two” derivatives, that is a similar
role as the Fourier variable [£|? in the context of the Euclidean Sobolev spaces. Keep in mind
that however this quantity mixes the Hermite modes m with the partial Fourier variable 7.

Remark 2.2. In (2.1), the extra factor |77|7% should be understood as a normalization factor.
Indeed, the L2 norm of the function z hm(|77|%:1c) is |77|7i.

In order to deal with the Sobolev norms, we further decompose u according to its regularity
in the y variable as (1.1)
= Y urm.

(I,m)e2ZxN

The definition for the wuj,, is the following. Taking the Fourier transform along the y variable,
the support of Fy_,,(urm)(x,n) satisfies the condition |n| € [I,2I] for some dyadic relative
integer I € 2%:

(2.2) fy%n(ul,m)(%n) = fm(n)hm(ln!%w)lweu,zz] .

When using the bilinear estimates, it will be useful to regroup the global frequencies 1+ (2m -+
1)|n| in dyadic blocs 1+ (2m +1)I € [A,2A] where A € 2N is a dyadic integer. For the shortness
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of notation, we will write (m+1)I ~ A instead of 1+ (2m+1)I € [A,2A]. Therefore, we denote

(2.3) up =

UT.m

(I,m)e22xN

(m+1)I~A

so that

u = Z UA -

It is useful to note that, writing (I) = v/1 4 I?, we have 2ml+1 S

(I)
T+@2m+1)I"

Because of the orthogonality of the h,,, we have the following useful identities, which we will

refer to as using orthogonality.

Lemma 2.3. For all k € R, there holds

HUI\izg = >

(I,m)€22xN

Observe that on the support of uz ,,, we have

||UI,meqg = Z HUAqug-

Ag2N

1+ @2m+ Dl € [1+ @m+ 1)I,1+ (2m + 1)21] C [A, 44],

so that

k k
[wrmll e, ~ (LA (2m 4 D)2 [Jurmll g2, ~ A% lurml 2, -

Using orthogonality, one also has: for any A € 2V,

k
lwallgs ~ A2 lluallrz, -

Remark 2.4. With the above notation, one can interpret the norm (1.3) in X,f

lullZy = > (@ @m+ DDF (D furmls

(I,m)€2%xN

as

Jullg ~ 3 [ @+ @mt D)L+ 1) fn (o) Pl .

m=0

In particular, every function u € Hg with additional partial regularity of £ in the y variable

belongs to ka .

2.2. Hermite functions. Let us first recall some pointwise bounds for the Hermite functions
(hm)m=0. We denote by A, = v/2m + 1 the square root of the m-th eigenvalue for the harmonic

oscillator.

Theorem 2.5 (Pointwise estimates for Hermite functions [KT05], Lemma 5.1). For any m > 0

and x € R, there holds

1

‘)\2 x2|1/4

(@] S Am

e—SnL(-”)

=173

where

2] < Am — Am'/?

i |2 = Am| < AR

2] > Am + Am'?,

Sm(x) :/ 12— A2, dt.
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Remark 2.6. In order to understand how bilinear estimates on h,,h, are proven (see [BTT13]),
one may roughly picture h,, to be concentrated on [—v/2m + 1, v/2m + 1], and work with models
of the form

1 _1
him(z) ~ %(27” + 1731 o, vomr) (@)

as long as one does not take pointwise estimates, and as long as one does not consider L” norms
for p too big.

The pointwise estimates imply the following lemma on the LP norm of the Hermite functions.

Lemma 2.7 (L? norms for Hermite functions [KT05], Corollary 3.2). For any p > 2 there holds
uniformly in m
1
[hmll @) < IGR
m

where Ay, = V2m + 1 and

1
P
—i—i ifd<p

1

(2.4) ¢(p) = {f

6

However, these LP norm estimates will not be sufficient for our purpose, and we will rather
make use of the following simplified pointwise estimates.

Corollary 2.8 (Rough pointwise estimates for Hermite functions). There exists ¢ > 0 such that
for any m > 0 and x € R,

1
Am? i e < A
1
2 1
()] < (/\% a2 — )\,2n> i A< 2] < 22
e 57 it |z = 22

For a proof of Corollary 2.8 based on Theorem 2.5, see Appendix A.1.

2.3. Sobolev spaces. We will use on several occasions Sobolev embeddings for the Grushin op-
erator, which correspond to the Folland-Stein embedding for the Sobolev spaces on the Heisen-
berg group [FS74].

Theorem 2.9 (Folland-Stein embedding). Let p € [2,00).
(i) For k> 3, then Hf, — L.
(ii) Fork < 3 ,if%}%—% , one has HE — LY,
Proposition 2.10. Let k > 0 and u,v € Hg Then
(1) (Product rule) [[uv| gr S llullgs vl + llullzg vl g s
(i) (Algebra property) if k > 3, lluvllg < lulg [0l s :
(iti) (Chain rule) if k > 3, for every p € N*, Hup||Hé S Hu||§1,é

More details about the proof of Proposition 2.10 can be found in Appendix A.2.

2.4. Probabilistic preliminaries. Only basic probability notions will be used in this article.
Recall that we have fixed once and for all a probability space (€2,.4,P), and denote w € Q.

Our main probabilistic tool is the Khinchine inequality for subgaussian random variables, and
a is a multilinear version for Gaussian random variables.



10 LOUISE GASSOT AND MICKAEL LATOCCA

Definition 2.11 (Subgaussian random variables). We say that the family of independent and
identically distributed complex-valued random variables (X1m) 1 m)ec2zxn is subgaussian if there
exists ¢ > 0 such that for all v > 0,

E |:€7X1,mi| g 60’72 .
Theorem 2.12 (Khinchine inequality / Kolmogorov-Paley-Zygmund [BT08a], Lemma 3.1). Let
Z be a countable set, and let (X,)nez be a sequence of independent and identically distributed

complex-valued subgaussian random variables. Then there exists C' > 0 such that for every
complex-valued sequence (Vy,)ner € £2(T) and all r € [2,00), one has:

Y UX,| <CVr (Z |x1/n2>2 :

nel ne’l

Lg

Corollary 2.13 (Probabilistic decoupling). Let Z be a countable set, and let (Xp)ner be a
sequence of independent and identically distributed complez-valued subgaussian random variables.
Then there exists ¢ > 0 such that the following holds.

Fiz a sequence (U,,) ez of functions of the variable ¢ € R? in LZ,, p=(p1,...,pq) € [2,00)%
Fiz a countable set P and a partition of T denoted (Zy)rep. Then there exists Ry(p) large enough
such that for R > Ro(p), outside a set of probability less that e*CRQ, there holds:

2

D

keP

> VX (w)

<R2Y Wl
nely, v

P nel
Lw

Proof. First, from the triangle inequality, we have

2 2

>

keP

> WX, (w)

TLGIk

3>

LP , keP
Q

> WX (w)

nGIk

ollg Ly,
Now, by the Minkowski inequality and Theorem 2.12 we have for 2r > max{p,...,pq}, for all
keP,

1

2
S v.X, <CVr (Z MF) :
Ly,

nely,

L?{LZ; TLEIk

and applying the Minkowski inequality again,

> v, X,

n€ly

1
< o\/?(z |\Ifnllii) :

n€ly,

LE LY,
Thus by the Markov inequality, there exists C' > 0 such that

2

Pl

keP

> WX,

nely

cvr\
R? U, %, | < ,
>R HLw < i >

€z
LY, m
and the conclusion follows by optimizing in r, which leads to the choice r = %. O

We have the following multilinear version for Gaussian variables.
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Theorem 2.14 (Wiener Chaos estimates [OT18], Lemma 2.6 and [Sim74], Lemma [.18-1.22).
Let T be a countable set, £ > 1 an integer, and let ¥ : T® — R. Let (gn)nez be independent and
identically distributed standard real-valued Gaussian variables. Then there exists C({) such that
the following holds. Let

W . w w
F= Y Wy gt g
(nl,...,ng)EIZ

and assume that F*¥ € L%. Then one has that for any r > 2,
¢
[ Ly, < COr2[|F*]| 2 -

We now state the main consequences of this theorem and of the Markov inequality that we
will use in this article.

Corollary 2.15 (Probabilistic decoupling). Let Z be a countable set. Let X, = gn+ih, complex
Gaussian random variables, where the {gn, hn}nezr are independent and identically distributed
real-valued Gaussian variables. There exists ¢ > 0 such that the following holds. Let p =
(p1,...,pa) € [2,00) and (Y ez and (Yp s )nnt nvet be functions of the variable 1 € R?

belonging to LZ = Lzll . Li”fi. Then for R > Ro(p) large enough the following holds.

, , 0 _eR?
(i) Outside a set of probability at most e=°F"

2
2
> 2
Z \Ijn,n’Xan' < R4 Z H\I/n,n’ P + R4 (Z H\II’"«,TZ”L:Z}>
n,n' €L LZ nn'€L v nel
2
2
Z \Iln,n’Xan’ <R4 Z ||\Ijn,n/HLP .

n,n' €L LZ n,n' €L v
1) We assume that U, vy = Vo oo for every n,n’,n” € Z. Outside a set of probabilit
b b I b y p y

at most e~°F*

7

2 2
Z \I’n,n’m”Xan’Xn” < RS Z ”\I'n,n’,n”H%f; + RS Z (Z ||\I’n,n,n’||LZ) .

n,n' n"" €l P nn' n"" €l neZ \n'€Z
P

(ii) We assume that ¥ = (Y_,14), p = (p—,p+), and we relax the assumption on p as
p_ = (p1,...,pq_) € [1,00)% and py = (pa_+1,---,pa) € [2,00)97%. Then outside a

o _eR?
set of probability at most e~

1/2
Z \Iflean, < R? ( Z H‘I’mn’Hiﬁ) +ZH\IJTL7”HLP
+
LP

+
nn' €L nn' €L nel Y+ »

ke Ly

Proof. The proof follows from Theorem 2.14 by expansion, writing that ¥, ./ = by, v + icy
and using the independence of g, from h,,. We fix r > max{p1,...,pq}-

(7) Applying the Minkowski inequality, Theorem 2.14 and the Markov inequality, we get that

outside a set of probability at most e~®” there holds

> U XnXy| <R
n,n'€L P
Lw

Z \I]n,n’ Xan’

nn'€Z

2
Lh L
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But for every z € R?, we expand
2 2

Z \Iln,n’(w)Xan’ E Z \Pn,n’(lp)Xan’

nn' €L L2 n,n' €L
Q

= Z E[Xn1Xn’1Xn2Xn’2}\I’n1,n’1 (1#)\11712’”/2 (w) .

/ /
ni,ng,ni,no€L

The crucial observation is then the following, ]E[Xan/1 anXné] = 0 unless {n1,n5H} = {n}, na}.
Indeed, since X = Xj 5, is a complex gaussian, we have 0 = E[X] = E[X 2], and the same holds

for X. Therefore we are left with:
2

2
Yo V() XnXy| =C Y U u(@)?+C (an,n(wﬂ) :

nn'€T 1.2 n,n' €L nel
Q

Taking the norm Li of the square root of this term and using the Minkowski inequality lead to
the first inequality. For the second inequality, the proof is the same except for the remark that
E[Xo, Xy Xy Xy ] = 0 unless {n1,n1} = {ng,n}.

(7)) Applying the Minkowski inequality, Theorem 2.14 and the Markov inequality, we get that
outside a set of probability at most e~®* there holds

Z \I’n,n’,n”Xan’Xn” < R3 Z ‘lln,n’,n”Xan’Xn”

n,n' n"" €L Lz} nn' n" €L LﬁLé

We first fix 2 € R? and estimate HZn,n’,n”GI Wt (0) Xy Xy X

, by expanding
LQ

2
Z \Iln,n/,n’/ (w)Xan/Xn//

n,n/ n" €l L%
= E : E[anXn/an’I’Xn2Xn'2Xn’2/]\Iln1,n/l,n”(w)\pnz,nlz,ng (¢) :
n1,ny,nY ne,nyny el

Since X := X, is a complex gaussian, we have 0 = E[X] = E[X?] = E[X?], and the same holds
for X. Therefore, if
E[anXn’an’l’anXn’QXn’z’] # 0,
then one can see by double inclusion that
{nla n,b ng} = {n/{) nz, ’I’L/2} .

More precisely, using that E[X2X] = 0, we even have that the indices ny, nj, nj, are in bijection
with the indices n},ng,nS. This implies that up to permutation of the pairs of indices playing
the same role, namely the pair of indices ny and n} and the pair of indices ng and n}, we are in
one of the following two cases:

® ny =g, Ny =Ny, N = nj;

e ny =nf, n} =nb and ng = nf.
Therefore, outside a set of probability at most 6_0R2, there holds

2 1/2]|? 1722

2
Z \Ijn,n’,n”Xan’Xn” < RG Z |\I’n,n’,n” 2 +R6 Z (Z |\Pn,n’,n|>

n,n/ n" €l P nn/ n"" €l n'€Z \nel
P LZ) Li



GRUSHIN-SCHRODINGER EQUATION 13

so that from the Minkowski inequality on the sum over n,n’,n” resp. n/,
2 2
Z ‘Iln,n’,n”Xan’Xn” < R6 Z H\Pn,n’,n”Hiz) + R6 Z Z ’\Pn,n’,n’

n,n' n"" €L P n,n' n"" €L n’€Z lineZ
P

P
Lw

and from the triangle inequality on the sum over n,
2

2
Z \Iln,n’,n”Xan’Xn” < RS Z H\I/n,n’,n”H%Z) +R° Z (Z qun,n’,nHLi> .

n,n' n"" €l LZ n,n/ n" €l n'€Z \neZ

(#7) Applying the Minkowski inequality, Theorem 2.14 and the Markow inequality, we have
that outside a set of probability at most e~“F* there holds

Z \Ijn,n’Xan’ < R2 Z \IIn,n’Xan’
n,n'€L j2 nn' €L P2
Lw LwLQ

For ¢ € R?, we expand
2 2
S V(W) XX =E || Y] Uw (@) XnXy

n,n'€L 1.2 n,n’'€L
Q

= Z ]E[anxn/anzXné}\Ilnl,n’l (¢)Wn2,n§ (1/)) .

’ !
ny,ng,ny,noeL

Since X := X, is a complex gaussian, we have 0 = E[X] = E[X?], and the same holds for X.
Therefore, if E[anXn/leXn/Q] # 0, then one can see that either (m =n} and ny = né) or

(m =ng and n} = n’2) Therefore, we have

1/2

Z \I’n,n’Xan’ < R2 Z |‘1Jn7n’|2 + Z |\Ijn7n|
nn/ €L LZ nn' €L nel

Ly
Moreover, applying the Minkowski inequality for the admissible exponents py € [2,00)% 7%, we
obtain that outside a set of probability at most e~®” there holds

1/2
Z \I]n,n’Xan’ < R2 Z H\I]n,n’Hii-&- + Z H\I]n,nHLp
+

+
nn' €L P nn' €L nel Y+ _
P

3. RANDOM DATA AND LINEAR RANDOM ESTIMATES

In this section, we study in detail how the multiplication of each mode by independent normal
distributions improves the integrability of the potential in the LP spaces, without changing the
Sobolev regularity.

Let us recall the construction of the random linear solutions associated to some fixed initial
data ug € Xf C HE. From (1.3), the uj,, defined by (2.2) satisfy

luolfes = D (U @mA+ DD urmll?s -
(I,m)€22xN
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Given a family of Gaussian independent and identically distributed random variables denoted
(X1,m)(1,m)e2zxn, the probability measure p,, is the push-forward of P under the map (1.2)

W ug = Z Xrm(w)urm -
(I,m)€22xN

We denote z*(t) = e*2Gu¥ the solution to the linear equation (LS-G) associated to the initial
data ug. In particular, we have

(3.1) Y = Z X1m(W)2rm
(I,m)e2ZxN

with 2y (t) = eimGuLm.

3.1. Probabilistic integrability and smoothing estimates. In this part, we prove that the
randomized potential z* belongs to the space LqTLZé for every p,q € [2,00), and even to the

space LqTWng(p)’p, ¢(p) < § being defined in (2.4).

Proposition 3.1 (Integrability improvement). There exists ¢ > 0 such that the following holds.

Letk € R. Fizug € Xék(p)Jrlfl; denote uf its randomization from (1.2), and write 2 = e*AGyy.
2 p

Let p,q € [2,00) and € > 0. Then outside a set of probability at most e_CRQ, there holds

1
" 1
(3.2) |E ||LqTWg+<<p),p < RTqHuO”X?(pH%,% )

2
(3.3) ST AREE 812 L en < RPT fuo)| %
AcaN e ¢)+3—

Blw

Note that we have ((p)—l—%—% = 2—%whenp< 4 and C(p)—i—%—z% = %—3% when p > 4. The

derivative gain is maximal when ((p) is, that is when p = 4 leading to a % gain of derivatives.

4
Remark 3.2 (Case p = 00). Since % X p =4 > 3 one can use the embedding W2 P Lz and
obtain that oustide a set of probability at most e_CR2, there holds

1
12l wee Se RTTuoll 4 v

C(p)Jr%f%

4_
—((p) + ¢ in (3.2). Observe that X} — X7 C(ZHE when
) +i-2

€+ % + % < 1, satisfied as soon as € < % by choosing p large enough. Therefore, for € € [0, %),

which is obtained by taking k = %
outside a set of probability at most e_CRz, there holds
1

2] Lawe=e Se BT |[uol| vz -

Similarly, one obtains that for ¢ € (0, %), outside a set of probability at most e*CRQ, there holds

2
(3.4) > A2l e Se RPTluol% -
Ae2N

The proof of Proposition 3.1 relies on the following deterministic estimates.

Lemma 3.3. With the notation form Proposition 3.1, let p,q € [2,00). Then for all T > 0,
writing L. = L9([0,T7),

2
(3.5) Yoo A+ @mA DD T e S T fuol 5
(I,m)€2ZxN e +3-3
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Proof of Lemma 3.3. Let p € [2,00). We apply the Hausdorff-Young inequality in the y variable,
so that if we denote p’ the conjugate exponent of p, we obtain that for all ¢ € [0,T7],

l2rm @z, S N Cm 00 £ ()il gictr ol
= || (o1 72) L etz ol g -
Moreover, using the Minkowski inequality, since p > p’, we have
lzrm @)z, < Hfm(n)hm(\n\1/2w)1|n|e[1,21]HLg'Lg-
Since z7,m(0) = ur m, this implies
lerm@llzg, S Nurmll s
Therefore, estimate (3.5) is a consequence of the inequality

k
(3.6) >, G+ Cm+ DD Purl?,, Slluolie
(I,m)€2%xN T «wrrey

which we will now establish.

Using the upper bounds in LP on the Hermite functions h,, from Lemma 2.7, and the nota-
tion (2.4) for the exponent ((p), we have

1
Hul,mHLg’Lg = ‘|fm(77)hm(|77|Qx)IIn\G[I,ZI]HL%’Lg

| 1

_1 -
<(@2m+1 \fm(n)n ylerannt 2

/

Ly
¢ 11 _1
S @mA 1) I | () 1 e anl -

From Hélder’s inequality in 7 (and because the interval [I,21] has length I), we get

L@ 1_1_ 1.1 1
lurmllpe, S (2m+1)" 27152020 || fon ()0~ T Ly eqron | 2

¢ 11 1
<A+ Cm+ 1)) F T i

1
T up | e,

which leads to (3.6) with ((p) +3 —1 -1+ 2 =((p) + 5 — 0

Proof of Proposition 3.1. Let us first establish (3.2). We start with an application of the prob-

abilistic decoupling from Corollary 2.13: outside a set or probability at most e*CRQ, we have

w2 < P2 2
115 s S T X Vetimlly oo

Since for all t € R and all ¥’ € R, we have H(—Ag)kl/zsz(t)H%p < (A+2mADDF 2| 21 m (1)
G
we deduce that

”%gn

2
120 g wirews S R (Z(l + (2m o+ 1)) Hzr,mHiqTLg) |

Im

Inequality (3.2) is now a consequence of (3.5).
Similarly, fix € > 0. For (I,m) € 2% x N, we denote by A the dyadic integer such that
(m+1)I ~ A. Then from Corollary 2.13 applied to the partition given by the {(I,m) € 2% x N |
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(2m 4 1)I ~ A} for A € 2V, Therefore, outside a set or probability at most <%’ we have

Z Ak—i—C(P)—sHZXH%%WéW S R2 Z Ak—i—C(P)—EHZLmH%%ng

Ae2N Im
SR (L+ @m+ DD P apn Ty e
Im
enabling us to conclude thanks to (3.5) again. O

3.2. Non-smoothing properties of the randomization. We now prove Theorem A (i7),
stating that the randomization does not improve the Sobolev regularity in the H” spaces, in a
similar spirit as in [BT08a].

Proposition 3.4 (Non-smoothing for random initial data). We assume that Xy, is not almost-
surely equal to 0. Let ug € HE\ (Uo>o Hg“) and let uf defined by (1.2). Then, almost surely,
we have u§ € HE\ (Uoso HETE).

Proof. Without loss of generality, we assume that k& = 0. First, let us remark that E[ug] = 0.
Then, since by orthogonality one has

2
lglzz, = > [ Xrm(@)Pllurmlz .
(I,m)€2ZxN

and since the X7, have a finite variance, we conclude that
wl|2 < 2
E [lug 7]  luoll7g, < oe

Let € > 0, it remains to prove that almost surely we have uf ¢ Hg. In fact, one only needs
to show that

—||uw 2
(3.7) E {e : °”Hé] =0.

In order to establish (3.7), we expand decomposition (1.2) using the independence of the
random variables Xy ,,:

w2 —|X1.m|?|w 2
E|:€ ” O”Hé,v:| _ H E|:€ ‘ I,m‘ ” I’mHEv:| .
(I,m)€2ZxN

Since for all I, m, there holds Hu1m||%{é > 1+ (2m+ 1)I)E||u17mH%2G, we get

w12
E |:6 HUOHE':| < H

(I,m)€2%xN

e

= |X1,m 2 (AH+E@mAD D ur,ml12 ]
G| .

Then we have the following alternative.
First case: Assume that the terms (14 (2m+1)I)%[Jur,m |3, do not go to zero as (I,m) — oo.
G

Then there exists v > 0 and an infinite set S of indices (I,m) € 2% x N satisfying (1 + (2m +
)I)%|urml32 = ~. This leads to the bound
G

_Hug”i[s —‘X |2
E|e &< I [I EleXm] =0,
(I,m)es (I,m)es

where in the last step we used that S is infinite, the fact that the X7 ,, are identically distributed
and the assumption P(X;,, =0) < 1.

Second case: Assume that (1 + (2m + 1)I)%|Jurml|3. — 0 as (I,m) — co. In this case, we

G

fix R > 0 such that ér := P(|X1,m| > R) > 0, which is possible thanks to the assumption

P(X7m = 0) < 1 on the X7,,. Moreover, ér does not depend on (I,m) since the Xy, are
identically distributed.

—|X1,m P A+ @mA DD Jur,mll?
e gl <
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For every I, m, we have

[ = X1 2(1+(2m+1)1)* mell —R2(1+@2mA DD lurml?,
e G

(1 — (53) +6Re

Since the sequence ((1 + (2m + 1)) |lurml32 )I is convergent to zero as (I, m) — oo, this
a’/Im

sequence is bounded by some constant C' > 0. But on the interval [0, R2C], there holds the
inequality e™* < 1 — ¢z for some cg > 0, so that

l — X1 2+ @mA D) DE [ ml12
& G

S 1= 0rerR*(1+ 2m+ D)D) urmlz ,

and the upper bound is positive. Moreover, since
ZéRcRRQ(l + (2m + 1)I)E\|u1,mH%2G 2 (5RCRR2HUOH§{E = 00,
Im
we conclude that the infinite product with general term (1 — drcrR*(1+ (2m 4 1)I)|lugmll32)
G
is zero, so that

I

[ X1 2 (- @mA D) DE g m 12
(& G
(I,m)€2ZxN

In any case the above discussion proves (3.7). O

Remark 3.5. Note that using the fact that the decay rate for the LP norms of hy, is optimal in
Lemma 2.7 (see Lemma 5.1 in [KT05]) and the probabilistic decoupling argument from Corol-

lary 2.15, it seems highly unlikely that ug§ belongs to Wé(p P for e > 0 (see also [IRT16]).

3.3. Density of the measure p,,. In this part, we establish Theorem A (iii). Before we turn
to the density properties of the measures f,,, associated to rough potentials ug, we briefly justify
that we can construct functions ug € X such that ug € HE \ (U.wo He').

Lemma 3.6 (Existence of rough potentials). Let k > 0 and p > 0. There exists a function
ug € ka C Hé such that for all e >0, uy ¢ Hg“.

Remark 3.7. In fact, this lemma implies that there exists uncountably many such functions.
Indeed, we can apply another randomization argument to the potential ug from the lemma. Take
VG = Do (I,m)€2%xN e1,m(w)ur m, where € ,,, are independent random signs, then the functions v
almost-surely satisfy the requirements.

Proof. Let k,p > 0. We consider ug : Z us,m defined in Fourier variable by uy ,, = 0 if
(I,m)€2%xN
I <1,andif I > 1, we take ur,, "constant" by parts

1 1
Fynurm) @) = lwrmll gz, 0l b (Inl22) -

where for any (I,m) € 2V x N, we choose

1
(14 (2m + 1))k {I)rlog(1 + I)2(m + 1) log(m + 2)2
First, we observe that for ¢ € R,

luarml25, =

2m+1)I)*

2
luolle-e IgN <I>Plog 1+1)? Z m+ )log(m +2)%

This series with positive general term is divergent when £ > 0. For ¢ < 0, this series is bounded
by C ZIEZN m which is Convergent.
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It remains to prove that ug € Xf . In order to do so, we compute:

1

Juol3ex = |
Xk (Im)XG;NxN log<1+I)2(m—|— 1) log(m+2)2

which is indeed finite. (Il

We now establish density properties of the support of the measures with rough potentials
(Theorem A (ii)).

Proposition 3.8 (Density of measures with rough potentials). Let k > 0 and p > 0. We
assume that for any r > 0, P(|X 1, — 1| < 7) > 0. Let ug € HE and e > 0. Then there exists

vo € XF\ (Uz=0 Héfrs/) such that

g (BHg(ug,a)) > 0.

Proof. Without loss of generality, we assume that & = 0, and we only deal with the Grushin
case. Fix ¢ > 0 and ug € LZ. We first construct vg € X3 \ (Uor~0 Hé/) satisfying the condition
lluo — vol| 12, <&, then we prove that vo meets the requirements from the proposition.

To construct vy, let Ky > 0 be such that

> w2 <2,
I(I,m)[>K

where |(I,m)| = max{|log(1l + I)|,m}. Then, let 6 > 0 to be determined later, and denote by
o= > drmeX\ (U HE)
(I,m)€2%xN €'>0
the potential constructed in Lemma 3.6 for k = 0 and p = 1. Set
ULm if |(I,m)| < Ky
VI,m = ~ .
U m if |(I,m)| > Ko .
Since the coefficients vy, for |(I,m)| > Ky are the ones from Lemma 3.6, we know that v
belongs to XY\ (Uzso HE ). Then we compute that when § is small enough,
wo— vl < X Nl 8 Sl <262
(L;m)[>Ko |(Z,m)[>Ko
In the end of this proof, we establish that
oo (w € L, lw = voll 2, < ) >0,
as this would imply
oo (w € L3, lw — woll 2, < 2¢) > 0.
For future occurrences, for K > 0 and w =2, ,, wrm € L%, let us denote
HK(w) = Z wj,m .
|(I,m)|<K
Because of the inclusion

3

g
{we L8 | ictw = o)l < 50 {w e 28108 o - w)llzg < 5

c{we L& | lw vl <<},
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we know by independence that

9]
oo (0 € L, w = voll 2, <€) > py <w € L, [tk (w — vo) | 12, < 2)

3
sy (€ L3 01 - ) w = w13, < 5)

To handle the second term in the right-hand side, since Ilxvy tends to vy in L% as K — oo,
one has that for large enough K > 0,

£ 5
g (w e L4, |(1d — TIg)(w — UO)HL% < 2) > (w e L, |(1d - HK)UJ”L% < 4) :

But we have

9 5

g (w € Lz, ||(Id — HK)wHLé > 4) Pand 0,

since from the Markov inequality,

€ £

poy (w0 € L, (04 = )l > ) =P (104 = o)z, > 5)
SR - |32 | S 72 > formle

[(I,m)|>K

which goes to zero as K goes to infinity. We therefore fix K > 0 large enough so that
oy (10 € L, (14 = T} (w = )z, < 5 ) > 0.
It only remains to handle the first term in the right-hand side and prove that
(3.8) poy (10 € L [ Miclo = )l < 5 ) > 0.
Let ¢ > 0 small enough so that the following inclusion holds:

ﬂ {w € L%‘; | HXI,m eR,wrm = )Z'Lvam and H(f([,m — 1)UI,mHL2G < cs}
I(Im)|<K

9
c {we I | IMutw - w)lzz < 5}

This implies by independence of the random variables X7y ,,, that

£
oo (we 22 Mctw—0llg < 5) > TT B (ICK0m () = Dormlsg < <),
[(Im)|<K
which is positive thanks to the assumption P(|X7,, — 1] < r) > 0 for all » > 0, thus (3.8)
holds. O

4. ACTION OF THE LAPLACE OPERATOR

In the remaining of this article, our general strategy is to group the decompositions (1.1) of
u and v in dyadic packets (2.3)
u = Z uy and v= Z Vg,

Ae2N Be2N

and write the estimates for the H* norm of the product uv in terms of the L? norms of products
uavp for dyadic A and B.
In this section, we consider two elements u,v € Hé and provide useful estimates for the H*

norm of the products usvp and u4v in terms of the L? norms of the products uvp for dyadic
A and B.
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4.1. The action of —Ag on a product of functions. In this part, we prove that for u,v €
HE, the term —Ag(uv) can be expressed thanks to shifted versions of u and v, defined as follows.

Definition 4.1 (&-shifted functions). Let and u € H, decomposed as (1.1) u = > (1,m)e2Z xN Wl,ms
where up , is defined in (2.2) as

Fyon(rm)@m) = frmmhm(n2z)

and f1.m(n) = fm (M) jyer2n-
For 6 € Dy := {-1,0,1} x {4, —} we write 6 = (do, £) and for m € N, we write m + J as a
shortcut for m 4§ := m + dp. We introduce the shifted function u° from its decomposition (1.1)

u’ = 2 (I,m)e2%xN u‘;m as follows: for all (I,m) € 2% x N,

Fyon () (@,1) = Foo(0) f1.m(m) B s (|0 2 7)

and if A € 2V is the dyadic integer such that (m + 1)1 ~ A,

(W)% if 5 € {(—1,4), (1,4)}
(4.1) F}(n) = (#)? Vi PoetEh o)

W if § = (0,4+)

1 if 6 = (0,—).

Note that by definition, for all £ > 0 and u € HE, we have ||u5||H;é < ||u||H;é

Lemma 4.2 (Action of Ag). Let A, B € 2N, I, € 2% and m,n € N such that (m + 1) ~ A
and (n+1)J ~ B. We denote Dy := Dy x Dy. Then there holds:

(Id—Ag)(urmvyn) = Y. Capld1,8)uf, v,
(51,52)€D2

where for some explicit numerical constants ¢(d1,02),

4A if (61,602) = ((0,—),(0,+))

4B if (61,02) = ((0,+), (0, —))
Cap(01,09) = { (61, 00)VAB  if (61,65) € ({—1,1} x {4, —1})?

1 if (61,62) = ((0,—), (0,-))

0 if (01,62) = ((0,4),(0,+)),.

Proof. Taking the Fourier transform of ur ,,v 7, in y, we transform the product into a convolution
product

1 1
Fyon(Wrmvin)(@,m) = /ff,m(m)hm(!m\ 22)915n(n — m)ha(In — m|2z)dn:.
In Fourier variable, the Grushin operator acts as 9., — x2|n|?, therefore we have
1 1
FA(urmvsn)) @) = [ Fran(m)gan(n = m)re = 2*nf) (i 22 (10 = m]2)) .

We now use the fact that the Hermite functions are eigenvectors of the Harmonic oscillator:

d2

@hm(w) = —(2m + D)hy + 22hyy,
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to deduce the formula
(O — 212 (P (| | 22) (|7 — 1 2 7))
—((2m+ Dl + 20+ Dl — mDhm(Im|Z2)ha(ln — m|22)
+ 22 + [ = ml? = [0 (22 (10 — ] 22) + 200 (hn (1112 2)) 00 (R (17 — | 22))

) 2 + In—m|*> = n* = —2m(n—m), and
+ [ —ml* = 01" = 2/mlln —m| = =2 (n — m).

m m+1

=4/ Ehm—l +/ Therl )
Im Im+1

= Ehm—l - Thm—f—l )

to remove the weight 22 and simplify the products 0 (hm (| ]%x))8x(hn(|77—771 ]%x)) We deduce
that

1 1
Oz — 220)?) (R (Im |22) (I — 1| 2 2))
—(@m+ V) m| + @n+ Vn = m])hom(jm 22 (In — m |2 2)

. m+1
g mlnmm) \/ o1 (Im |2 2) + Vet (|2 )
Imilln —m| 2
n+1
(\/7 et (jn —m|7z) + 5 honta(|n — 771!235)
m—l—l
+24/|mln —m| (\/ him—1 \771\233 Vo him+1 \771|2$>
n 1 n+1 1
X §hn71(|77*7]1\255)* 5 hoy1(ln —ml2z) | .

Now, we observe that by definition of the support of Fy_,,(urm)(x,n) and Fy_,(vin)(x,n), we
have 14+ (2m+1)|n1| € [A,4A] and 1+ (2n+1)|n—m| € [B, 4B]. Therefore, for some numerical
constants ¢(d1, d2), using the notations (4.1) for Fﬁm, one can write

Note that if 7 and n — n; have the same sign, then |
if 71 and n — n; are of opposite sign, |n |?
We now use the identities

1 1
(1 = Opata®[n[*) (hon(Im[22)hn(In — |2 )
= (1+44FD 00) +4BF (0 = 1) ) B (I 22) (10 — | )

+ > ¢(81,02)VABE} (m) 2, (0 = 1)y, ([ 2 @) by, (Jn = 1] 72)
(61,02)e({—1,1}x{+,-})?
We denote Dy = D?. Then we define Ca 5((0,-),(0,—)) = 1, Cap((0,+),(0,+)) = 0,
Cy B(( ) ( )) =2A, CA7B((O,—),(O,+)) = 2B and CA,B(51752) 26(51,52)\/Eif(51,(52) S
({=1,1} x {+, —})%2. With the notation from Definition 4.1 (and a similar notation for the vgz’n),
we conclude that ’

F((Id =Ag)(urmvn))(;n)

= Y Cap(01,0) /f;mm)gjn(n 1) o5, (101 22) g, (|11 — | 2) dapy
((51,62)€D2

so that

(Id—Ag)(urmvsn) = Y. Capld1,8)ul, v, . -
(01,02)€D>
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Lemma 4.3 (Action of Ag for the product of three terms). There exists a finite set D3 C Dj X
Dy x Dy such that the following holds. Let u®,u® u®) e LQG, A, Ay, Az € 2V I, Iy, I3 € 27
and my,mg, mg € N such that (m; + 1)I; ~ A; fori=1,2,3. Then

1 2 3 1 2 3
(Id _AG) (ugl)m1u§2)m2 U§3)m3) = Z CA17A2,A3 (5) (ugl)ml )61 (ug—Q?mQ )52 (u§3?m3)63 ?
(5:((51,52,(53)€D3

where the shifted functions (ug)ml)‘sz are defined in Definition 4.1 and for all § € Ds,
|CA1,A2,A3 (6)| S maX{Ala Ao, A3} .
yn @ (3

T Wy oma Ylsms into a

Proof. Taking the Fourier transform in y, we transform the product w
convolution product

1 2 3 3
]:yﬁﬁ(ugl)mlugz?mg §3?T)’L3 :E 77 /fll mi f]g,mg( )fl(s,)m3 (77 - - 772)
1 1
R (11112 2) g (172] 2 2) B (I — m1 — o] 2 )il

. 1 1 1
Then, we write hmy ms.ms (15 712, 13) 7= Pana (|12 2) hims ([02]22) Bang (|73] 2 ) and expand

(83390 - x2|771 +n2 + 773|2)(hm17m2,m3 (771> 72, 773))
= ((2m1 + Dm| + (2ma + 1)|n2| + (2m3 + 1)|n03]) Py mams (11,12, 113)

+2%(Im[* + [n2l® + [nsl® — Im + n2 + 0313 Py moms (M1, 112, 3)
+2(Li2+ 113+ 123),

where

1 1
Lij = O (han; (03] 2 2)) s (hm (|03 |2 )

m; 1 m; +1 1
Al <\/2hmi1(17h‘|2$) - 5 hmi+1(|77i\2$)>
’mj +1 1
hmjfl |77J|233 hmj+1(|77j|213) .

In particular, expanding I; ;, this term writes as a combination of terms

§ 1 1
(4.2) Caya0,45 OV T o () FTE L (02) FL2 L (113) Py 161 mo-+85,mi+65 (1115 1125 713)

where |Ca, 4,.45(8)] < max{A1, Aa, A3} for 6 = (61,02, d3) in some finite set D3 C D53.
By comparing the signs of 11,72 and 13, one can see that |n1]? + |n2|? + |n3]2 — |1 + 12 + 032
is a linear combination of terms |n;n;| and 7;n; for i # j. We now use the identity

[m /m—+1
.TJ) = ?hm—l + Thm—l—l

to remove the weight 2 and write the term

2 (Im[? + n2l® + ns)” = Im + n2 4 031*) Py mo,ms (M1, 112, m3)

as a linear combination of terms as (4.2) above. Finally, we conclude that

F(Ad-Ag)(ud @ uD V()

ull m1 “Ia,mo W I3,m3

= 3 Carants®) [ S0 )22 02) S5, 0 = = )

6€Ds3

1 1 1
hm1+61(’771’2fﬂ)hmz+62(|772| 2$)hm3+53(|77 —m — n2|2z)dmdne
for some |Ca,,4,,45(0)] S max{Ai, Az, A3}, leading to the lemma. O
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4.2. A bound on the Sobolev norm of a high-low product. We are now able to estimate
the H¢ norm of a product usvg by its L? norm as follows.

Corollary 4.4. Let ¢ € [0,2]. Then there exists C > 0 such that for all u,v € HS, for all
A, B € 2N, there holds

£
luavplly, < Cmax{A, B}z )~ |‘(uA)51(UB)62||Lé'
(61,02)€D>

For general £ > 0, the same result holds up to taking bigger finite sets Do (depending on ()
and applying the shift several times for each function.

Proof. We proceed by interpolation.
In the case £ = 0, there is nothing to do. In the case ¢ = 2, we use Lemma 4.2 to write that
for any (m+1)I ~ A and (n+1)J ~ B,

(Id—Ag) (urmvsn) = Y, Cap(d1,8)uf, vP, |
(51,(52)6D2

and thus by summation and taking the LQG norm, we obtain
2

> Cal(d,62) > S ulavi ,
L

(01,02)€D2 (I,m)€22xN (J,n)€22xN
(m+1)I~A (n+1)J~B

1(1d =Ag) (wavs)llzz, S

We use the triangle inequality on the sum over (d1,02) and the fact that |Ca p(d1,d2)] S
max (A, B) to deduce that
é 6 g
Z Z uIvaJ,Qn )
(I,m)€2ZxN (J,n)e2ZxN L
(m+1)I~A (n+1)J~B
SAT Y llwa) (v) 7, -
(61,02)€D>

10d ~Ac)(uavs)lfz < A>3
(51,52)€D2

To get the result when ¢ € (0,2), it only remains to interpolate thanks to the inequality

1—2£ £
Javsl, < luavslys luavs |

when uwg,vp € H é, and conclude by density.
Similarly, for even integer ¢, we apply Lemma 4.2 successively % times to get the estimate,
and conclude by interpolation for exponents between £ and ¢ + 2. O

Using Lemma 4.3 instead of 4.2, we get the following adaptation of Corollary 4.4 for the
product of three terms.

Corollary 4.5. Let £ € [0,2] and u,v,w € HE. Then for all A, B,C € 2V, there holds
L
luavpwell g, S max{A, B,CYz 3 |(ua)’ (vp)* (we) ™|z -
(51,52,53)€D3

For general £ > 0, the same result holds up to taking bigger finite sets D3 (depending on ()
and applying the shift several times for each function.

Proof. By interpolation over £, it is sufficient to establish the following inequality for even integer
£: for all B,C < A,

|1a-26)" (wavsuo)|.

l 4 1 o
LS A ) we) s
G (61,02,03)€D3

then apply this result to u, P<4v and Pcaw.
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Since in the case £ = 0 there is nothing to do, let us assume ¢ = 2. Using Lemma 4.3, we can
write

(1 =A6) (U 0hmaWigms) = 9 Capo(01,62,0)ugt , v L wi
(01,02,03)€D3
and therefore
2
2 o o o
ld-Ae)uwavpue)liy S| X Capolonsd) XY o0,
(61,02,03)€D3 my,m2,m3€EN (m14+1)I1~A LZ,
(m2+1)IQNB
(ms3+1)Is~C

We use the triangle inequality on the sum over (d1, d2, d3) and the fact that |Ca p,c(d1,92,03)| S
max (A, B,C) < A to deduce that

2 2 1) 6 0312
1(1d—Ag)(wavswe)lzz S A* Y [(wa)™ (vs)™ (we) |72 -
(01,02,03)€D3
In the case of a general even integer ¢, successive applications of Lemma 4.3 lead to a similar

result.
O

4.3. A refined Sobolev estimate of a product. Finally, we estimate the H® norm of a
product u v by the L? norm of products uqvp and the H ¢ norm of v as follows.

In rough terms, we should have the following. Let ¢ € [0, 2], u,v € L%; and A € 2N, Then for
all e > 0, we have

lavllfe < D0 >0 ATEN(wa) (vp) 21, + D ZA‘?H ()™ e 1117z, -
(61,02)eD2 A,B:B<A 6€Dy
where we recall that D; is some finite set and Dy = Dy x Dj.
However, in order to get nice mapping properties in LP spaces for p # 2 which are necessary
during the course of this proof, see Appendix A.3, we introduce a cutoff function x € C°[0, 1)
such that x = 1 on [0,1]. Then, for A € 2V, we define the projection P<a as the Fourier

)2
multiplier
Id—A
Pca=x (A G) :

which is a smooth counterpart for the projection on the Sobolev modes 1 + (2m + 1)|n| < A,
acting on the decomposition (1.1) as

1+@2m+1
FronPeae = ¥ (PRI .
(I,m)€2%xN

Note that since on the support of u7,,, we have |n| € [I,2I], the sum can be restricted to the
indices 1 + (2m + 1)I < A. The projection P<4 commutes with the block decomposition (2.3)
and the Grushin operator: for B € 2V, we have
Pca(vg) = (P<av)p
and for k € R, we have
Pea((=26)"?0) = (=A6)"?(Pav).
Moreover, for all u € LZ,, we have HPgA’U,HLQG < HuHL% We also denote P~ 4 = Id —P4.

Lemma 4.6 (Sobolev norm for the product of two terms). Let £ € [0,2], u,v € L% and A € 2N.
Then for all € > 0, we have

¢ é 6 5
luavlfe < 30 D0 AB(wa)™ (Peave)™llze + D ll(wa)™ g lvllz -
((51,52)€DQB B<A 6eDy
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where we recall that D1 = {—1,0,1,2} and Dy C Dy x Ds.
As a consequence, we have

¢ ) 5 5
luvllFe <D >, ATE(wa) (Peavp)™ll7: + D E A% ()™ I gg N0y, -
(51,52)€D2 A,B:B<A 6eD;

For general £ > 0, the same result holds up to taking bigger finite sets Dy, Do (depending on
¢) and applying the shift several times for each function.

Proof. The consequence is a simple application of the Cauchy-Schwarz’ inequality.
We decompose v = Pcqv + Ps4v and v = Z vp. Since (P<svp) = vp for 4B < A and

Be2N
(P<avp) =0 for B > A, we have

> ua(Pcavp)

B<A

2

+
Hg

2

> ua(PsavB)
4B>A
We treat the two parts separately, and in each case we proceed by interpolation between suc-
cessive even integers /.
Step 1: upper bound for || Z ua(P<avp) HHé Concerning the first term, thanks to the Cauchy-
B<A
Schwarz inequality, we have

Juavlly <
i

H Z (Id—-Ag) ¢/2 (ua(P<avp))
B<A

(Z B~ ) (Z B¢ (Id_AG)Z/Q(UA(PéAUB))’iQ) ,
B<A B<A G

and as ZBEQN B7¢ < 1, we infer that

2

Y- (1d—Ag) " (ua(P<avp))
B<A

< D0 Bl ~Ag) P (ua(P<avs)) |7 -
L%  BgA

But using Corollary 4.4 to (P<4v) instead of v, we have

2
H(Id—Ag)em(uAvB)‘LQ,SAE > ||(UA)61(P<AUB)62H%2c~
G
(61,02)€D2

Step 2: upper bound for || Z UA(P>AUB)”Hé- For the second term, we establish the following
4B>A

estimate by interpolation:

2

(4.3) > (1d—Ag) 2 (ua(Psavp))

4B>A

6
S D Mwa)™ g vl -

L%; 5eDy
In the case ¢ = 0, we only need to note that from the orthogonality of the different modes vp,
we have

2 2

Z (P>avB)

4B>A

us Y (Psavp)
4B>A

< lhualis
L
In the case £ = 2, we use Lemma 4.2 to get that for any m,n € N and I,J € 2% such that
(m+1)I ~Aand (n+1)J ~ B,

(1d—Ag) (urm(Poav)sn) = Y. Cap(r,62)ul,,(Psav)?,,
(51,52)6D2

S Mlwallzg 0l1Zs, -
L

and therefore obtain
2

<

~

2
LG

S D Caslér, ) >, > uIm(P>AU)62

((51,52)€D2 4B>A m,neN (m+1)I~A
(n+1)J~B

> (Id—=Ag)ua(Psavp)
4B>A

2
LG
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We use the triangle inequality on the sum over (d1,0d2) to get that for fixed A,

2

< Y Y casa) YYD wd L (Paan)R,

12, (51.02)€Dz 1 4B>A m,neN (m+1)I~A
(n+1)J~B

2

> (Id—Ag)ua(PsavB)
4B>A

2
LG

= > Cap(6, 82)u’)} (Ps avp)®
(51,52)€D2 4B>A

§
< Y i
(51,(52)6D2

2
LG
2

> Ca,p(61,02)(Psavp)™
4B>A

L
Now, by orthogonality and the fact that |C4 g(d1,92)| < B for 4B > A, we have
2

> Cap(d1,02)(Psavp)™
4B>A

= > |CA,B(51,52)|2||(P>AUB)52||22G
L%; 4B>A

<Y B(Poavs)lZs < ol -
4B>A

which concludes the proof in the case £ = 2.

Estimate (4.3) is now a consequence of an interpolation result, stated and proven in Lemma A.6,
based on the Stein’s interpolation theorem. Instead of using this lemma, one could invoke the in-
terpolation result between Sobolev spaces [HY, H*]g = H% for 6 € [0, 1], that holds for Sobolev
spaces on R? (see for instance [BL76]) and could be extended to the setting of the Grushin
operator. For general ¢, successive uses of Lemma 4.2 lead to the result. O

In what follows, we will actually use the trilinear version of Lemma 4.6.

Corollary 4.7 (Sobolev norm for the product of three terms). Let ¢ € [0,2] and u,v,w € L.
Then for all € > 0 there holds

Y4 1 1 o 1
||va\|12qé S Y A (ua)™ (Peavp)® (Paawe) SH%zGJr DY A% (ua) 1H%go|!7f||§{é|!w||§{é-
(01,02,63)€D3 §€D; A
A,B,C:B,C<A

For 0 > 2, a similar result holds up to taking bigger finite sets Ds and taking successive shifted
functions.

Proof. We mimick the proof of Lemma 4.6. It is enough to establish that for every A, we have

¢ 5 5 5 5
||UAUw||?qé S AY(BC)*|[(ua)’ (P<avp)™ (P<awc) 3|!2ch+ > [(ua) 1!\%%o||vllilé||w\|§[é.
(51:52763)€D3 61€D1
B,C:B.C<A

We start by writing that

2 2

Y ua(Pcavp)(Pcawe)
B,C<A

+

) > ua (vpwe — (P<avp)(P<awce))
HG

Juavw|3e <
@ B.C

~

74
HG
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Step 1: upper bound for || Z ua(P<avp)(P<awe)| e - By the Cauchy-Schwarz inequality,
B.C<A “
we have

2

> (1d=Ag)"*(ua(P<avp)(P<awe))
B,C<A

2
LG

S( > (BC)‘8>( > (BOY||(1d - A¢)(ua(Pcavs)(Peawo))|

2
B,C<A B.C<A Lé)
S Y (BOY|(1d-26) " (ua(Peavp) (Peawo))|
B,C<A

We then conclude thanks to Corollary 4.5 that
2

2
, -
LG

> (1d-Ag)"*(ua(P<avp)(P<awe))
B.C<A

S Y AYBOY|(ua)™ (Pcavp)® (Pcawe)® H%é :
L% (61,02,03)€D3
B,C:B,C<A

Step 2: upper bound for . We split

£
HG

™ s (vpwe — (Peavs)(Peawc)) \
B,C

vpwe — (P<av)(P<awe) = (Psavp)we + (P<aAvp)(Psawe) .

For the first term, using the algebra property of H é for ¢ > % we write

S e

C:C<A

2 2 2

H > ua(Psavp)we
BC

S ‘

> ua(Psavp)
B

14 14 74
HG HG HG

2
<

~

S (1d—86)72(ua(Psavp))
B:4B>A

w]3e
L2, G

hence inequality (4.3) in the Step 2 of Lemma 4.6 applies and gives the expected bound. A
similar treatment can be applied to the second term. O

5. DETERMINISTIC BILINEAR ESTIMATES

In this section, we first establish deterministic bilinear and trilinear estimates for the product
of two Hermite functions with rescaling, of the form A, (a1-)hn (a2-) and Ap, (1) R, (a2 ) A, (a3).
We then deduce deterministic bilinear estimates for the products us v y,.

5.1. Bilinear estimates for rescaled Hermite functions. We start by establishing bilinear
estimates for the rescaled Hermite functions, which will be at the core of our future bilinear and
trilinear smoothing estimates. Let us recall that A\, = v/2m + 1.

Lemma 5.1. Let a >0, m,n € N, and assume that A, < GA. Then there holds
1
B ()72 S ——-

~ alg,

Proof. We cut the Hermite functions between the space regions delimited by the pointwise
estimates of Corollary 2.8.

1
(1) In the region Ry := {|az| < %)\m}, we use the bound |h,,(z)| < Am?. Therefore there holds

b (@) 22y S A 1 (@) 122,y S A"
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(2) In the region Ry := {%)\m < x| < 2)\m}, we know by assumption that 2X, < §A, < alz|.

1

) 1
We therefore use the bounds |h, (x)| < <)\%1 + |2% - )\,Qn\) " and | (0z)| < e7¢@®? with ¢ = 1

]
and get
22 m 720a 242
labn(0) 2y S / dz |
P ¢A3+wx2—x2|
We fix the limits of the integral by setting y = =, which leads to the bound:
/2)\m —2ca x? —20 (adm)?y?
dx —/
P Ak 22 - X2 e Ty -
QC(aAm)2 2

<

~Y % /y _1

<e—%(axm>2/ _ 4y
3 vlzﬂ—l\

< % giving the required estimate.
(3) In the last region R3 := { |x| =2\ } we use the exponential bounds for the two terms
|hon ()] < e and |hn(az)| < e C(O‘“”)Q with ¢ = £. This leads to

Now we remark that e~ 5(@m)?

Bnhin () ||2 < e~2ee®(1+e?) g0
I Ay

Then using that for C = 2¢(1 + a?) and X = 2)\,,, we have
1

/Oo Oy < 2 /OO 2Cze™ " dx <
< —— xe < —=,
x € 20X Jx 20X
this gives the result.
All the previous bounds put together imply the lemma. [l
In what follows, we will use the bilinear estimate from Lemma 5.1 under the following form.

Corollary 5.2 (Bilinear estimates for rescaled Hermite functions). Let m,n € N and ay, g > 0.
Then

1
1 1 2
i (@17) b, (a27)[|72 < mi : :
1P (1) o (2] 72 5 mm{a2(2n +1) a%(2m + 1)}
Proof. In the first scenario, assume that a1+/2n + 1 4a2\/ . We start with a change of
variable:
2

I (01°) B @23 = - <a2>

aq

2
Denote o := g—? Since a1v/2n + 1 4042\/ + 1, we have A, < 7 A. Then Lemma 5.1 implies

2 2
1
Hhmhn (‘)‘2) < _ . adl _
ar e~ av22m +1 a5(2m +1)
Consequently,
1
h h M2, < ) ——
I(rhaen) e 5\ s

1
aZ(2m+1) S a?(2n+1)°

This is enough to conclude since by assumption, we have \/
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In the second scenario, assume that asy/2m + 1 < %al v2n + 1. We exchange the roles of m
and n and the roles of a1 and as to get

1
T Y SR A S —
(s Yha(e2)lE %\

In the last scenario, there exists Cy > 0 such that %()&2 2m+ 1 < a1v2n+ 1 < 4aov/2m + 1.
Then from Hoélder’s inequality, one obtains the bound

1 (1) (@) 172 S Nl (r) 12l n (a2) |24 -

From the L* norm estimate |||+ < ﬁ, m € N (see Lemma 2.7), we deduce
2m+1)8

1
(@2(2m + 1)) (a2(2n +1))3
Since a1v/2n + 1 and ag+v/2m + 1 differ from a factor at most 4, in this situation, one can bound
. . . T 1
the rlght—hand Slde by elther W or m O

Corollary 5.3 (Trilinear estimates for rescaled Hermite functions). Let mi,ma,m3 € N and
ay,ao,a3 > 0. Then

lhm (a1 )hn(az2:) |72 S

1 . { Q; 0y }
min & . )
10203 (2mi +1)5(2m; +1)2 ) icr103y

As a consequence, if A € 2N, I}, Iy, I3 € 2% are such that (my + 1)} ~ A, for o € [I1,214],
a3 € [I3,215] and o3 € [I3,213], we have

Hhm1 (Ocl-)th (a2')hm3 (a3')H2L2 S;

10203, (1) hmy (@2 g (3|72 S CFpymiy »

where one can choose
1
(1) (I213)1
A2 (2my +1)12 (2mg + 1) 12

2 _
C{I,-,mi} -

Note that the gain with power % induced by the L norm on the Hermite functions is not

necessary in the sequel, but we keep this exponent for the sake of security.

Proof. We start by breaking the symmetry of roles of the three terms
1y (1) s (02 ) g (@3 )72 < oy (1) [T | s (v ) g (237) [ 72 -

Then we use Lemma 2.7 and Corollary 5.2 to bound
1 , { 1 1 }
T mn s T
(2m1 + 1)g a2(2m3 + 1)5 043(27712 + 1)§
By symmetry between the roles of mi, ms, ms, this implies
1 . { 07107 }

min T T .
X203 (2mi +1)5(2m; +1)2 ) 103y

Hhml (al’)hmz (aQ')hm;a (0‘3’)”%2 f,

s (1) g (cv2- s (23°) 12 S

In order to establish the second bound, for every j = 1,2, 3, we have o < (21 j)%, therefore

[ I

1
2
OéiOéj Ii Ij

min T
(2’1774' + 1)5(277”Lj + 1)

< min

N|—=

(2mi + 1)%(2mj —+ 1)%

}z‘;éje{l,?,S} i#j€{1,2,3}
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Now, let us remark that
11
. . IQIQ
min{ oz;ozj T } < 2l i -
(2mZ + 1)6 (2m] + 1)2 i£je{1,2,3) (2m2 + ]_)6 (2m1 + 1) 2

and since the same bound holds when exchanging the roles of (I3, m2) and (I3,ms), we obtain
by interpolation

(IsI3)7 (1)

min{ afaj 1} X 1 1-
(2mi +1)5(2m; +1)2 ), icr103y  ((2m2+1)(2ms + 1))12 42

O

5.2. Bilinear and trilinear estimates for the product of unimodal blocks. In this part,
we provide a bilinear estimate for the “building blocks” u; v, where ur,, and v ,, are fre-
quency localized and unimodal.

Proposition 5.4 (Bilinear block estimate). Let m,n > 0 and I,J € 2%. Let uj ., (resp. vin)
in L% defined by (2.2)
1

Fy—sn(urm)(@,1m) = frm(m)hm(|n|22)

resp.
1

fy—>n(UJ7n)(x7 n) = gJ,n(n)hn(m’ Qx) )
the function fr., (resp. gin) being supported on the set {|n| € [I,2I]} (resp. on the set {|n| €
[J,2J]}). Then, one has

I J

2m+1"2n+1

2
JurmzallZy S win 2,7} min § b 2y a2

As a consequence,

J(I) 1{J) 2 2
T T lurml 7z lvnllze, -
14+ CCm+1)D2 (14 (2n+1)J)2 ¢ ¢

Proof. From the Parseval formula, we have |ur v JmH%z = || * O J7nH%2 , where the con-
z,n

HUI,mUJ,nH%% < min {

volution is the classical convolution product in the variable 7. We expand the norm of this
convolution product and obtain
lurmvsnllzz, = /R L Trm () f1m (02) 970 (1 = 10970 (1 = 02) L (110, 02,1 = 71,1 = 12) Ay i dp
with

Lo (0720 4,75) 2= [ o (a2 () (1 ) (1 )
By Cauchy-Schwarz’ inequality, one has

1 1 1 1
Lo (15 12, 10, 72) | < e (72 ) P (71 [ 2 ) 2 e (2] 2 ) e ([ 2 )| 2 -
Using Corollary 5.2, we deduce the estimate

1 1
’Hm,n(nbn%n/bné)’ Smln{ ! s ! }4 mln{ ! s ! }4 .
Im|(2n+1)" [n7|(2m + 1) m2|(2n + 1) [m5|(2m + 1)

Going back to the blocks ur,, and v;,, this estimate implies

1

2
1 1 1
2 </ / i { } ()9 (n — 1) dny | dy.
‘Lé ~ R( len |7]1|(2n+1)’ ’77_771|(2m+1) |fI, (771)9J, (77 771)‘ m n

By extracting the minimum, we conclude
1970 ()9
IZ2 ¢ -

|[fr.m ()] 2 1
| BEE *’gJ,n’”L%\/ﬁ”|fl,m|* Bz

||UI,mUJ,n

1
s mvnl e Smin{ |
’ ’ G Van+1
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Using the symmetry of the roles of u and v, we estimate for instance || |f1|1/4 *|gnl|[22. We

apply Young’s inequality
frm ()| Jrm() o

|
[ty R *|gsalllze <] BIE 1721950117 -

Thanks to Cauchy-Schwarz’ inequality, since the interval [I,2]] has length I, we get

122tz < yftml)
o e S A e
Moreover, we know that |[g |72 < therefore

| f1.m ()]
| =577 A |9J,n|||%2<I\/j||ul,m||2L2G||UJ,n||ig;-

But we also have from Young’s inequality

|fI,m()’ fI,m(') 2

HW lgsnlllz2 < i 122 lgmll2:

where from Cauchy-Schwarz’ inequality, ||g.n |3, <

from
H\| ’154)| ’an|||L2 min {7, J}\fHuImHLQ HUJTL”LQ'

< J2 [vanll22 , so that actually
G

To conclude, using the symmetry of the roles of u and v, we have proven that
1

_ (T J o
”ul’va’"H%QG S min {1, J} mm{Qm—l— 17 2n + 1} |

6. PROBABILISTIC BILINEAR AND TRILINEAR ESTIMATES

In this section we provide the proof of Theorem B (7). The main idea of proof is to use the
deterministic bilinear estimate for the products us v, given by Proposition 5.4 in order to
prove a smoothing effect on quadratic and cubic expressions of a random function.

6.1. Bilinear estimate for random interactions. To deal with purely random interactions
of the form (u%)? and |u§ |2, we heavily rely on the frequency decoupling offered by the random-
ization. This is akin to the bilinear estimates obtained in [BTT13].

Let us recall some notation. We fix a sequence of independent identically distributed sub-
gaussian random variables (X7 ) (1 m)eozxn and uo € H k. We use decomposition (1.2)

uf = Z X1 m(W)urm .
(I,m)€22xN

For all ¢ € R, we consider the time evolution under the linear flow (LS-G) with initial data
ur,m denoted z7 ,(t) = e“AGuLm, (I,m) € 2% x N. Then, we define the random counterpart z*
of u as in (3.1)

#)=cBoug = 3 Xim(@)zm(®).

(I,m)€2%xN

Proof of (1.4) in Theorem B (i). We establish estimate (1.4), that is, we bound the norms of
the products ||(z“)2||L%Hé and H|zw|2HL%Hé for € =k + 3.
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Step 1: reduction of inequality (1.4) to deterministic estimates. We start with H(z“’)2||LqTHé. Fix
t €[0,T] and (x,y) € R®. Applying Corollary 2.15 (i) with the norm Lf.L3 ar21d V(1 m),(Jn) =
(Id —A(;)e/ 2(21,m#Jn), we obtain that outside a set of probability at most e~ there holds
12y <R Y X Nermenally e
(I,m)€2%xN (Jn)€2ZxN

It remains to prove that for every ug,vo € XF, denoting 2rm(t) = eitAGuLm and Zjn(t) =
eitAGU(Ln for t € R, we have

(61) Z Z ”ZI,ng,n

(I,m)€2ZxN (J,n)€2%xN

2
‘iqTHg ST \|U0H§({cHUO||§(1k .

Indeed we will conclude by taking ug = vg.
Similarly for || |z‘”|2||LqTHé, applying Corollary 2.15 (¢) with the norm L%L%y and W (7 ) (Jn) =

(I1d —Ag)*?(21,mZ7m), We obtain that outside a set of probability at most ¢°R* there holds

2
1211130 e < R* > |21,mZ7mll 30 e + R* > MermlPllipgme | -
e (I,m),(J;m)€2%x N e (I,m)e2ZxN

The upper bound is handled using inequality (6.1) and establishing
1

(6.2) Y lermZrmlliig e, S Telluoll xpllvoll v

(I,m)€e2%xN
which we apply to v and v = w.
Step 2: Proof of (6.1). We claim that (6.1) is a consequence of the time independent inequality

2 2 2

(6.3) Z Hul,mUJ,nHHé = ||UO||XII€HUOH/\({c .

(I,m),(J,n)€2ZxN

Indeed we apply (6.3) to zrm(t) = e"tAGuLm and Zj,(t) = eitAG'UJ’n for t € R instead of uy,
and v;,, then we use XF isometry property of the linear flow, where we recall that we have
defined the norm (1.3)

luollZes = > (L4 @m+ DD ) fuzmls-
(I,m)e22xN

Finally we integrate in time using the Holder inequality, yielding to (6.1).
In order to prove (6.3), fix I, J € 2% and m,n € N. Let A, B € 2" such that (m +1)I ~ A
and (n+ 1)J ~ B. We apply Corollary 4.4 and get

s vl < max{A, BY|[urmvsnlz -
Then, from the unit block bound of Proposition 5.4, it follows that

[ JI) I(J)
(6.4) ||U[7m7)]7nH§{é < max{A4, B}emln{ Bt }Hul,m||%?;HUJ,n||%é

Separating the cases A < B and A > B, we obtain the bounds

_1
> s mvsnlye < > B2 () |furml|Z2 01172
(I,m),(Jn)€e2%xN (I,m),(Jn)e22xN
A<B

_1
+ Y ATIDumlliz ol
(I,m),(J,;n)€22xN

A>B

implying (6.3) since £ — 1 = k.
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Step 3: Proof of (6.2). We claim that (6.2) is a consequence of the time independent inequality

(6.5) > Nurmvimllge, < luollrllvoll s -
(I,m)e2ZxN

Indeed we apply (6.5) to 21, (t) = €*AGuy,, and Z1 ,(t) = G vy ,, for t € R instead of up ,,
then we use AT isometry property of the linear flow and integrate in time using the Holder
inequality. This yields (6.2).

In order to prove (6.5), for I € 2% and m € N, we denote A € 2V such that (m + 1)I ~ A.
From (6.4) applied to I = J, m =n and A = B, we therefore write

@gg@Qmmwmmgswggwgﬁiumemgwmmg
An application of Cauchy-Schwarz’ inequality implies (6.5) since ¢ — % =k. O
6.2. Trilinear estimate for random interactions.
Proof of (1.5) in Theorem B (i). We now estimate |||z‘”|2zw||L%Hé.

Step 1: reduction of inequality (1.5) to deterministic estimates. Using Corollary 2.15 (i7), we
know that outside a set of probability at most e*CRQ, there holds

(6.6) [I1=°*2%||70 e, < R° > 21, 1 283.m5 25 s | 0,11,
(Il7m1)7(127m2)7(137m3)€2zXN

2
+R6 Z ( Z ”|z117m1’27512,m2”LqTHé) .
(

(12,m2)€2Z><N Il,m1)€22><N

As in the two subsections above, using Holder’s inequality in time, inequality (1.5) is now a
consequence of the time independent inequalities

(6-7) Z Hu117m1u12,m2u13,m3”12qé S HUOH?\({w
(I1,m1),(I2,m2),(I3,m3)€2ZxN

2
(6.8) > ( > |||Uh,m1|2U12,m2HHg) 5||UOH§55'

(IQ,mQ)EQZXN (Il,ml)GQZXN

Step 2: Proof of (6.7). We rather prove inequality

1 2 3
(6.9) > ety sy W e, S T [ e
(I1,m1),(I2,m2),(I3,m3)€2% xN

for fixed uM), u? u®) € LZ decomposed as in (1.1), as this implies (6.7) with u(") = u(?) = v,
and u® =7g. Let A1, Aa, A3 be the dyadic integers such that (m1+1)I1 ~ Ay, (ma+1)I5 ~ A
and (m3 + 1)]3 ~ As.

We apply Corollary 4.5 and get

2 Y/ 1 2
Huh m1u§2)m2u13 ma”Hé S maX{Al’AZ’A?’} ‘|u§1?M1u§2?M2u§3,M3HL2 :

Assuming up to permutation that max{A;, A2, A3} = A;, we deduce

(2 ¢ (3
Sy U5 e, S ALl 0 13 10 s
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Then, from the unit block bound of Proposition 5.4, it follows that if max{A;, As, A3} = Aj,
then

1 2 3 -1 1 2 3
(6.10) Sy Sy WS e S AT () My 13 N2 3 [
This implies that
n @ 3 2
Z Huhﬁmufmmzuf&msHHé

(I1,m1),(I2,m2),(I3,m3)€2% xN
max{A1,A2,A3}=A1

(I)(l2) 2 3
< > Af a2 e I ey -

% I3,m3
(I1,m1),(I2,m2),(I3,m3)€2ExN A7
max{A1,A2,A3}=A1
By definition of Xf, we get that for k = /¢ — %,
(1) (2) (3) 2
Z Huh,mluh,mzufs,maHHé
(I1,m1),(I2,m2),(I3,m3)€2% xN
max{A1,A2,A3}=A;
1) 12 2)12 3) 2
< u )HxlkHu( )Hxlo Yo gl

(I3,m3)eN*xN

It only remains to use estimate (3.5) from Lemma 3.3 and the embedding Wg? — L for
arbitrary small € > 0 and p > g to deduce that one has

3 2 3) 12
S B S 1P e
(Ig,mg)GN*XN ¢(p)+

Remark that for large p we have XF < X C_(;)(i ); ©,
2

P

. This is indeed the case because €+ % —2<k

W

for small e since k > % We conclude that

1 2 3
> 16y sy W e, S Tt B [ )
(17 )7(1’ )’(I ) )GQZXN
1 mélax{2f4?%42723?:3141

By symmetry, this inequality is also valid when max{A;, Ay, A3} = Ay or As. This implies (6.9)
and therefore (6.7).

Step 3: Proof of (6.8). In order to prove (6.8), fix I, Iy € 2% and my, ma € N.
If max{A;, Ao} = Ay, we use inequality (6.10) with u() = 42 = 4y and u(®) = 7g:

(1) (I2)

1
2
Al

— l
||u117m1u12,m2u11,m1 H?{é 5 Al Huh,ml ”iéHuIQ,mQ”%éHuh,mlH%OGC .

Otherwise, we have max{A;, A} = Ay. In this case, we still use inequality (6.10) with u") =
u®? = up and u® = ug:

(1){I2)

1
2
A2

— ¢
||u12,m2u11,m1u11,m1 H?{é 5 AQ ||u12,m2”%2c||u117m1 ||%2G”u11,m1||%°c° .
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We deduce by summation that

2
E E : |||U117m1|2u12,m2”H‘
G

(IQ,mQ)EQZXN (Il,ml)GQZXN

L1 1 ?
DY Yo AD (I 2 lwr Nzl ms | 2, my N s
(

(Ig,mz)GQZXN Il,ml)EQZXN

1 1 ’
+ X S AT ()2 g2 etz 225 | -
(

(I2,m2)€2ZxN I1,m1)€2ZxN

Now we apply Cauchy-Schwarz’ inequality and get

2
Z ( Z |Hu117m1’2u12,m2HHé>
(

(IQ,mQ)EQZXN 11,m1)€2Z><N

—1
DY ( > A12<11>||w1,m1!|i2c) <Iz>||w2,m2||i2c( > le,mllligo)
(

(I2,m2)€2ZxN I1,m1)€2ZxN (I1,m1)€22xN
—1
+ Z ( Z <Il>HU11,m1||i2G) AQ 2<IQ>”UI27W2H%% ( Z Huh,m1||2Lg°) .
(12,m2)€2ZXN (Il,ml)EQZXN (11,m1)€2Z><N

In only remains to use the definition (1.3) of AF and the estimate proven in the above step
S(rmyezzxn [wrm T S luollZy to get (6.8). O

7. DETERMINISTIC-PROBABILISTIC TRILINEAR ESTIMATE

In this section, we establish Theorem B (7). Let g9 > 0 such that uy € Xﬁ_ao and v,w €
LE,’?Hé. We recall that z, v and w have a decomposition

= ZZA: Z Z ZI1,’ITL17

Ae2N Ae2N (I,m;)e22xN

(m1+1)[1~A
=Y =Y Y wm

Be2N Be2N (Iy,ms)e2%xN

(ma+1)I>~B
and
=Y we=Y ¥ whum.

Ce2N Ce2N (I3,m3)€22xN

(m3+1)I3~B

Let € > 0 to be chosen later. Using Corollary 4.7, we get that for all ¢, there holds

(7.1 Now®lfe £ D0 ATEIED (Peavs) ™ (Peawe)™ ()72,

+ D0 ANED O o5 @)1,

01€D,
AeN
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Using estimate (3.4) for the second term in the right hand side, we infer that outside of a set of
probability =%, there holds
w2 22 2

Z A ||ZA||LqTLgo Se R T‘JHUOHXIk-

Ae2N
Moreover, since applying the shifts d; € D; to every mode z4 give equivalent estimates for the
LP norms, this leads similarly to

1/2

5 1
S AN e | Wollg ol | S BT ol g ol s e e
01€D1
AeN L%

For the sake of simplicity, we note that the shifted function u’ is nothing but a shift of

the indices (I,m) € 2% x N of order at most one and a multiplication of every mode (I,m)
by a function of modulus at most 1 in Fourier variable. Similarly, the projection Pc4 is a
multiplication of every mode (I,m) by a function of modulus at most 1 in Fourier variable.
Therefore, we assume without loss of generality that in the right-hand side of (7.1) there is no
shift (6; = 82 = d3 = @) and no projection Pcy4, up to applying the proof to (P<avp)® instead
of vp and doing a similar transformation for w. In order to estimate ||z“vw|| Lo HL > We therefore
write
1/2 1/2

¢ 2 t 2
Yooo4 +€HZLA}UchHch = > oA +€HZXUBZUCHL3; 7
A,B,C:B,C<A A,B,C:B,C<A 1.a/2
LY T
and our aim is to prove that for our choice of ¢ and &, then with probability greater than

2
1 — e °"" we have

2
Yo AT upucll}s <e R2Ta||upl2k 1|0]]2 oo pye Jw]|% oo e -
X LS H L H
A,B,C:B,C<A G L2 ~ Tteo FHE = HY,

By homogeneity, it is enough to prove that there exists C. such that for every R > 0,
with probability greater than 1 — e~ for every v,w € L Hf, satisfying ||v]| Lo HL, < 1 and

HwHL%’Hé <
2
(7.2) Z A”EHzﬁvao(t)H%gG < C.R?*T ||u0\|§(k .
A,B,C:B,C<A L/? Hreo

7.1. Step 1: Decoupling 2¥ from vw in (7.2). We fix t € R and A, B,C € 2" such that
B,C < A. Then we use the Plancherel formula to get

Itvmuc(®l2, = [ dy [ da(25) (@) (vaTFwCTE) (. 9)
— [ dy [ da(ZE « ) w.0) (7 + T + T+ TE) (1)
We use decomposition (2.2). For (I,m) € 2% x N, we denote

Fysn(ZLm) (6 2,0) = S ()R (y/[0]2)

where f7,, (t,n) = Xl,m(w)e‘t(2m+1)|n|f17m(n) and f1.;m(n) = fm(n)1yepr,2n. Similarly for v, we
write

fy—m(vf,m)(t?xvn) - g(f,m(tv n)hm( |77’$),
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where the dependence of g7, along the variables ¢ and w is not explicit. For w we do the same
by making use of functions g7,,. Then we expand everything:

Ivsc®)ll, = / an [ dw [ am [an [ans [ ans

T ma GO (610 = 10 Py (V| [2) By, (/1 = 1 [22)

m1,m1€N
(m1+1)Il,(m’1+1)I{~A
S G (125 (1 s (2l g ()
ma,mHEN

(m2+1)12,(m/2+1)lé~B

> Tty (b 1) GG oy (611 = 02 = 03— 1) (3 [ ]) P \/\77 M2 — N3 — ).

mg,m5€EN
(m;g—l—l)]g,(mé-l—l)IéNC

Our aim is to apply the probabilistic decoupling to the series involving products f7 . fi7 .-
’ 177
However, since v and w may depend on w, we first isolate the terms involving g7, ..., g;"é mi»

g5 and g%,
g[g,m:; glé,mg'
The expanded formula is rather long, we reorganize it as follows. We define

(7.3) T mey (0,11, m2, 113, m4) /dwhm (/ Iml @) Py (/10 = m|2) By (\/ [m2]2) By (4 [ 73 ]2)
hans (y/ |04l ) \/In T2 — 13 — nalT) .

We define the “random” part
(7.4)
J?Q,Ié,lg,lé,mg,mé,mp,,mé(tvn’772a773a774) = /dnl Z flui,ml (tvnl)f([ui’mfl (t777 - 771)

(Il,ml),(li,m'l)EZZXN
(m1+1)11,(m’1+1)l’~A

T meanty (01,11, 025 13, 1) [ (n — m2 — mz — ma) /4

Yinslelno 2] Y s €1, 215) L na €103, 215] L n—no—ns —mal € (15,215 »

whereas the “deterministic” part is written

9%,y (E112) 911 (8713) G2, (t.ma) Gy, (61 = 112 = 713 = 1)
7o 1/4 |773!1/4 |na]1/4 !n 12 — 13 — na|1/4

w
KI2J§,13J§7m2,m’2,m37m'3 (¢, 12,713, 14) =

Then the expanded formula becomes

I#vmuc(®)E; = [ [ dn [ dns [ans >

(I2,m2),(I} mQ)GQZxN (Is,ms),(I},m})€2ExN
(ma+1)I2,(mh+1)I,~B (m3+1)I3,(m4+1) I,~C

w
I 10,1315, 1 ety sty (£ 715 712, 713, 714
w
K, 13,1513 mamlyma.mty (£ 71112, 13, 114) -

Taking the absolute value, this leads by summation to a condensed expression

> AT Hesuc®),
A,B,C:B,C<A

< AR

q/2
Ly
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where, ¥ stands for a huge tuple
Y= (T,A,B,C, IZaIéal&Iévm%m,Z?m&méan’n%n?nn‘l) :

Moreover, we take Lfb = Lill . Li‘i norm with the exponents

P _749/271 71
L¢ - LT LALBchQJé»IS:I§7m27ml2:m37m§,7777772:7]3:774 ’
where the LP/ norm implicitely denotes the ¢/ norm when we consider sequence spaces. It is
now possible to take successive Holder inequalities, as one easily checks that for q% + qi, = p%
1
and + + 4 = L we have
92 ' 4, D2

Iollzzge < 170l | o < WSl ol -

Lt
Our purpose is to isolate the L%OHé norm of vw by using Hélder inequalities. For this, we note
that it better to split between (BC)‘K* and A“J*(BC)~‘. As we will see below, our actual
splitting also involves some extra other terms which aim at balancing the two terms and make
every series converge.

We fix p; and p2 to be very large exponents in [2,00) to be chosen later, with respective
conjugate exponents denoted p)j and p): p% + 1% =1 and p% + pi, = 1. For the term involving

1 2
J¥, we choose the exponents
p(J) _ ya/271 2
Ly™ =Ly LAL%,CLIQ I Ly

o15,13,15,ma,mb ;ms,m5~n,n2,m3,n4

and for the term involving K, we choose the exponents

/

p(K) _ joojoorPy 12 Py
Ly = LT LY LG o LT, 11 15,15 m mly sty Lz s s -

The reason why we introduce the exponents p; and po instead of taking them directly equal to
oo is that we need finite exponents in order to apply the probabilistic decoupling to J¥.

Our choice of exponents is compatible with the assumptions for applying successive Holder
inequalities, so that

(7.5) Z AHEHZfWBwCH%%
A,B,C:B,C<A Lgﬂ/2

< HAHs(BC)*HEZ(széfﬂé)l/%suw||L§<J>||(BC)Z7€2(I2féfsf§)71/2+€1Kw||LZ<K> :
The exponents €1,c2 > 0 will be chosen later depending on the following step.

7.2. Step 2: Evaluating the deterministic part K in (7.5). We first estimate the term
II(BC)HQ(I2Iéfsfé)_1/2+51Kw||Lf;<f<>

with
p(K) !
Ly

For the intuition, we should keep in mind that p), p5 ~ 1. By definition, of K*, we have

/
__ goor7oo7TDPe 2 P
- LA LT LB,CLIQ,Ié,[g,[é,mg,mé,mg,mgL"777727773ﬂ74 .

1%, s (Es )| 19T, 1z (8 113)]
7 _ Yhme 5ml
|K[gJé,Is,Ié,mz,mé,mg,mé(t,77777277737774)| = ‘772‘1/4 7]3‘1/4

|§%,m3 (t7 774)‘ |§?§,mg (ta n—"mn2—mnN3— 774)|

|ma|1/4 In—mn2 —n3 — nal'/4
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therefore
’ / / ~, / 1/17/
p p 1
K| _ (\gﬁm!)pl ) (Ig‘f;m;I) L <! 13,m3|>p1 ) (Igﬁvmgj) o
L — |- [/ |- [/ |- [/ |- [/ L
n
We apply Young’s inequality
/ 4 1/p} 4 ~w P 1/p}y
195, 7 (197m N 197, ma \* (197 N7
w 2,M2 RS 3,m3 3,3
||K || P/l < ( ’.|1/4 * ‘_’1/4 (t’n) ’ ‘1/4 * ’.|1/4 (t777)
1,12,13,M4 Ly L}
Applying Young’s inequality again, we get
! 1/p} / 1/p} w v, 1/p}
|g[2 m2 |g;27m/2| n “g(fg mg’ 7 |g[§,m’2| !
H ’1/4 * ‘ . ’1/4 (tan) ~ ’ . ‘1/4 (75777) ‘ . ’1/4 (ta 77)
L L Ll
But since
’ 1/p/1
’gcf’ m" 7 ’g?)’ m’|
“( | '2|1/Z (ta 77) | ‘2‘1/2 (t777) ;0
Ly Ly}
the Holder inequality with the choice of exponents p—l, = % + p21;12 leads to
1
1/p}
|gI m |g(f m |
H 2|1/i (tm) S ,2|1/421 (t,) Hl\nle[lz,ﬂz] 1291/ (p1-2)
L L3 !
< 0t ma (8) |2, (T2) P12/ CP1)
By symmetry of the roles of Iy, my and I}, mb, we deduce
/ 1/ph
‘912 m2 ‘g(fé,mé‘ " 1 < I, I (p1—2)/(2p1)
|1/4 * E |1/4 (t,n) X HUI27m2(t)”L%Hvlé,mg(t)HLé ( 2 2) :
Ly
By symmetry of the roles of u and v, we conclude
—2)/(2
10w < lomma (Ol org g ()2, 0ty () 2, w1y g, (0 2, (TaT3 T 5) ™ 270
7,M2-13:M4

Note that pép? = % - 1= % — €1 where g1 = p% is very small. This leads to

(€232 Y ianil ;I :

Py

I3,I},my,ml,m3,m} Liying m3.m4

!
Ip,1 3,

20

1/2
< ( ) ||v12,m2<t>uiguvfé,mg<t>uiguw13,m3<t>uié||w1§,mg<t>||ig>

ma,mb,m3,my,Io,15,13,1%
(m2+1)12,(m’2+1)1é~B
(m3+1)13,(m’3+1)1§~0

= llo(t) 3 llwo(®) 3
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Finally we get
H(BC)HZ(Iﬂél’sfé)_lm“K“HLpg 2 g

L 1
B,C7Iy,10 13,1} ;mg,ml ;m3,mf 1712713714

1/p
—e2)p) 2p4, 2p!
< (Z(BC)“ 2>p2HvB(t)HL€§ch(t)Hﬁ;) :

B,C
The exponent pf is greater than 1, which could be troublesome, but we recall that we have
chosen v and w satisfying ||v|| peemt, S 1 and ||wl| Leomt, S 1in the assumption of the desired
estimate (7.2). Therefore, for every t, B, C, we have ||vB(t)||L% <1 and ch(t)HLQG < 1, leading
to

[(BOY = (L3 s 1) /2T K|

/ !
Py 12 P1

L
B,C 12*157[3’Ié7m2vm/2vm3vmg 7,12,M3,M4

1/py
— ’
< (BZC<BC>< %Hv3<t>||%zeuwc<t>uié) .

We choose ey such that (¢ — e9)p), = ¢, i.e. e = -=. Then the upper bound is bounded by

I(BOY =2 (I I 1 15) ~/#+1 K* I,

£
p2

! /
Py 12 P1

L
B.C 1y, 1} 13,1} ma i ma i, 7121374

1/py
< (Z IIUB(t)H?;gHWB(t)I!?{g)
B,C

< (o)l g ()l g ) /7%
<1.

Taking the L7 LY norm, we conclude that

||(BC)H“’(12151315)_1/2+51Kw||L:;<K> <1

7.3. Step 3: Evaluating the random part J¥ in (7.5). We now estimate the term
|AS=(BC) == (12151315)1/2_£le||Liu>

; — 1 — £
with g1 = o €2 = 5 and

p(J) _ 79/271 rp2 72 p1
Ly = Ly Lalig o LT, 13 15,14 momy ms mty L ns na -

Step 3.1: probabilistic decoupling. We first apply the probabilistic decoupling: let us check that
the assumptions in order to apply Corollary 2.15 (74) are met. It is now more convenient to
write

AZ+€(BC)_£+62 (Iglélglé)l/Q_lew = Z X]1,m1 (W)Xli,m’l (w)\lj(h,ml),(fi,m’)(w) )

1
mlvm/17ll7li
(m1+1)11,(m’1+1)I{~A

where from the definition (7.4) of J¥| we have

(7'6) \I](Il,ml)v(livmi)(w) = A€+E(BC)_Z+82 (12151315)1/2_61 /dnlfh,ml (ta nl)fli,m/l (tﬂ? - 771)

ety (0,11, 02, 13, 1) 123 (n — m2 — mz — ma) /4

Yyl 2] Y s el 2150 L na €05, 215] L n—na—ns —mal € (15,215 »
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and we recall that J is defined in (7.3).
Applying Corollary 2.15 (#4) with
¢— = (Ta A7 B7 C: 127 Iév I37 I{/% ma, ml27 ms, mg)7 ¢+ = (777 72,73, 774) 5
p—(J) _ 74/271 yp 2 p+(J) _
Lw_ = LT LALBQ,CLIQ,Ié,[g,[é,mz,mg,ms,mg ) Ld;:_ - L%lnzms,m )
since

|A(BO) o (Lo Ly Is 1) />~ 3 2

= > X1y ma (W)X @)1y ) (17 mt ) (V) ,

ma,m} 1,1
(m1+1)11,(m’1+1)I{~A LZ(J)

we get that outside of a set of probability e_CR2, there holds
(7.7) AT (BO) 2 (L I3T5) 7 3%
"

1/2
2 2
<R > 19 (11 ). (1m3) (D) s
m17m117117[i Y+
(ml—‘rl)ll,(m/l-i-l)lif\/A Lpf(J)
P

R MmOl o

mi,I1 +
(m1+1)11~A LZ—(J)

Step 3.2: deterministic trilinear estimates. Now, we apply the deterministic trilinear estimates
from Corollary 5.3 in order to gain % additional derivatives, i.e. % powers of A.

Let us fix I, I{, m1, m} and ¢. We estimate W7, ) (17,m;)(¥) defined in (7.6). We start with
J defined in (7.3) as

T mamy (1,105 102, 1135 1m4) = /dwhml(\/ M |2) Py, (\/ 11 = m1]) ey (V] [1212) P, (4 (03] )

B (1) R, (3 0 — 112 — 3 — )

We apply Cauchy-Schwarz’ inequality

1T (0,10 12 13, 7)< oy (3 10122 Py (11210 Py (D) 2
s (/11— 1012 By (3 0312 g (3 10— 12— 13— ) 1.

We apply Corollary 5.3 for a2 = || € [I1,211], a3 = || € [I2,2L5] and o2 = |n4| € [I3,213]:

10203 A,y (1) s (@2 g (3) |72 S CFpymiy »

where
s = gl
B Al/z((sz +1)(2ms3 + 1))1/12
We also apply Corollary 5.3 for a2 = |p — ni| € [I],2[}], a3 = |n3| € [I},25] and o3 =
In —n2 —n3 — na| € [I5,215]. We conclude that

ma(n = nu)menana(n = n2 = 13 = 1) M43 e ey (011,72, 13, 10| S iy Crtmey -

%
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Moreover, since
/ dny

from [ rmi
we get the estimate

|9 (1 ) (1. ()] < ATE(BO) ™22 (L I3 15) /2~

‘f[ ,m ‘ |fI’,m’|
CutumaCuamy (555 )« | THE7 ) )

Yinaleltz.205) L msel1,21) Lina €13, 205] L n—no—ns —nal €]15,21] -

From (&m) Srm (60— 1)
| [1/4 n —m[t/4

Step 3.3: Integration bounds. It is now time to evaluate ||\I'(]17m1),(117m1 ()] e with
TP+

P+(J) — JP1
L = Fnm2,m3ma e

First, as indicators functions are bounded by 1, we have

H1\n2|e[12,21211|n3|eug,21511|n4\e[13,213]1\n—n2—ng—n4\eug,2fg] o
12,1374

1/p1

< (IIbIs) 7
Lﬁ

H 1\772|€[I2,212] 1|773|E[I§7QI§] 1|774\€[I372I3}
2113574

1

By symmetry of roles, recalling that e; = =, we write that

< (LIIsI,) %/

H1|nz|e[12,212}1\n3\e[fg,21511|n4|e[13,21311|n—n2—n3—n4|eu 2] || 71
12513574

Hence we have discarded the integration over 71, n2,n3 and the term Ljnyletn,20] L s €1, 215) ¥
1|774|€[I31213]1|77*772*T]3*774|€[I§,215]:

1 (11 ma ), (17 m) (D) 1 < AT (BO) TR (L I 14) e/

mn2:M3:M4
‘f[ m | |fI’,m’|
C{Ihmi}c{[gﬂm;} ( | ,1’1/}1 ) * | ,1|1/i (n)-

Then we integrate in 7. Fixing Iy, I{,m1, m}, we have thanks to Young’s inequality with
1+ L =2ntl
p
|f11,m1’ |fIi,m/1|
|- [1/4 |- [1/4

2p1
§+m7
fI m |fI’,m’|

Ile,mll Frmly
|1/4 |- [1/4
and from Holder’s inequality with

= (1—1[{)1/(%1)||ZI1,m1(t)HL2c“ZI;,m’1 )z,
= (B P Jaugy gy 2, g g N 2,

Lf}p1/(p1+1) Lim/(m-ﬂ)

P1+1 _

< (]111)1/(2171)

‘f] ,m ‘ |fI’,m’|
|(fd) - (T o

P 2
Lt L3 L2

where in the latter equality we have used the L? isometry property of the linear flow. We have
proven that

H\I](Il,ml),(li,mll)(w)HLP+(J) < AK+E(BC)—K+82 (IQIéfgfé)l/Q—m/ll
Y+

C{Ii,mi}C{IZf,m;}(Illi)l/@pl) [y my Nl 22, 1y ot [l 2, -
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(1) (IaI3)"/*
AL/2((2ma+1)(2ms+1))1/12

Recalling that 1 = p% and replacing C{zli mi} = by its value, this leads

to

|’ql(117m1)7([i’m/1)(¢)||L1+U) < A€+a(BC)—e+ag([2151315)1/2_51/4
+
() 2 (T T I 15) o1 /2
AV2((2my + 1) (2 + 1) (2 + 1)@ 4 11721 o i Wt

Step 3.4: decoupled summation. We now consider the sums over Iy, I, mi, m} in (7.7).

For the second term in the right-hand side of (7.7), we take I} = I, m}{ = my and incorporate
the term (7)1 which is the only term still dependent of I1,m; in the upper bound. By
summation, this leads to

> ) s 7y, = lluallry,

my,Iy
(m1+1)I1~A

For the first term in the right-hand side of (7.7), we also have

1/2
> (L)t (H)HslHuh,m1||2LgHuli,mgH%2G = HUAHZX&El :
ml7m/’llall
(M) (my LD ~A
Therefore (7.7) becomes
|42 (BC) =2 (12151313)1/2_513“IILiu)
1/241/8—¢1 /4
< R?|Alate(BO) e (LI L) 2= [wallZo ,
~ ((2ma + 1)(2mh + 1)(2ms + 1)(2m4 + 1))/ et || o)
Yo
where o) )
_J 2.1 2
LZ, = L%‘ LAL?,CLI2,15,13,1§7m2,m’2,m37m§ )

Step 8.5: Holder bounds. Let us now compute the norm L%27m2. Thanks to the condition

1+ (2me + 1)1z € [B, 2B] implying ma < % and I, < B, we have

pit1/A—e1/2 1
Z A < Z Il+1/4—51/2 Z L
(mg + 1)1/12 2 (mo + 1)1/12

ma,l2 15€2Z:1,<B ng%

(m2+1)12~B
1-1/12
1+1/4—e1/2 [ B
< E I —
2 <I2>

Ioe22:15<B
1-1/12 1/441/12—¢1/2
<potizeoNt o, Ve
I,€22:1,<B
The series over Is < 1 is convergent since for ;7 > 0 sufficiently small, the exponent 1/4 +
1/12 — €1/2 is positive. Moreover, one can see that the gain of 1/12 is actually useless here in
the argument. For the series over I > 1, we get a bound B1/4t1/12-€1/2 g4 that
[it1/4=e1/2
Z 2 < B1+1/4—51/2 < B5/4.
(mg + 1)1/12 ~ ~

ma,l2
(m2+1)12~B
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We do the same for all the other indices I, mb, I3, mg, I5, mf and get

A£_1/2+E(BC)_Z+£2+5/4HUAHizl()+
€1

[ AP (BO) = (LI LI 23 ) S B

PR
We now take the LP2 norm over B, C'. Since ¢ > %, the exponent in front of the term (BC) is

—l+ea+ g < —% +e2+ % When €9 < % is small, we see that this exponent is negative, so that
the LP2 norm over B and C' is convergent and bounded by some constant Cy. This leads to

HAZHZ—(BO)féJrsz(12151315)1/2751'?)HLTL(A < R2 A£*%+€HUA||§(0

1+eq

LY?ry
We finally conclude that
HAZ+6(BC)74+52 (I2IéI3Iz/)’)l/2751JWHLZJJ(J) S RQH ”uoHié_%_'_E HLqT/Q .
1+eq

It only remains to take the LqT/ 2 norm, but one can see that our upper bound does not depend
on T anymore, so this only adds a T2/9 factor:

|,A€+E<BC)—E+€2(]2151313)1/2751']&1||LZ(J) S R2T2/4HU0||2 =Lt
1+eq

When ( +¢ < k+ % (this is equivalent to taking £ small enough), we conclude that
2 22 2
szywHLqTHé ga R*T4 Hu0||;(1k+61 )

where €1 = p% can be chosen arbitrarily small and in particular no greater than ey. Using the

homogeneity, we remove the assumption [|v|| reomt, <1, ||wl] Leomt, <1 and deduce that up to

removing an extra set of probability not larger than e_CRQ, inequality (1.6) holds. This concludes
the proof of Theorem B (7).

8. LOCAL WELL-POSEDNESS

This section is devoted to the proof of Theorem A .

We fix k € (1, %) and ug € Hé We assume that there exists g9 > 0 such that ug € Xﬁs.
We denote by u§ its associate randomization, defined by (1.2), and recall that we write 2¥(¢) :=
e"Aay¥ for the solution to the linear flow (LS-G) associated to the initial data u§. We seek for
a solution u to (NLS-G) of the form

u(t) = 2¥(t) + v(t),
where v(0) = 0 and v(t) € HE with ¢ € (3,k + 1). We will prove local well-posedness for
veCY ([O,T], Hé) solving

. o — |w 2( w
(8.1) {18,511 Agv = |2 +v|* (2 + v)

v(0) =0,
thanks to a fixed point argument. We consider the map ® : v € C° ([O,T],Hé) — ®(v) €
o ([o,T], Hg) defined by

t
(8.2) D(v):te0,T]— —i/ 86 (|2 4 o222 4 v))
0

Observe that by the Duhamel formula, v solves (8.1) if and only if ®(v) = v. Note that v may
depend on w.
We introduce the following set of initial data:

Err={we Q] (83),(84),(8.5) and (8.6) hold},
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where

(8.3) 1) s e, + 112211 s e, < TR ol

(8.4) 1222 g s, < TR Juolly

(8.5) szvw”LlTHé < TRHUOHX{“HU”L%oHéHwHL%OHé for all v, w € L%’Hé,
(8.6) ‘|zw‘|%%L%° < TR2||u0H§(1k .

We have the following estimate of Eg 7.

Lemma 8.1. Let ug € Hg Then there exists a constant ¢ > 0 which depends on the basis
function ug of the randomization, such that for all R,T >0, P(Q\ Er1) < e—cR?,

Proof. Outside a set of probability at most A the bounds (8.3) and (8.4) follow from Theo-
rem B (7). Similarly, and (8.5) follows from Theorem B (ii) with uy € XF C Xﬁ_f for € chosen
small enough so that £ < k — e + 1. Moreover, (8.6) follows from Proposition 3.1. O

The key estimate in proving Theorem A is the following.

Proposition 8.2 (A priori estimate). Let u§ € Err and { € (%,k + %) Then for any v €
C°([0,T), HE) there holds

(87) 192015 sre, ST (100130 e, + (Rlluoll)?) -
Similarly, for any vi,ve € C([0,T], Hé) there holds
B8)  19() ~ B0,  Tlhos — vl gzeres, ((Rllwollag)? + o1 2 e + 1021 ) -

Proof. Let w € Er 7. Estimates (8.7) and (8.8) reduce to multilinear estimates, as a consequence
of the triangle inequality in the Duhamel formula (8.2) and the fact that e®~¢ is an isometry
in H,. Indeed, for ¢ € [0,T], there holds

to,
12 () (D) e, </ e =80 2 0P (2 + ) () 1, A
0

¢
S [+ oG + 0@y 2
0
2
<12+ o2+ o)l
We expand the cubic term and bound
(8:9) 120l soms, S 112122l gy s, + 12200 1y e, + 122 Poll g e
1200l g, + 12990 e, + TPl e e -
Similarly, let vi,ve € H, é, then we have
19 (v2) = @(vi)ll e e, S N2 +v2l* (2 +v2) = [ + 01 (=% + 1)y e,
so that
(8.10) [[®(v2) = ®(vi)llpzopre, S (=) (02 = v0) Ly gre, + 21 (v2 = v)ll 1y e,

+ 12 (2l = Jot ) gy are, + 12203 = 59y e, + Tlllvzl*vz — [oaPorll e e -

We now provide upper bounds for all the terms in (8.9) and (8.10).
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e We begin with (2%)2v, (2¥)2(v2 — v1), [2*|?v and |2¥|?(v2 —v1). Let w = v or w = vg—vy.
By the product law in Hg of Proposition 2.10, we have

120 e S (120 e + 12O ) o)l
Using (8.3) and (8.6) from the assumption w € Eg 7, this gives:
12l e S (12 e + 129128 1 ) 0l e, S TR ol ol e
Similarly one has
2Pl me, S TR [luol % llwll oo e, -
We have both proven
120053 e+ 111200 g e S TR ol 210l
and
2@ = o0 g e + 11222 = 00) g e, S TRl o2 = w1l e

e Let us estimate z|v|?, 2¥(|va]? — |v1]?), 2¥0? and 2¥(v3 — v?). Using (8.5) from the
assumption that w € Egr, we infer:

1210 g s, + 12952t e, S TR0l g 1012 g
and
12 (o2l = forP)llgs e + 12 @3 = 8l e

S TRl xp vz + vallTe e + o2 = vl 70 e Mlve = 0170 e

< TRloll g (lel2so e + 0120 e v = w120 e

e Observe that thanks to the algebra property of Hé (since ¢ > %) of Lemma 2.10, we
have
2 3
(R Py
and

llv2lPv2 = forPorll oo e, S (lo2ll e e, + 01l e )02 = 01l o e, -
All these bounds combined together with assumption (8.4) in estimates (8.9) and (8.10) im-
ply (8.7) and (8.8). O

Proof of Theorem A. Let w € Er . Thanks Proposition 8.2, we know that there exists C' > 0
such that the map ® : C°([0,T], HS) — C°([0,T), HE) is bounded Lipschitz on finite balls: if
[0l oo e, < Rlluo| ., we have

1@ (0)| e e, < CT(Rluoll )
and for ||1)1HL%oHé < R and Hv2||L%oHé < R, we have
12 (v2) = @(vi)l e e, < CT(Rlluol|ep)l|v2 — vl poc pre, -

Thus, taking T' = we see that ® stabilizes the ball B(0, R||uo HXlk) in C°([0,T], HE),

1
2C(llzlluolle)Q ’
moreover, ® is a contraction on the ball B(0, R||u]| Xlk). The existence and uniqueness of v
solving (8.1) then follows from standard contraction mapping arguments.
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We have obtained that for any w € Epr (and T = 507 , there exists a unique

SO )
1‘_€||u0HX{c)2
solution to (NLS-G) in the space

Aoy + (0,71, HE) < ([0, ], HE)

E:={J ) E,

k>1n>k 2n?
satisfies the requirements of Theorem A (7). Indeed, it remains to see that P(Q\ E) = 0. Since
the sequence of sets (J,,» E,, _1_ is non-increasing, we have

Then the set

2n2

P(Q\ E) < limsup P (U E ) <limsup Y e

2n2

(31’L2

which is 0 since )" e™“"" converges. O

APPENDIX A. APPENDICES

A.1. Pointwise estimates on Hermite functions. The purpose of this appendix is to explain
how to prove the estimates of Corollary 2.8 as a consequence of the pointwise estimates on the
Hermite functions from Theorem 2.5.

Proof of Corollary 2.8. We study the bounds on distinct regions of space. Let us fix m € N.
(1) For |z| < $Am, there holds |22 — A2 | > 3A2  thus

1
1 2

[ (2)] S J2? = A0 7T S Am? .

~

ol

_ 2 _2 2
(2) For A < |2] < A — Am®, we have 22 < A2, — 203 + Ap® < A2, — A3, thus [\2, — 22| =

m
2
) = A\, which implies that:

2
A+ A2, — 2% < 2|A2, — 27|

Finally, we get

1
1

2
()] < 172, — 2?7 F < (A% A, —er)

1 2
(3) For ||z| — Am| < Am?, we have |22 — A2 | < [|z] — Al - 2] + Am| < Ad, so that

_1 2 2 i
o ()] S A = (M) 5 S (Ag@ - x2|>
_1 2
(4) For A 4+ Am® < |z| < 2\, there holds |22 — A2, | > A3, thus the crude bound e~*m(*) < 1
gives

N

—8m(x) 2
T — A7, |4

(5) Let || > 2\;,. Observe that by change of variable ¢t = A,y we have

s pen —Am)?
sm(iv)=>\3n/lA \/3/2—1dy>A3n/1A (y—l)dyz(wQ),

where we used that for y 22 1, y* — 1>y — 1. Then, observe that x — A, > § by definition of
. This implies s,,(2) > % and finally, since |22 — X2 | > A2, > 1, we conclude:
e—sm(x) 1o

i (2)] S ——— S eE 0
" |22 — A2 |3
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A.2. Algebra property, product laws and local Cauchy theory.

A.2.1. Proof of the functional inequalities. In the Grushin case, the proof of Proposition 2.10
is a consequence of the following results. In the context of the Heisenberg sub-Laplacian, the
proof of Proposition 2.10 about the algebra property of the Sobolev spaces H* can be found
in [BGO1] and relies on representation theoretic formulee.

Lemma A.1 (See the proof of Lemma 3.6 in [BFKG16]). Let H = 0., +a? denote the Harmonic
oscillator. For all k > 0, there exists C(k) > 0 such that for all m € N,

1
%IIHWhmIILg < N5kl 2 + e bl 2 < COR)IH Rl 2 -

Corollary A.2. For all k > 0, there exists C(k) > 0 such that for all u € HE, there holds
1
G104 =20 2l < 10l + 100, ul, < O -86) a5

Proof. We decompose u as
Fy—pu(z,n) me |77|295)
Then
104 =261 2ully = 3 [ 1fnmPdn [ 1+ @m o+ Dl hnlnl2a)do.

Hence we see that ||(Id —Ag)k/zuHL% ~k lullzz + ||(—Ag)k/2u]|L2G, and

1=86)"2ullZy, ~ie S [ 1fmPn [(@mt Dl (1)
= Z/Ifm<n)\2dn/Inl’“(H’“/thx\m%xﬁdx

Now we use a change of variables to get
=860l ~ 3 [ Ul Pdnl/2 [ (H ) ).
Then we use that |]Hk/2hm||L§ ~ Hf)g’;hmHL% + H:ckhmHL% and get

(-6 2ul2s ~e 3 [ 1fmPdulnl= 72 [(@5+ a5 2
=3 [ 1m0 P [0l (@ + 2 0
=3 [ Ummlan [ @% + (nla) el )z

— 0kulZ + Iyl O
We are now ready to give a proof of the product laws.
Proof of Proposition 2.10. (i) We start by using the above Corollary A.2 and get
vl < 1140 o)l gz, + (120, (wo)llzz
Now, the classical product rule in Sobolev spaces applied in z (resp. in y) implies

02" (wo) 2 < 140 ull 2 llvllzge + lullzee [1(02) 0l 2
resp.
(20,)* (wo) 2 S 128y ull gz [Vl e + l[ullge {28y ol
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which combined with Holder estimates in y (resp. z) yields
vl SN402) ull 2, Ivllcgs, + lullzge, 110 vl 2,
+ (20 ull 2 lollge, + lullrgs, [1(20y) ol 2,
Proposition 2.10 (%) follows by an other application of Corollary A.2.
(4) is a direct consequence of (7) and the Sobolev embedding Hf — L when k > 3
(777) When p is an integer, the result follows from (i) by iteration. O
Lemma A.3 (Limit Sobolev embedding). The following statements hold.
3
(i) There exists C > 0 such that for every p > 2 and u € HA, there holds

(A1) lullzz, < Cv/pllul

H,

Qoo

i) (Brezis-Gallouét) For any k > 2, there exists Cj, > 0 such that there holds
2

(A.2) [ullzge < Crllull 1+

é
2
G

l\)

G
Tl
HG
Proof. (i) Let p > 2 and u € L,. By the triangle inequality we have
lully, < 3 Thuallzs -
Ae2N
Then, the Sobolev embedding yields

lullrz, < ZHMAH o(1-4) = < S AT ua

Ae2N Aeg2N A

C}w\w

An application of the Cauchy-Schwarz 1nequahty and orthogonality provide us with

1

[ullze, < (Z A) IUH
Ag2N

3
which gives the conclusion since ) 4con A ~ Cp as p goes to infinity.
(7) Let Ap > 1 be a dyadic integer. Start by writing u = >- 4c 4, ua + Y454, UA, and by
Cauchy-Schwarz

Q N

N

1
[ul| L < log2(Ao) (Z IIUAIILoo) + Y lualli -

A<Ap A>Ap
1 1
Observe that for p > 2, HUAHLP < 43(:73) ||uA||L2G, which gives when letting p — oo

(A-3) luallzg < llual

I

Qroleo

H

and this latter inequality also implies
(A1) luallzsy S A72572) fua]
The bound (A.3) when A < Ap and (A.4) when A > Ay imply
1 —L(k=32)
Jullge < HUIIHGg log> Ag+ A * *lull g
which gives the result after optimisation in Ajg. O
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A.2.2. Deterministic local Cauchy theory. We finish this appendix with a summary of well-
posedness results for (NLS-H') (resp. (NLS-G)) for k > 2 (resp. k > 3). To the best of our
knowledge, the best well-posedness result for (NLS-H') is the following.

Proposition A.4 (Well-posedness for (NLS-H'), see [BGO1]). For k > 2, the Cauchy prob-
lem for (NLS-H') ids locally well-posed in C°([0,T*), H*(H')) and T* = T (luoll grrry) 2

luoll 2 .
Similarly, we recall the best local theory for (NLS-G).

Proposition A.5 (Well-posedness theory for (NLS-G)). The following well-posedness state-
ments hold:
(i) For k > 3, the Cauchy problem for (NLS-G) is locally well-posed in C([0,T*), HE.).
Moreover, for ug € HE, the mazimal time T* satisfies T* 2, ||U0”Z§o
(i) The blow-up criterion can be refined:

T < oo = |lu(t)| s

—
H c2: t—T*
Sketch of proof for Proposition A.5. We only give formal arguments, which are easily converted
into fully rigorous proofs by standard means.

(4) Let k > 3. Applying the operator (—Ag)
and integrating by parts in space, we compute that

IIU( Wiz, < 1(=2c)2 (Jul*u )(_AG)gﬂHLé'

Applying the Holder inequahty, the algebra property of Lemma 2.10 and the Holder inequality
again, we finally arrive at the estimate

d
(02 S el el

E
2

M\?r

o (NLS-G), then multiplying by (—Ag)zu

k
2

which by the Sobolev embedding and the Gronwall inequality gives an a priori estimate in H”
and implies the local theory.
(7) This follows from the energy estimate and inequality (A.2), which give

d ) ) ) ) ) H 2
e < Tl lully < ull g lullpy log + T 3
which implies the result after an application of Gronwall’s inequality. O

Note that a similar argument to that of (¢), which relies on the inequality (A.1) can be
3

used to prove that, if solutions exists in Hé, they are unique. This argument goes back to
Yudovich [Yud63], then has been used by Vladimirov [V1a84] in the context of Schrodinger

3 3

equations. Namely, if uq, ug are two HZ solutions in L*°([0,T), H3), introduce ¢(t) = |lu1(t) —

us(t)||2, and fix T1 < T', we prove that ¢(t) = 0 for all ¢ € [0,T1]. Denote by w(t) = w1 (t)—ua(t).
G

Then

_ 2/ W (1)@ (t) de _QZ/ Aw(t)in(t) dm—Zi/z(]u1|2u1 — JusPus) @ (t) der
R

Since the first terms equals —2i||Vw||?, € iR and ¢ is real-valued, we have

2| [ (P = Pty de| 5 [ @ (lun(0F + lua)) do.
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Then for all ¢t < T3, we have

~

¢(t) S /RQ [t = u2) (OPU VP (Jua (8) PO 4 () POHP)) da

_1
,S \/]3@5(75)1 p (‘U1||2(13+1/p)+ Hu2||2(£+1/p)> ,
HZ2 HZ2

G G

where we use (A.1) in the last step. Since |lui(t)]| C(Ty) and 2(1 + %) < 3, we

Le(01y),HE)
obtain

¢(t) S Vpo(t) >

6(t) < (%)p

which goes to 0 as p — oo, hence ¢ = 0.

The, we integrate on [0, ] to get

A.3. An interpolation lemma. The aim of this appendix is to prove that if inequality (4.3)
2

> (1d—Ag)"?(ua(Psavp))

é
S D0 M) s 1ol
2B>A

2
LG 6€D1

holds for £ = 0 and ¢ = 2, then this inequality holds for all ¢ € [0, 2] by interpolation. Writing
w = (Id —=Ag)*?v, we have

Y- (1d—A¢)"?(ua(P>avp))
B>A

= H(Id —Ag)t? <u,4 3" (1d-Ag)"3(Ps Aw)B>
2B>A

2 2
LG LG

Lemma A.6 (Interpolation lemma). Let £ € [0,1], then for any w € L%, there holds

1/2
1(1d =A¢)" (wax>a(ld —Ag)™w) |12 < (Z ||(UA)51!%50) lwllzz, -
éeDq

The proof of this lemma is an application of Stein’s interpolation theorem in the case when
the operators are bounded by the same constant.

Theorem A.7 (Stein interpolation theorem [Ste56], Theorem 1). Let (2, s, i), ¢ = 0,1 be
two measured spaces, p;,q; € [1,00], S := {2z € C| 0 < Re(z) < 1} and (1.),.5 a family of
operators from simple functions in L'(u1) to pa-measurable functions. Assume that there exists
c < m such that the following holds.

(i) For any fized simple functions f and g on Qo and 0 respectively, z € S Jo, T=(f)g dia
is continuous on S and holomorphic in S, and satisfies
sup e~ M) o

e Ll Tz(f)g d#l

(ii) The operator T, : LP°(€Qy) — L9%(€) is continuous whenever Re(z) = 0: there exists Cy
such that for all f € LP°(Qp) and r € R,

[ To+ir fllLao < Co(r)|| ] Leo,

and similarly, whenever Re(z) = 1, the operator T, : LP*(Qo) — L% (1) is continuous:
there exists C1 such that for all f € LP'(Qp) and r € R,

[Tyir fllza < Cr(r) || £ 2o

< 0.
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Moreover, fori € {0,1},

sup e " log |Ci(r)| < 0.
reR

Then for 0 € [0,1], setting p%, = 1p;09+p% and p% = 1q;09+(;%, the operator Ty : LP9(Qp) — L1 ()

is bounded. More precisely, there exists Cy = C(6,Cy, Cy) such that
1Tofllzew < Collflireo, f € LP(Q0), 7 €R.

~1/2
Proof of Lemma A.6. We apply Theorem A.7 to the operators (ZéeDl [ () ||%%o> / T, with

Tzf = (Id —A(;)z (UAP>A(IC1 —A(;)_Zf) ,

and (Id —Ag)? = exp (zlog(Id —Ag)). We make the choice Qy = Q1 = R?, po = pq is the
Lebesgue measure A\, and pg =p1 =pg = q9 = qo = q1 = 2.

Observe that for any real r, the operator (Id —Ag)™ acts by rotation of the Fourier coeffi-
cients in L%, thus it is bounded in L? with norm 1. Indeed, the decomposition F(w)(z,n) =

1
Somen fm (M hm(In]22) leads to

F((1d=Ag) " w)(w,n) = 3 (14 @m + D))" fon(n)ham(ln]22)
meN

so that we can conclude by orthogonality of the decomposition. This implies that for all w €
L?*(R?) and z € S, we have

IT: fll22) = [ Tre(z) (Id —=Ag) ™ )l 12R2) -

with ||(Id —Ag)_"wHLz(Rz) = ||w||z2(r2). Thanks to the fact that inequality (4.3) holds in the
case { = 0 and ¢ = 2, assumption () from Theorem A.7 then holds with some constant functions
Cy = C independent of r = Im(z).

We now establish assumption (7). Fix two simple functions f,g on R2. Then the map
z€8— Jr2 T=(f)g dA is continuous and holomorphic. Moreover, for all z € S, we have

[ T(0)9 0| < Tl lolooges
We write z = ¢ + ir with (¢,7) € [0,1] x R. When ¢ = 0, we simply write
Il < Nl Pl s
and observe that HuAH%%o < uall? 3, S A%JFEHUA\\%z < 400. Otherwise, if £ > 0, start by an
H2 G

application of the product law in P?oposition 2.10, which gives
1T fllzz, = lluaPsa(ld =Ag) ™ fll e,
S llualleg [1P>a(ld =Ac) ™" fllge, + lluall gy 1P>4(1d =Ac) ™ fllzgs
S luallzg £l 2, + llwall e, |1 P>a(1d —Ac)f"fHWC;e,oo :

Then we observe that HUA”Hé, < A§||uAHLré < 00, [lually < oo, as well as HfHL2G < oo. It
remains to study || P~ 4(Id —Ag)_”fHWJ,W We first use the dual Sobolev embedding LY, —
G

WG_E’Oo where % — g =0 (so that 3 < p < 00):
1> A(Id =A) ™" flly-eoe S I1P>a(Id =Ac) ™" fll 12, -
G

Now, we conclude by using the continuity of P> 4(Id —Ag)~"" on LL,.
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Indeed, P 4(Id —Ag)™™ = F(—Ag), where

F()\) = (1 - X (T)) (L+ )7,

Since x € C°[0,1), one knows that F' € W>(R). Now, Theorem 1 in [MS12] implies that for

all p € (1,00), F(—Ag) is bounded in £(LP(R?)). O
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