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Abstract
In cluster randomized trials, the intraclass correlation coefficient (ICC) is classically used to measure
clustering. When the outcome is binary, the ICC is known to be associated with the prevalence of
the outcome. This association challenges its interpretation and can be problematic for sample size
calculation. To overcome these situations, Crespi et al. extended a coefficient named R, initially
proposed by Rosner for ophthalmologic data, to cluster randomized trials. Crespi et al. asserted
that R may be less influenced by the outcome prevalence than is the ICC, although the authors
provided only empirical data to support their assertion. They also asserted that “the traditional ICC
approach to sample size determination tends to overpower studies under many scenarios, calling
for more clusters than truly required”, although they did not consider empirical power. The aim of
this study was to investigate whether R could indeed be considered independent of the outcome
prevalence. We also considered whether sample size calculation should be better based on the R
coefficient or the ICC. Considering the particular case of 2 individuals per cluster, we theoretically
demonstrated that R is not symmetrical around the 0.5 prevalence value. This in itself demonstrates
the dependence of R on prevalence. We also conducted a simulation study to explore the case
of both fixed and variable cluster sizes greater than 2. This simulation study demonstrated that
R decreases when prevalence increases from 0 to 1. Both the analytical and simulation results
demonstrate that R depends on the outcome prevalence. In terms of sample size calculation,we
showed that an approach based on the ICC is preferable to an approach based on the R coefficient
because with the former, the empirical power is closer to the nominal one. Hence, the R coefficient
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does not outperform the ICC for binary outcomes because it does not offer any advantage over the ICC.

Keywords
Intraclass correlation coefficient, R coefficient, binary outcome, prevalence, cluster

1 Introduction

Cluster randomized trials are increasingly being used in health research. In such a setting, clusters of
individuals are randomly allocated to different arms1. Clusters may be families, schools, worksites,
medical practices, towns or other social units. In such trials, outcomes for individuals from the same
cluster are more similar than are outcomes for individuals from different clusters.

The intraclass correlation coefficient (ICC) is classically used to measure this resemblance. It can be
defined as the proportion of total variance due to between-cluster variation or the correlation between
any 2 members of the same cluster1,2. An ICC equal to 0 indicates independence among individuals of a
cluster, whereas an ICC equal to 1 indicates that individuals from a given cluster have identical outcomes.

The Consolidated Standards for Reporting of Trials (CONSORT) extension for cluster randomized
trials recommends reporting a measure of intracluster correlation, such as the ICC, for each primary
outcome3. This has actually two aims. The first is that it may help interpret the results of the trial. Indeed,
the assessed intervention may affect the level of clustering, and this result is important for a complete
interpretation of trial result. When the outcome is binary, the ICC is known to be associated with the
prevalence of the outcome4. As the prevalence increases from 0 to 0.5, the ICC increases. Because of
this association, ICC values are expected to differ when prevalences differ, even when the clustering level
remains identical. This association with prevalence challenges the interpretation of the ICC because ICC
values do not just depend on clustering level.

The second reason for providing clustering estimates is that such values are of help for sample size
calculation of future studies. Yet, the association between the ICC and the outcome prevalence can be
problematic in sample size calculation if the study to be planned is expected to have prevalences different
from those from which we derived ICC estimates.

To overcome these situations, Crespi et al.5 extended a coefficient named R, initially proposed by
Rosner6 for ophthalmologic data, to cluster randomized trials. R is defined as a ratio for which the
numerator is the conditional probability that a member of a cluster has the outcome given that another
member of the cluster also has the outcome, and the denominator is the outcome prevalence. Crespi
et al. asserted that R may be less influenced by the outcome prevalence than the ICC. To support this
assertion, the authors provided an illustration with an example, stating that mathematical proof was not
possible. Moreover, they proposed sample size formulas using R coefficients or ICCs and used these
formulas to calculate required sample size in diverse situations. They concluded that the “the traditional
ICC approach to sample size determination tends to overpower studies under many scenarios, calling for
more clusters than truly required”. However, this latter conclusion was based on sample size calculations
without any consideration of empirical power.

The aim of this study was to investigate whether R is indeed independent of the outcome prevalence.
We also investigated which sample size calculation, based on the R coefficient or the ICC, provides the
empirical power closest to the nominal power.
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We define R in section 2 and provide its estimator in section 3. In section 4.1, we explore theoretically
the relation between R and the outcome prevalence in the special case of clusters of size 2. In section
4.2, we report a simulation study to explore the situation of cluster sizes greater than 2, both fixed and
variable. An illustration using real data is provided in section 5. In section 6.1, we compare sample size
calculation usingR or the ICC in another simulation study and in section 6.2, we illustrate the asymmetry
of R in sample size calculation. We conclude with a short discussion in section 7.

2 Definitions
In this section up to and including section 4, we will consider one arm composed of k clusters of size
ni(i = 1, 2, ..., k). Let Xij be the outcome of the jth, j = 1, 2, ..., ni individual in the ith cluster, with
Xij a binary variable whose possible values are 1 for success and 0 for failure. Xi =

∑ni

j=1Xij is the

number of successes in cluster i and N =
∑k
i=1 ni is the total number of individuals. We also assume

that the success probability p is the same for all individuals (i.e., P(Xij = 1) = p).

2.1 R as defined by Rosner
Rosner6 worked on methods for analysing ophthalmologic data. In this special case, the cluster unit is
the individual, with 2 observations (eyes) per individual. Rosner defined R as:

P(Xij = 1|Xij′ = 1) = Rp, j, j′ = 1, 2 and j 6= j′. (1)

R is a measure of dependence between 2 eyes of the same person. If R = 1, the outcome of the 2
eyes from a given individual are independent, but if Rp = 1, the outcome of the 2 eyes from a given
individual are identical, whatever the individual. The lower bound of R is 1 (provided the 2 observations
are positively correlated) and the upper bound is 1

p .

2.2 Crespi’s extension of R
Crespi et al. extended the formula from Rosner to the case of clusters of fixed size (m) potentially greater
than 25:

P(Xij = 1|Xij′ = 1) = Rp, j, j′ = 1, 2, ...,m and j 6= j′. (2)

R can be seen as a quantification of how much or less likely a member of a cluster is to be successful
given that another member of the cluster is successful.

3 Estimating R

3.1 The Rosner R estimator: R̂r

In the special case of clusters of fixed size m = 2, Rosner6 showed that the maximum likelihood
estimator of R is:

R̂r =
4kk2

(k1 + 2k2)2
, (3)

where k0 is the number of clusters with no success, k1 the number of clusters with 1 success, k2 the
number of clusters with 2 successes and thus, k = k0 + k1 + k2.
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3.2 The Crespi R estimator: R̂c

Under the common correlation model, the ICC has been defined as7:

ρ =
P(Xij = 1|Xij′ = 1)− p

1− p
, j 6= j′. (4)

Therefore, from equation (2) we derive that:

R = 1 +
ρ(1− p)

p
. (5)

Crespi et al. suggested that R be estimated by using ρ̂ and p̂ estimates of both ρ and p, respectively.
Many methods have been proposed to estimate the ICC for binary outcomes8. Simulation results

reported by Ridout et al. showed that the ANOVA estimator, the Fleiss-Cuzick estimator and some of
the moment estimators performed well in terms of bias, standard deviation and mean square error.

When using the Fleiss-Cuzick estimator and considering clusters of size 2, the R estimator using the
approach proposed by Crespi et al. is equivalent to its maximum likelihood estimator (3) as proposed by
Rosner. Therefore, we used the Fleiss-Cuzick estimator defined as:

ρ̂FC = 1−
∑k
i=1Xi(ni −Xi)/ni
(N − k)p̂(1− p̂)

. (6)

4 Relation between R and outcome prevalence

4.1 Exploration of the symmetry of the R estimator around a prevalence of 0.5
In this section, we consider a dataset e containing ke clusters, each with two observations of a binary
outcome. The estimated prevalence of success is p̂e . If we are interested in measuring the clustering for
success, the associated R estimate is (cf. (3)):

R̂c,p̂e =
4kek2e

(k1e + 2k2e)2
.

Let us now consider that we are interested in measuring the clustering for failure rather than success;
thus, all 0 values are replaced by 1 and vice versa. The associated estimate prevalence of failure is 1− p̂e.

It can be shown that R̂c,1−p̂e = R̂c,p̂e if and only if p̂e = 1/2 or R̂c,1−p̂e = R̂c,p̂e = 1 (Appendix),
which means that apart from these situations, R̂c,1−p̂e 6= R̂c,p̂e and there is no symmetry. Conversely, if
one focuses on the ICC estimator, defined as ρ̂FC = 1− k1e

2kep̂e(1−p̂e) in case clusters are of fixed size of 2,
symmetry around the 0.5 prevalence value is evident.

For example, if we consider the situation of 100 clusters with k2e = 6, k1e = 18 and k0e = 76,
the estimated success prevalence is 0.15 and R̂c,p̂e = 2.64. After permutating between 1s and 0s
values, k2e = 76, k1e = 18 and k0e = 6, the estimated failure prevalence is 0.85 and R̂c,1−p̂e = 1.05.
Conversely, in both cases, the ICC estimate is 0.29. This asymmetry around a prevalence of 0.5 of the R
coefficient is sufficient to conclude that it depends on prevalence.

Moreover, this asymmetry is counterintuitive because we would expect that the degree of intracluster
resemblance to be the same whether we consider the resemblance in success or failure for a given dataset.
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4.2 Simulation study
In the previous section, we showed that R is associated with outcome prevalence, for clusters of size 2.
We then investigated the shape of the relation betweenR and prevalence. We considered the most general
case of cluster sizes greater than 2, both fixed and variable. To this end, we conducted a simulation study
according to the following principle. We generated correlated binary data with pre-specified outcome
prevalence p and intraclass correlation ρbin, where ρbin is the ICC associated with the binary outcomeXij .
Because we wanted to obtain datasets with the same level of clustering whatever the outcome prevalence,
we associated Xij to a latent normal continuous outcome Yij ∼ N (µ, σ2) in such a way that Xij = 1 if
Yij > µ+ hσ and Xij = 0 if Yij ≤ µ+ hσ, where h is a constant such as p = 1− Φ(h), Φ being the
cumulative distribution function of the standard normal distribution. In this context, from works of Kirk9

and Kraemer10, Donner and Eliasziw11 reported that

ρbin =
1

2πp(1− p)

∫ ρcont

0

1√
1− x2

exp(
−h2

1 + x
)dx, (7)

where ρbin is the ICC associated with the binary outcome Xij and ρcont is the ICC associated with the
underlying continuous outcome Yij . ρcont corresponds to the tetrachoric correlation coefficient (i.e., the
correlation coefficient associated with the latent variable underlying the binary outcome of interest).

We first specified ρcont, then we varied p and calculated ρbin for each value of p using (7). Doing so
allowed for having the common underlying level of clustering equal to ρcont for each value of p. Thus, for
each pair (p, ρbin), we defined Xij as12:

Xij = (1− Uij)Vij + UijZi, (8)

where Uij ∼ Binom(1,
√
ρbin), Vij ∼ Binom(1, p) and Zi ∼ Binom(1, p).

4.2.1 Simulation plan
Steps of the data generation for each pair (p, ρbin) were as follows:

1. For the following cluster sizes:

a. Variable cluster sizes: simulate ni cluster sizes, i = 1, ..., k, from a negative binomial
distribution with mean m and variance v; m then corresponds to mean cluster sizes.

b. Fixed cluster sizes: set ni = m, i = 1, ..., k.

2. For each cluster, simulate Zi, i = 1, ..., k, under a binomial distribution with parameters 1 and p.

3. For each individual, simulate Vij , i = 1, ..., k, j = 1, ..., ni under a binomial distribution with
parameters 1 and p.

4. For each individual, simulate Uij , i = 1, ..., k, j = 1, ..., ni under a binomial distribution with
parameters 1 and

√
ρbin.

5. Calculate Xij according to equation (8).

We varied p between 0.01 and 0.99. Statistical analyses were conducted with the three following steps:

Prepared using sagej.cls



6 Journal Title XX(X)

1. Estimate p as p̂ = (
∑k
i=1Xi)/N .

2. Estimate ρFC as ρ̂FC using the Fleiss-Cuzick estimator.

3. Calculate R̂c as R̂c = 1 + ρ̂FC
1−p̂
p̂ .

All negative values of ρ̂FC were truncated to 0, then associated R̂c values were equal to 1.
We generated 50000 datasets for each scenario and for each value of p, we summarized results by

computing p̂, ρ̂FC and R̂c, the empirical means of the estimated p̂, ρ̂FC and R̂c, respectively.
Simulations were run considering three initial values of ρcont (0.01, 0.05, 0.3) over the generated

datasets, which are realistic values observed in cluster randomized trials, and for each value, cluster
numbers of k =10, 20 and 50. We considered the case of fixed cluster sizes of 25. We also generated
variable cluster sizes of meanm = 25 and variance v = 225, which corresponds to a situation in which the
coefficient of variation of cluster size

√
v/m equals a value (0.6), which appears to be a realistic one13.

This led to 18 scenarios considered.

4.2.2 Simulation results
Figure 1 displays three plots ρbin, ρ̂FC and R̂c as a function of p̂ and for three values of ρcont. As
expected, maximum values of the estimated binary ICC were reached around the 0.5 prevalence value,
and minimum values were reached when the prevalence approached 0 or 1. The Fleiss-Cuzick method
underestimated the ICC, except for the case of small values of ρbin (around 0.005) probably because
negative estimates were truncated at 0. Furthermore, when ρcont = 0.01 and for extreme prevalence

Figure 1. Theoretical intraclass correlation coefficient (ICC) ρbin, mean of estimated ICCs ρ̂FC and mean R coefficient

estimates R̂c for binary outcomes as a function of estimated outcome prevalence. These means were computed from 50000
simulated datasets. Three situations were considered for the underlying continuous outcome clustering level [ρcont = 0.01
(A), 0.05 (B) or 0.3 (C)]. Cluster sizes were variable, with mean 25 and variance 225, and we considered 20 clusters.
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Mbekwe Yepnang et al. 7

values, ρ̂FC appeared to be higher than for less extreme values. This was an artefact due to the proportion
of truncated estimates. Indeed, for p = 0.01 or p = 0.99, about 65% of negative ICC estimates were
truncated to 0, whereas for p = 0.1 or p = 0.9, about 52% of negative ICC estimates were truncated to
0. The R coefficient decreased with increasing prevalence value. When the prevalence tended to 0, R
tended to infinity, and when the prevalence tended to 1, R tended to 1. Results were qualitatively the
same whatever the underlying continuous variable ICC or the number of clusters and whether cluster
sizes were fixed or variable (supplementary files). Both ρ̂FC and R̂c depend on prevalence, but R is not
symmetric, which invites a preference of the ICC over the R coefficient.

5 Example
To empirically illustrate the relation between R and the success prevalence, we used data from the
Health Services Research Unit in Aberdeen (https://www.abdn.ac.uk/hsru/what-we-do/
tools/index.php#panel177). These data provide estimates of ICCs from changing professional
practice studies. Clusters were hospitals, hospital units, hospital directorates, general practices,
physicians or pharmacies.

We used 145 ICCs from binary outcomes and associated prevalence values. ICCs ranged from 0 to
0.659 (median 0.057, interquartile range [IQR] 0.012–0.105). Prevalence values ranged from 0.032 to
0.995 (median 0.452, IQR 0.209–0.819). We estimated R by using equation (5). R values ranged from 1
to 4.217 (median 1.084, IQR 1.006–1.243).

We plotted R on the logarithm scale as a function of prevalence (Figure 2). The strength of the
association between R and prevalence was estimated by the Spearman correlation coefficient. The
estimated correlation coefficient was -0.721 (95% CI -0.833 – -0.580, p-value < 0.001).

Figure 2. Association between R and prevalence by using data from the Health Technology Assessment review. The
Spearman correlation coefficient was estimated at -0.721 (95% CI -0.833 – -0.580).
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6 Sample size considerations using R

6.1 Empirical power in sample size calculation when using R

Crespi et al.5 proposed sample size formulas with the R coefficient or ICC and used them to calculate
required sample sizes in diverse situations. The authors considered three approaches: 1) one based on
two R coefficients, that is, one for each arm (R-based approach); 2) one based on two ICCs (ICC A
approach) and 3) one based on an ICC assumed to be common to the two arms (ICC B approach). They
also considered two situations: 1) the prevalence levels of the study to be planned differ from those of
the study previously conducted and from which R coefficients and ICCs have been estimated and 2) the
prevalence levels are identical. The required number of clusters differed according to the approach used
for sample size calculation. Focusing on the first situation (i.e, change in prevalence level between the
previously conducted study and the planned one), the authors concluded that: 1) “when moving from high
to moderate or from moderate to low prevalence, the ICC approaches can grossly overpower the study,
calling for many more clusters than required to achieve desired power” and that 2) “when moving to a
higher prevalence setting, ICC A underpowers the study”. However, the approach used by Crespi et al. is
debatable. Indeed, they derived three required sample sizes using the three previously cited approaches.
Then, using the sample size formula based on two R coefficients, they derived power associated with
the three sample sizes previously calculated. As a consequence, they observed a power close to 80%
for the approach based on two R coefficients (slight deviations from 80% are due to rounding of the
number of clusters). For the two other approaches, power was greater than 80% because the required
number of clusters was higher when using an approach based on ICCs than the approach based on the
R coefficient. However, doing so does not demonstrate anything, because Crespi et al. did not check
whether the empirical power actually equals the nominal power. Therefore, we investigated whether
Crespi et al.’s assertions were correct, estimating the empirical power associated with each situation they
considered. Indeed, claiming that approach A is overpowered only because it requires a larger sample
size than approach B is not correct. This is true only if the empirical power associated with approach B
equals the nominal one, which was not verified by Crespi et al. Therefore, we performed a simulation
study to assess which approach is preferable.

6.1.1 Simulation plan

1. Let us consider that a two-arm cluster randomized trial has already been previously conducted and
prevalences were p1 and p2 in arm 1 and 2, respectively, with associated R1 and R2 coefficients.
Given that p1, p2, R1 and R2, ρ1 and ρ2 can be derived by using equation (5). In practice, p1,
p2, R1, R2, ρ1 and ρ2 can be replaced by their associated estimates, and this holds true for the
upcoming issues.

2. We plan to conduct a new study with expected prevalences p′1 and p′2. For this, we calculate kR,
kICCA and kICCB , the required number of clusters, by using the following formulas:

• R-based approach

kR = d
(z1−α/2 + z1−β)

2(p′1(1− p′1 + (m− 1)(R1 − 1)p′1) + p′2(1− p′2 + (m− 1)(R2 − 1)p′2))

m(p′1 − p′2)2
e (9)
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• ICC A approach

kICCA = d
(z1−α/2 + z1−β)

2(p′1(1− p′1)(1 + (m− 1)ρ1) + p′2(1− p′2)(1 + (m− 1)ρ2))

m(p′1 − p′2)2
e (10)

• ICC B approach

kICCB = d
(z1−α/2 + z1−β)

2(p′1(1− p′1) + p′2(1− p′2))(1 + (m− 1)ρcomb)

m(p′1 − p′2)2
e (11)

with m the fixed cluster sizes, α and β the type I and type II error, respectively; z1−α/2 and z1−β
the quantiles of the standard normal distribution corresponding to probability values of 1− α/2
and 1− β, respectively; and dae the ceiling function giving the smallest integer ≥ a.

Of note, for the latter formula we computed ρcomb as (ρ1 + ρ2)/2 as already advised by Donald and
Donner14 rather than using Crespi et al.’s approach. Indeed, their approach is valid only with no
intervention effect (i.e, p1 = p2). Otherwise, it may lead to a ρcomb value that may even be greater
than both ρ1 and ρ2. This latter phenomenon is known and has been illustrated by Giraudeau15 for
continuous outcomes.

3. We estimated the empirical power associated with each sample size. For this, we used the same
simulation plan as that we described in section 4.2. Considering p1 and ρ1, we derived, using
formula (7), an estimate of ρcont,1, the ICC associated with the latent variable underlying the binary
outcome in arm 1. Then, considering p′1 (the prevalence we hypothesized to observe in arm 1 in the
future study) and ρ̂cont,1, we derived, again using formula (7), ρ′1, the expected ICC for binary data
we expect to observe in arm 1 if prevalence is p′1. We then simulated binary correlated data as in
section 4.2 with prevalence equal to p′1 and ICC equal to ρ′1. The same approach was used for the
second arm. Each dataset was analyzed by using an adjusted chi-square test2. Empirical power was
estimated as the proportion of the 5000 generated datasets for which a significant (p-value < 0.05)
result was observed.

Simulations were run considering the same scenarios as Crespi et al., when clusters are of size
m = 20. We considered the situation in which prevalences in the future study are expected to be different
from those of the previously conducted study (from (p1, p2) = (0.7, 0.5) to (p′1, p

′
2) = (0.5, 0.3), from

(p1, p2) = (0.5, 0.3) to (p′1, p
′
2) = (0.3, 0.1), from (p1, p2) = (0.3, 0.1) to (p′1, p

′
2) = (0.5, 0.3) and from

(p1, p2) = (0.5, 0.3) to (p′1, p
′
2) = (0.7, 0.5)) and the situation in which they are expected to be equal

((p′1, p
′
2) = (p1, p2) = (0.7, 0.5), (p′1, p

′
2) = (p1, p2) = (0.5, 0.3) and (p′1, p

′
2) = (p1, p2) = (0.3, 0.1)).

R1 and R2 were chosen to be equal ((R1, R2) ∈ {1.04, 1.08, 1.12, 1.16, 1.20}2 and R1 = R2) or
different (R1 ∈ {1.02, 1.04, 1.06, 1.08, 1.10} and R2 = 1.2, R2 ∈ {1.02, 1.04, 1.06, 1.08, 1.10} and
R1 = 1.2). From these prevalence and R values, ρ1 values ranged from 0.009 to 0.467 and ρ2 values
from 0.002 to 0.2. α and β were chosen to be equal to 0.05 and 0.2, respectively.

All programming was implemented by using R software, v3.6.1. Code is available on https:
//github.com/Mbekwe/Simulation-study-with-R-software.git.
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Figure 3. Comparison of three approaches (R-based, ICC A and ICC B) in empirical power estimation. These three
approaches were used to compute sample size. 5000 datasets were simulated for each combination of p1, p2, p′1, p′2, R1

and R2, and the empirical power was computed as the proportion of datasets for which a significant difference is observed.
Prevalences between the previous and future study were chosen to be different.

6.1.2 Simulation results

When prevalences in the previously conducted study were high and those in the future one were expected
to be moderate (first row of Figure 3), the sample size computed by using the R-based approach did
not reach the theoretical power of 80%. The empirical power was always largely lower than 80%.
Conversely, when using ICC-based approaches, the empirical power was close to 80%, even closer when
we considered two ICCs rather than a common one. When we moved from moderate to low prevalence
(second row of Figure 3), the R-based approach still led to fewer clusters than necessary. When using
ICC-based approaches, this led to more clusters than necessary but with an empirical power closer to
80% than with the R-based approach. When we moved from low to moderate prevalence (third row of
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Figure 4. Comparison of three approaches (R-based, ICC A and ICC B) in empirical power estimation. These three
approaches were used to compute sample size. 5000 datasets were simulated for each combination of p1, p2, p′1, p′2,
R1 and R2, and the empirical power was computed as the proportion of datasets for which a significant difference has been
observed. Prevalences between previous and future study were chosen to be equal.

Figure 3) or from moderate to high prevalence (fourth row of Figure 3), the sample size computed using
the R-based approach was greater than necessary: the empirical power was always greater than 80%.
Conversely, using ICC-based approaches still led to empirical power close to 80%. Use of the R-based
approach was under-powered (when moving from high to moderate prevalence or from moderate to low
prevalence) or over-powered (when moving from low to moderate prevalence or from moderate to high
prevalence). In all cases, using theR-based approach was worse than using ICC-based approaches. In the
no prevalence change setting (Figure 4), the R-based approach and ICC A approach were identical and
their empirical power was similar to that of the ICC B approach. Thus, sample size calculation using an
ICC approach performs better than using the R approach.

6.2 Asymmetry when using R in sample size calculation
Another drawback of the R approach is its asymmetry in sample size calculation. To illustrate this point,
let us consider the situation presented in section 4.1. A previously conducted study in which successes
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were considered had a prevalence of 0.15, an ICC of 0.29 and a R coefficient of 2.64. Suppose we want
to detect an increase of 10 percentage points in the proportion of success in a future study. To detect
an increase in success rate from 0.15 to 0.25, with a power of 80% at the 5% level, 179 clusters for
358 individuals would be needed for each arm. Let us now focus on failures rather than successes. The
previously conducted study had a failure rate of 0.85, an ICC of 0.29 and a R coefficient of 1.05. If we
now want to detect a decrease from 0.85 to 0.75 in the failure rate (equivalent to the increase in success),
with a power of 80% at the 5% level, 149 clusters for 298 individuals would be needed for each arm.
Therefore, using the R coefficient would lead to two different required sample sizes, although intuitively,
they should be equal.

7 Discussion
In this paper, we have described the R coefficient and explored its association with the outcome
prevalence by using mathematical developments for fixed cluster sizes of 2 and using simulations for
the most general cases of fixed and variable cluster sizes greater than 2.

We show that the R coefficient decreases with increasing prevalence, so R depends on the outcome
prevalence.

Furthermore, R is not symmetrical around a prevalence of 0.5. Thus, R performs even worse than the
ICC to measure clustering in the sense that for a given dataset, the R value is not the same when we are
interested in success or failure for the same variable. Consequently, R is not an appropriate coefficient if
one wants an index independent of the outcome prevalence. Sample size calculation using an approach
based on the ICC appears to be preferable because the empirical power is closer to the nominal one versus
an approach based on the R coefficient. Moreover, when using R, the sample size differs depending on
whether we focus on success or failure. Even if both R and ICCs have limits, our results encourage the
use of the ICC over the R coefficient for binary outcomes. Further work is needed to explore or develop
other measures, notably the tetrachoric correlation coefficient, which can be used to quantify clustering
without being influenced by the outcome prevalence, thus allowing a direct comparison of clustering for
outcomes with different prevalences.
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Appendix: Symmetry of the R coefficient

The R estimator is defined as:
R̂c,p̂ =

4kk2
(k1 + 2k2)2

,

where the p̂ index refers to a focus on success, whose prevalence is p̂.
Considering the symmetrical situation when we are interested in failure, we have:

R̂c,1−p̂ =
4kk0

(k1 + 2k0)2
.

A symmetry of R around a 0.5 prevalence value would lead to:

R̂c,p̂ = R̂c,1−p̂ ⇔ 4kk2
(k1 + 2k2)2

=
4kk0

(k1 + 2k0)2

⇔ (k0 − k2)(k21 − 4k0k2) = 0

⇔ k0 = k2 or k21 = 4k0k2
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k0 = k2 ⇔ p̂ = 1/2

k21 = 4k0k2 ⇔ R̂c =
4k0k2 + 4k1k2 + 4k22

(k1 + 2k2)2
=
k21 + 4k1k2 + 4k22

(k1 + 2k2)2
= 1.
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