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Abstract—The notion of anchor plays a major role in modern
detection algorithms such as the Faster-RCNN [1] or the SSD
detector [2]. Anchors relate the features of the last layers of the
detector with bounding boxes containing objects in images. De-
spite their importance, the literature on object detection has not
paid real attention to them. The motivation of this paper comes
from the observations that (i) each anchor learns to classify and
regress candidate objects independently (ii) insufficient examples
are available for each anchor in case of small-scale datasets. This
paper addresses these questions by proposing a novel hierarchical
head for the SSD detector. The new design has the added
advantage of no extra weights, as compared to the original design
at inference time, while improving detectors performance for
small size training sets. Improved performance on PASCAL-VOC
and state-of-the-art performance on FlickrLogos-47 validate the
method. We also show when the proposed design does not give
additional performance gain over the original design.

Index Terms—2D Object Detection, Computer Vision, Anchors,
Deep Learning

I. INTRODUCTION

Object detection has been revolutionized by the introduction
of convolutional neural networks [3]. While the first DCNN-
based object detectors were applying fine-tuned classifiers
on each possible location of the image in a sliding window
manner [4], or on some specific regions of interest [5],
recent pipelines operate in an end-to-end way, relying on
fully convolutional networks jointly selecting the regions of
interests and scoring them. Two main streams of detectors co-
exist at the moment, with strong influence, i.e. single stage
detectors (e.g. [2], [6] and their follow-ups) as well as two-
stage detectors (e.g. [1] and their follow-ups) which are slower
but more accurate.

Both lines of research rely on the definition of so-called
anchors [1]. Anchors are the reference boxes having multiple
pre-defined positions, scales and aspect ratios, chosen to cover
target object candidates of different sizes and shapes all over
the image. The purpose is to learn to relate the feature maps
of the networks with image bounding boxes, which allows to
implement object/non-object criterion as well as bounding box
regression for objects.

Generally, lots of anchors are defined at each of the spatial
location of the final feature maps of the network. During
training some of them are chosen as positives on the condition
that they have Intersection over Union (IoU) greater than a
threshold, uh, with the candidate object. The rest are either
ignored or used for classifying background. An object of
certain size and aspect ratio can be learned by an anchor which
is closest to its shape. But it doesn’t benefit other anchors as

they need to ”see” the same object in dimensions which is
closer to their shape in order to learn to detect it. The effect
is more pronounced in the case of small-scale datasets (i.e.
datasets with less number of total objects) where each anchor
gets to learn from still smaller set of candidate objects. This
situation can be improved if some of the weights can be shared
among anchors. This will allow the anchors that have ”seen”
an object to share their trained features with the anchors that
have ”not seen” that object.

Now the question arises on how to share these weights? We
observed that deep convolutional neural networks (DCNNs)
are implicitly hierarchical by design. This property allows
them to learn to make relations between salient features that
are present at distant spatial locations in an image. We used
this nice property of hierarchy explicitly, in the design of a
novel detector head, which will allow the sharing of weights
according to various intuitive configurations.

We hypothesize that this head should allow each anchor to
have a part of the parameters, which are specific and represent
the characteristics which are unique, trained together with
other part of the parameters that are shared and represent
common properties. The weights for the shared and the
specific part of the head can be automatically adjusted during
training according to the requirements of the dataset. Thus, it
allows anchors to assist each other.

Moreover, the backbone networks can be pre-trained on
ImageNet classification task and then used for the object
detection task. But since anchors cannot be pre-trained during
classification they need to be randomly initialized during
training, which means they need to start learning from scratch.
This strategy acts as a supplementary training for anchors
which have ”not seen” the objects of other shapes.

To see the applicability of this head we experimented
with three datasets (FlickrLogos-47 [7], PASCAL-VOC [8]
and MS-COCO [9]), that are vastly different in number of
annotations and images. The amount of improvement increases
with decrease in number of annotated images. We also trained
with different networks (RetinaNet [10] and Inception-V2
[11]) to show that the proposed design is general and can
be used with different kinds of networks.

The rest of the paper is as follows. In the next section we
talk about the seminal works that have been done in the do-
main of anchors for object detection. In Section III we present
our technique of hierarchical anchors and different possible
designs, while in Section IV we experimentally validate the
proposed detector head. Section V concludes the paper.



II. RELATED WORK

Object detection is one of the most important tasks among
the computer vision community, and, on this basis, has re-
ceived a lot of attention. Among the recent detectors, the
most successful are the RCNN [5] and variants: Fast-RCNN
[12], Faster-RCNN [1], R-FCN [13] and the very recent Mask
RCNN [14]. Among the single step detectors, we can also
mention the SSD [2] and YOLO [6] detectors. The recent
DSSD [15] approach allows to add contextual information into
state-of-the-art SSD detectors, by the means of deconvolution
layers introducing additional large scale context. FSSD [16]
is a Feature Fusion Single Shot Multibox Detector enhancing
the feature fusion mechanisms of SSD; features from different
layers with different scales are concatenated together, followed
by some down-sampling blocks to generate new feature pyra-
mid. Finally, YOLO9000 [17] proposes various improvements
to the YOLO detection method.

The recent literature on object detection is certainly too
large to be covered exhaustively in this section. The reader
interested in having more details can read the survey by Agar-
wal et al [3] and the benchmark study done by Huang et al.
[18] comparing most of the recent detectors. Best performing
detectors at the moment are RefineDet [19], RetinaNet [10],
CornerNet [20] or M2Det [21].

While the literature on object detection is very large, the
literature on anchors is surprisingly very limited. Anchors were
first proposed by Ren et al. in [1] for learning region proposals,
in the Region Proposal Network. They were later adopted by
single-stage detectors [2] also for directly predicting the object
instances without having any proposal. In most of the cases,
detectors contain predefined set of anchor boxes, with different
positions, sizes and aspect ratios.

Redmon and Farhadi [17] have proposed to choose anchor
characteristics by running k-means clustering on the training
set bounding boxes, to automatically find good anchor param-
eters. As a distance metric in k-means, they use a measure
based on the IoU between regions. This idea has been extended
in [22] where the authors complemented the standard loss
function with an extra online clustering term measuring the
distance between anchors shapes and ground-truth shapes,
while in [23] the scale of the anchors are dynamically refined
during learning. In [24] anchors are dynamically generated
from box priors. However, none of these works hierarchically
combine the different anchors nor share their parameters.

Anchors can be translation invariant, or not. YOLO [6]
is not translation invariant, which means a lot of anchors at
different positions are needed to cover the image. More recent
approaches such as [1], [17], based on fully-convolutional
networks, allow by construction, to share the parameters across
different positions, thus avoiding to explicitly define large
number of anchors with shared weights. Anchors can also
share their weights across different final feature maps, as in
the approach of Lin et al. [10].

More recently, Zhong et al. [22] proposed to dynamically
learn anchor shapes, i.e. to learn what are the best center,

width and height for each anchor, instead of using fixed
positions/scales.

III. HIERARCHICAL HEAD WITH ANCHOR SHARING

This section starts by going into detail of the functioning of
the head used in literature (e.g. [1], [2]) and then describe
the proposed hierarchical head. We assume multiple final
feature maps for training the anchors (similar to the proposed
methodology in SSD). We also explore the various ways in
which our head can be designed based on the intuition we have
developed. All the anchors and related terminology correspond
to one final feature map and the head attached to it unless
mentioned otherwise.

A. General Head

A head is a convolutional layer which takes a 3 × 3 × ck
(width, height and number of channels) input from each spatial
location of each of the k-th final convolutional layers of the
base network and the added layers, of size mk×nk, in a sliding
window manner, and produces two outputs. The first output is
used for calculating classification losses and the second output
is used for regression losses on a per anchor basis.

More formally, if x represents the feature layers for a given
position of the sliding window and A represents the set of
anchors at each spatial location, the head regresses the position
pai and class scores cai of the anchor ai, where i ∈ [1, |A|]
as : {

cai
= f c(W c

ai
x+ bcai

)

pai
= fp(W p

ai
x+ bpai

)
(1)

where f c and fp are activation functions for classification and
regression respectively.

Both SSD [2] and Faster-RCNN [1] consider each anchor as
being independent and the weights W c

ai
,W p

ai
of each anchor

are learned independently. Though the weights can be shared
between different feature maps, there is no weight sharing
between anchors within a layer.

Each anchor ai is assigned to a layer (e.g. k), and has a scale
s and aspect ratio r associated with it. These two parameters
define the initial starting point for regression for each anchor.

B. Hierarchical Head

In addition to the convolution layer output of a general head,
in our hierarchical head, we compute convolutional output on
the same 3×3×ck input from the feature map J more number
of times. These J units can then be designed to partially or
fully share their weights with the anchors A before calculating
losses. In the new design Eq. 1 can be rewritten as:

cai
= f c(W c

ai
x+ bcai

+
J∑

j=1

(W c
Rj
x+ bcRj

)×Mji)

pai = fp(W p
ai
x+ bpai

+
J∑

j=1

(W p
Rj
x+ bpRj

)×Mji)

(2)
where Rj is the additional unit, W c

Rj
and bcRj

are the weights
and biases for learning the classifier and W p

Rj
and bpRj

are
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Fig. 1. Graphical presentation of the proposed hierarchical head. In the configuration shown, R2, R3 and R4 are responsible for learning common characteristics
between anchors of different aspect ratios and same size. R1 is responsible for learning common characteristics for all types of anchors.

the weights and biases for learning the regressor for unit Rj .
M is a matrix of J rows and |A| columns specifying the
design of the hierarchical head. Mji = 1 indicates jth unit
and ith anchor share weights and vice-versa (see Figure 1 for
an illustration). An example design can be as follows:

M =


1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


Here, a total of nine anchors are sharing features with four
units. First unit, R1, shares weights with all the anchors. R2

shares weights with first three anchors and so on. There are
a lot of designs possible in theory but we look at the ones
which make an intuitive sense. Instead of randomly sharing
the weights of a unit, it is more interesting to share the weights
across anchors of different scales or anchors of different aspect
ratios. It corresponds to the case illustrated by Figure 1.

To simplify the understanding of each configuration ana-
lyzed in this work we have clubbed all the anchors and units
in different levels. All the anchors responsible for learning
unique characteristics are put in a separate level. All the units
that partially share the weights with some of the anchors are
marked in a separate level. All the units that fully share their
weights with all the anchors are marked in a separate level
(Figure 2).

a) Hierarchical Head Designs: We propose many de-
signs for matrix M. The one already discussed is named as
9An{9, 3, 1}As. An intuitive way to read it is a configuration
trained for 9 anchors with 1 unit in the bottom layer (R1),
3 units in the second layer (R2, R3, R4) and 9 units in the
last layer (a1, a2..., a9) which is also the output layer of the
network. ’As’ indicates sharing is performed over different
aspect ratios. In Figure 2, one unit (R1) is responsible for
learning characteristics that are similar to all the 9 anchors
in A is shown at bottom level. Units R2, R3 and R4 are
responsible for learning characteristics that are similar to
anchors along different aspect ratios are shown in second level.

TABLE I
THE DESIGNS OF MATRIX M USED IN THE EXPERIMENTS ALONG WITH
THE CORRESPONDING CONFIGURATION NAMES. THE CONFIGURATION

FOR 9An{9, 3, 1}As IS EXPLAINED IN SECTION III-B. OTHER DESIGNS
ARE SHOWN HERE.

Configuration M

9An{9,3,1}S

R1 1 1 1 1 1 1 1 1 1
R2 1 0 0 1 0 0 1 0 0
R3 0 1 0 0 1 0 0 1 0
R4 0 0 1 0 0 1 0 0 1

9An{9,1}Both R1 1 1 1 1 1 1 1 1 1

9An{9,3}As
R1 1 1 1 0 0 0 0 0 0
R2 0 0 0 1 1 1 0 0 0
R3 0 0 0 0 0 0 1 1 1

9An{9,3}S
R1 1 0 0 1 0 0 1 0 0
R2 0 1 0 0 1 0 0 1 0
R3 0 0 1 0 0 1 0 0 1

The units a1, a2, ..., a9 are responsible for learning only the
unique characteristics for each anchor are shown on the top.

Similarly sharing can be done over scales too, where each
unit from second layer is added to each anchor in top layer
with different scales but same aspect ratio. This configuration
is denoted by ’S’ (Table I). ’Both’ denotes sharing is done over
scales as well as aspect ratios. 9An{9, 1}’Both’ is a possible
example. If nothing is mentioned outside the curly brackets, it
means the configuration uses a general head. All the designs
for M used in the experiments are as described in Table I.

b) Possible Hierarchical Structures: In this paper we
have explored hierarchical structures up to two levels plus the
final prediction level. It is also possible to mix and merge the
anchors in other ways. For instance, we can share anchors with
aspect ratio greater than one in one set and fewer than one in
another set. In this case the vertical objects can be shared
separately from the horizontal objects. Also adding further
levels can make the structure more granular. But since these
other methods do not seem to have a strong intuition behind
them we did not train them for this work.
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and single window for the purpose of simplicity. The

⊕
box implements the design M. Best viewed in color..

The hierarchical design is general and can be applied to all
the networks used for detection and single stage as well as
two-stage detectors. In two stage detectors the same design
can also be applied to generate proposals at the RPN stage
[1] where objectness with a binary class label is predicted for
each anchor.

c) Discussion about the total number of parameters: At
first glance, Eq. 2, the hierarchical head, seems to have more
parameters than the general head defined by Eq. 1. Although
this is true at the time of training, this is not true during
inference. Since, there are no non-linearities involved in the
proposed head and it only consists of linear multiplications and
additions of the extra unit(s), each anchor’s individual weights
can be recalculated by computing W ′ai

= Wai
+

∑
WRj

×
Mji, at test time. This can be done for the classifier as well
as the regressor. W ′ai

has the same number of parameters
as Wai . The same logic holds for the biases. Under this
form, the sharing can be seen as an inter-anchor regularization
mechanism.

IV. EXPERIMENTAL RESULTS

A. Anchor Design

In an SSD [2] type detection architecture, K feature maps
are used for detecting objects. Each feature map is scanned in
a sliding window approach with a kernel of size 3 × 3. The
total number of anchor boxes per spatial location in a feature
map is |A|, where A, the complete set of anchors, decides

the number of possible predictions per position of the sliding
window. To validate the hierarchical head, we trained the same
configurations for each dataset as already described in Table I.
Three aspect ratios {1.0, 0.5, 2.0} with three sizes {sk, 2−0.33∗
sk, 2

−0.66 ∗ sk}, where k ∈ [1, K], gives the desired nine
anchors. The anchors between different final feature maps are
not shared.

B. Datasets

We used three datasets for experimentally validating our
proposed head. We give brief details of these datasets and
present how they differ in characteristics in Table II. We
present these figures after the image resizing done for ex-
periments. For PASCAL-VOC dataset images are resized to
300 × 300 and 512 × 512. For FlickrLogos-47 images are
resized to 1024 × 1024. The figures for MS-COCO are
presented without any resizing. The table gives a clear idea on
the difference of the scale of the datasets and the distribution
of object instances according to aspect ratios and size.

a) PASCAL-VOC [8]: The VOC-07 trainval and VOC-
12 trainval sets consist of 16551 images in total and VOC-07
test set consists of 4952 images containing 20 classes. The
VOC-07+12 train set consists of 8218 images and VOC-07+12
validation set consists of 8333 images. We used VOC-07+12
train/validation sets to choose the best configuration of the
hierarchical head and used VOC-07+12 trainval/test sets for



TABLE II
CHARACTERISTICS OF THE DATASETS USED. FIRST THREE COLUMNS INDICATE TOTAL NUMBER OF IMAGES, TOTAL CLASSES AND TOTAL NUMBER OF

ANNOTATED OBJECTS RESPECTIVELY IN THE PASCAL-VOC07+12 TRAINVAL SET AND FLICKRLOGOS-47 TRAIN SET. THE NEXT THREE INDICATE THE
NUMBER OF OBJECTS THAT ARE VERTICALLY (ASPECT RATIO LESS THAN 0.75), EQUALLY (ASPECT RATIO BETWEEN 0.75 AND 1.5) AND HORIZONTALLY
(ASPECT RATIO GREATER THAN 1.5) ORIENTED. THE LAST THREE GIVES THE NUMBER OF SMALL (SMALLER THAN 322), MEDIUM (BETWEEN 322 AND
962) AND LARGE (GREATER THAN 962) OBJECTS. FIGURES ARE AFTER PERFORMING THE SAME RESIZING AS DONE FOR EXPERIMENTS (EXCEPT FOR

MS-COCO).

Aspect Ratio Size
Dataset # Imgs # Cls # Objs Vertical Square Horizontal Small Medium Large

VOC (SSD300) 16,551 20 47,223 24,852 16,763 5,608 9,035 16,710 21,478
VOC (SSD512) 16,551 20 47,223 24,864 16,749 5,610 3,669 13,110 30,444

Flickr (SSD1024) 833 47 1,936 497 607 832 91 651 1,194
MS-COCO 118,287 80 860,001 367,803 297,061 195,137 267,700 300,129 292,172

TABLE III
MEAN AVERAGE PRECISION PERFORMANCE, REPORTED ON PASCAL-VOC07+12 VALIDATION SET (TRAINED ON VOC07+12 TRAIN SET) AND

PASCAL-VOC07 TEST SET (TRAINED ON VOC07+12 TRAINVAL SET) RESPECTIVELY, FOR ALL THE CONFIGURATIONS. BEST PERFORMANCES ARE
MARKED IN BOLD.

SSD300 SSD512
Configuration train / val trainval / test train / val trainval / test

9An{9} 64.70 72.32 67.00 75.74
9An{9,1}Both 65.75 72.75 68.33 76.63

9An{9,3}S 65.48 72.68 68.48 76.27
9An{9,3}As 65.85 73.29 67.90 76.33
9An{9,3,1}S 65.35 72.71 68.66 76.60

9An{9,3,1}As 65.78 73.15 68.24 76.14

evaluating the final performance. There are an average of 2.85
annotations per image.

b) FlickrLogos-47 [7]: The FlickrLogos-47 train set
consists of just 833 images and test set consists of 1402
images distributed over 47 classes. There are an average of
2.32 annotations per image in the train set. There is no official
validation set for this dataset.

c) MS-COCO [9]: The MS-COCO train set consists
of 118,287 images distributed over 80 classes. There are
an average of 7.27 annotations per image and 1021 images
without a single annotation. Validation set consists of 5,000
images.

C. Experiments on PASCAL-VOC

a) Implementation details: We used Inception-V2 [11]
as our base network on this dataset. Our code is based on
the Tensorflow Object Detection API [18]. We optimized the
network using RMSprop optimizer and trained for a total of
120k iterations for training on the trainval set. The learning
rate was set to 10−3 in the beginning and then divided by
a factor of three at 60k, 80k, 90k and 100k iterations. Our
network was pre-trained on the ILSVRC CLS-LOC dataset
[25]. For the train set a total of 60k iterations were used with
the same initial learning rate divided by a factor of three at
30k, 40k, 45k and 50k iterations.

We experimented with two image sizes, 300 × 300 and
512 × 512, as in the original SSD [2] paper. They are called
VOC-SSD300 and VOC-SSD512 respectively in this work.
The batch size is set to 32. Random horizontal flip and SSD
style random crop [2] were used for data augmentation. We

used Mixed 4c and Mixed 5c as final feature maps for the
box predictors to predict detection boxes. We also added four
more layers. The anchors having an Intersection-over-Union
(IoU) greater than 0.5 were considered to be positive anchors
while anchors having IoU less than 0.5 were considered as
negative ones. The losses used were sigmoid for classification
and smooth L1 for localization with equal weights. We also
performed Online Hard Example Mining (OHEM) [26] with a
negative to positive ratio of 3 : 1, which is the usual practice.
During inference time detection boxes were suppressed with
an IoU threshold of 0.5 using Non-Maximal Suppression
(NMS). Here, the scale of the default boxes for each feature
map is computed as:

sk = smin +
smax − smin

K − 1
(k − 1) where k ∈ [1,K] (3)

where smin and smax are the minimum and maximum
scales respectively. smin and smax were set to 0.2 and 0.95
respectively. All the experiments are performed using GeForce
GTX 1080 Ti GPUs.

b) Results: Since we cannot ascertain in advance which
configuration of hierarchical head will work best for the
test set, we first use the validation set to choose the best
configuration. Whichever configuration gives the best result
on validation can then be used to train on trainval set and
obtain final performance on test set. Table III presents the
results for VOC-SSD300 and VOC-SSD512 respectively. Per-
formance for the test set, other than the baseline and the best
configuration on the validation set, are greyed out and used
for informational purposes only.



VOC-SSD300 works best with 9An{9, 3}As in the train-
validation setting, therefore, we consider the performance
of the same configuration on trainval-test setting. Gain over
the standard head (72.32 MAP) is of 0.97 points. In case
of VOC-SSD512, 9An{9, 3, 1}S gives best performance on
validation set. We achieve a gain of 0.86 points over the
standard head. This performance is not far from the actual
best performance (9An{9, 1}Both) in trainval-test setting.
Therefore, we can use the same hierarchical configuration
expecting average good performance on test set. VOC-SSD300
has more variation over different aspect ratios than different
sizes (Table II), therefore, this might be the reason that sharing
anchors over different aspect ratios seems to work better for
it. In case of VOC-SSD512, there is more variation over scale
and sharing over different scales works better. It can be seen
here that the performance for a hierarchical head is always
better than the general head.

D. Experiments on FlickrLogos-47

a) Implementation details: We trained RetinaNet [10] on
Resnet-50 backbone without the attached sub-network on top
of it. Resnet-50 is indeed the network frequently used for
this dataset. Apart from the three final layers from the lateral
part of the network, we used two additional coarser layers
for prediction. We trained for a total of 300k steps starting
with a learning rate of 0.0001 and decaying it exponentially
by a factor of 0.8 after every 25k step. The images were
resized to 1024× 1024 and a batch size of 2 was used. NMS
threshold was set to 0.1 and the scales used were of sizes
{32, 64, 128, 256, 512} for each layer respectively. The rest of
the details are same as used in PASCAL-VOC experiments.

b) Results: Mean average precision performance for all
the configurations have been presented in Table IV. We
achieved state-of-the-art performance on this dataset to the
best of our knowledge. Using a general head achieves a per-
formance of 73.84%, but using a hierarchical head improves
this performance in the range of 1.5 to 2.7 points. It can be
noted that the best results are obtained when an additional unit
that shares the weight with all the anchors is present. When
this common unit is not used, the results drop by 0.5 to 1.5
points. A possible explanation can be that logos have a lot
more likelihood of intra-class rotation and variation in sizes is
already abundant from Table II.

The scale of this dataset is much smaller as compared to
PASCAl-VOC. In case of less data, it is even more beneficial
to share characteristics between anchors. We can see here as
well that the performance for a hierarchical head is always
better than the general head.

E. Experiments on MS-COCO

a) Implementation details: Our implementation for this
dataset was based on the code given by Wu et al. [27]. We used
a Retina Network [10] with ResNet-50 as the backbone with
the attached sub-network on top of it. We used warm-up learn-
ing for the first 1000 iterations by increasing the learning rate
linearly from 0.0002 to 0.01. Then, we decreased the learning

TABLE IV
MEAN AVERAGE PRECISION PERFORMANCE, REPORTED ON

FLICKRLOGOS-47 TEST SET (TRAINED ON FLICKRLOGOS-47 TRAIN SET),
FOR ALL THE CONFIGURATIONS. BEST PERFORMANCE IS MARKED IN

BOLD.

Configuration FlickrLogos-47
9An{9} 73.84

9An{9,1}Both 76.52
9An{9,3}S 76.04

9An{9,3}As 75.37
9An{9,3,1}S 76.56

9An{9,3,1}As 76.42

TABLE V
MEAN AVERAGE PRECISION PERFORMANCE (COCO STYLE AP AT

IOU= .50 : .05 : .95), REPORTED ON MS-COCO VAL SET (TRAINED ON
MS-COCO TRAIN SET), FOR ALL THE CONFIGURATIONS.

Configuration MS-COCO
9An{9} 37.32

9An{9,1}Both 37.25
9An{9,3}S 37.42

9An{9,3}As 37.35
9An{9,3,1}S 37.51

9An{9,3,1}As 37.33

rate after 210k iterations and 250k iterations by a factor of
10. We trained for a total of 270k iterations. The batch size
used was 16, trained synchronously over four GPUs. We used
a focal loss with α = 0.25 and γ = 2.0. Five feature maps
were used for detection with sk set to {32, 64, 128, 256, 512}
for each feature map respectively. NMS threshold was set to
0.5. The rest of the details can be found from [27].

b) Results: Table V gives the results for all the con-
figurations. As is evident from the table there are no major
gains for different configurations and also there is no decline
in the performance. The reason behind this can be that there
are enough examples present for each type of anchor for
each class, which is also evident from Table II. The effect
of supplementary learning saturates in presence of abundant
examples and there are no additional performance gains in
case of hierarchical head.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a novel head for SSD detectors,
which allows each anchors to embed some specific informa-
tion, not shared with other anchors, jointly with some more
general information shared with other anchors. As a result,
anchors are able to gain from the training of other anchors
when the data is scarce. The proposed method was shown
to have no extra features at inference time. It also improved
performance on the PASCAL-VOC dataset and achieved state-
of-the-art performance on FlickrLogos-47 dataset. There was
no performance gain found in MS-COCO dataset, along with
no decline. Therefore, the proposed head can be used in all
the problems with performance gains to be expected in small-



scale datasets. The gain in the smallest dataset was found to
be the highest.

In the future we would like to come up with a technique
to decide the hierarchical relationship automatically during
learning instead of assigning zero or one weight in the design
matrix. Proposing more such explicit hierarchies for other parts
of the detection model can also prove to be a worthwhile
direction.

VI. ACKNOWLEDGMENTS

This project was partly funded by the DGA through the
RAPID-DRAAF project.

REFERENCES

[1] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN:
towards real-time object detection with region proposal networks,”
in Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 91–
99. [Online]. Available: http://papers.nips.cc/paper/5638-faster-r-cnn-
towards-real-time-object-detection-with-region-proposal-networks

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and
A. C. Berg, “SSD: single shot multibox detector,” in Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part I, ser. Lecture Notes in
Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds., vol. 9905. Springer, 2016, pp. 21–37. [Online]. Available:
https://doi.org/10.1007/978-3-319-46448-0 2

[3] S. Agarwal, J. O. du Terrail, and F. Jurie, “Recent advances
in object detection in the age of deep convolutional neural
networks,” CoRR, vol. abs/1809.03193, 2018. [Online]. Available:
http://arxiv.org/abs/1809.03193

[4] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization
for free? - weakly-supervised learning with convolutional neural
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
IEEE Computer Society, 2015, pp. 685–694. [Online]. Available:
https://doi.org/10.1109/CVPR.2015.7298668

[5] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014. IEEE Computer Society, 2014, pp. 580–587. [Online]. Available:
https://doi.org/10.1109/CVPR.2014.81

[6] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016,
pp. 779–788. [Online]. Available: https://doi.org/10.1109/CVPR.2016.91

[7] C. Eggert, D. Zecha, S. Brehm, and R. Lienhart, “Improving small
object proposals for company logo detection,” in Proceedings of the
2017 ACM on International Conference on Multimedia Retrieval, ICMR
2017, Bucharest, Romania, June 6-9, 2017, B. Ionescu, N. Sebe, J. Feng,
M. A. Larson, R. Lienhart, and C. Snoek, Eds. ACM, 2017, pp.
167–174. [Online]. Available: https://doi.org/10.1145/3078971.3078990

[8] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010. [Online]. Available:
https://doi.org/10.1007/s11263-009-0275-4

[9] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser.
Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755.
[Online]. Available: https://doi.org/10.1007/978-3-319-10602-1 48

[10] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
IEEE Computer Society, 2017, pp. 2999–3007. [Online]. Available:
https://doi.org/10.1109/ICCV.2017.324

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 2818–2826. [Online]. Available: https:
//doi.org/10.1109/CVPR.2016.308

[12] R. B. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015. IEEE Computer Society, 2015, pp. 1440–1448. [Online].
Available: https://doi.org/10.1109/ICCV.2015.169

[13] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection
via region-based fully convolutional networks,” in Advances in
Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von Luxburg,
I. Guyon, and R. Garnett, Eds., 2016, pp. 379–387. [Online].
Available: http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-
region-based-fully-convolutional-networks

[14] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
in IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp.
2980–2988. [Online]. Available: https://doi.org/10.1109/ICCV.2017.322

[15] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD :
Deconvolutional single shot detector,” CoRR, vol. abs/1701.06659,
2017. [Online]. Available: http://arxiv.org/abs/1701.06659

[16] Z. Li and F. Zhou, “FSSD: feature fusion single shot multibox
detector,” CoRR, vol. abs/1712.00960, 2017. [Online]. Available:
http://arxiv.org/abs/1712.00960

[17] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 6517–6525. [Online]. Available: https://doi.org/10.
1109/CVPR.2017.690

[18] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 3296–3297. [Online]. Available: https://doi.org/10.
1109/CVPR.2017.351

[19] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li,
“Single-shot refinement neural network for object detection,”
in 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018. IEEE Computer Society, 2018, pp. 4203–4212.
[Online]. Available: http://openaccess.thecvf.com/content cvpr 2018/
html/Zhang Single-Shot Refinement Neural CVPR 2018 paper.html

[20] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,”
in Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XIV, ser. Lecture
Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu,
and Y. Weiss, Eds., vol. 11218. Springer, 2018, pp. 765–781. [Online].
Available: https://doi.org/10.1007/978-3-030-01264-9 45

[21] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and
H. Ling, “M2det: A single-shot object detector based on multi-level
feature pyramid network,” in The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019. AAAI Press, 2019, pp. 9259–9266. [Online]. Available:
https://doi.org/10.1609/aaai.v33i01.33019259

[22] Y. Zhong, J. Wang, J. Peng, and L. Zhang, “Anchor box optimization
for object detection,” in IEEE Winter Conference on Applications
of Computer Vision, WACV 2020, Snowmass Village, CO, USA,
March 1-5, 2020. IEEE, 2020, pp. 1275–1283. [Online]. Available:
https://doi.org/10.1109/WACV45572.2020.9093498

[23] Q. Yuan, B. Zhang, H. Li, Z. Wang, and Z. Luo, “A single shot

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1809.03193
https://doi.org/10.1109/CVPR.2015.7298668
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1145/3078971.3078990
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/ICCV.2015.169
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks
https://doi.org/10.1109/ICCV.2017.322
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1712.00960
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.351
https://doi.org/10.1109/CVPR.2017.351
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.html
https://doi.org/10.1007/978-3-030-01264-9_45
https://doi.org/10.1609/aaai.v33i01.33019259
https://doi.org/10.1109/WACV45572.2020.9093498


text detector with scale-adaptive anchors,” CoRR, vol. abs/1807.01884,
2018. [Online]. Available: http://arxiv.org/abs/1807.01884

[24] T. Yang, X. Zhang, Z. Li, W. Zhang, and J. Sun, “Metaanchor: Learning
to detect objects with customized anchors,” in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December
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