Etiquetage spatio-temporel et monitorage de faisceaux pulsés : applications en hadronthérapie et thérapies « flash ».

ARRONAX

M.-L. Gallin-Martel^a, O. Allegrini^b, A. Bes^a, G. Bosson^a, J.-P. Cachemiche^c, C.P.C. Caplan^c,
B. Carlus^b, X. Chen^b, J. Collot^a, S. Curtoni^a, D. Dauvergne^a, R. Della Negra^b, P. Everaere^a,
L. Gallin-Martel^a, A. Ghimouz^a, F. Haddad^{de}, Ch. Hoarau^a, J. Hérault^f, C. Koumeir^{de},
A. Lacoste^a, J.M. Létang^g C. Morel^c, S. Marcatili^a, V. Métivier^d, J-F. Muraz^a, F. Poirier^e,
N. Servagent^d, F. Rarbi^a, O. Rossetto^a, É.Testa^b, M. Yamouni^a et Y. Zoccarato^b

^a Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, 38000 Grenoble, France

^b Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France.

^cAix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France.

^dUniversité de Nantes, CNRS-IMT Atlantique, SUBATECH-IN2P3 UMR 6457, 44000 Nantes, France.

^e GIP Arronax, 44800 Saint Herblain, France.

^fDepartment of Radiation Oncology, Antoine-Lacassagne Cancer Center, Nice, France

^gUniv. Lyon, INSA-Lyon, Univ. Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS, UMR 5220, U1206, F-69373, LYON, France

mlgallin@lpsc.in2p3.fr

ML Gallin-Martel GDR MI2B ARCHADE

1

Role of the hodoscope

Time structure of the clinical accelerators

Talk by S. Marcatili

		synchrotron		cyclotron	synchro-cyclotron
		(CNAO, HIT)		(IBA, Varian)	(S2C2, IBA)
		ions C	Protons		
Intensité type (ions/s)		107	10 ⁹	10 ¹⁰	$\sim 10^{10}$
Macrostructure	Période (s)	1 - 10		Ø	10^{-3}
Microstructure	Largeur paquet (ns)	20 - 50		0.5-2	8
	Période (ns)	100-200		10	16 (à l'extraction)
	Ions/paquet	2-5	200-500	200	4000

J. Krimmer, D. Dauvergne, J.M. Létang, and É. Testa, *Prompt-gamma monitoring in hadrontherapy: A review.*, *Nucl. Instrum. Meth. A*, **878** (2018) pg. 58–73

Beam tagging hodoscope for online ion range verification in hadrontherapy

The scintillating fibres hodoscope

Characteristics

- 2 perpendicular planes for a 2D mapping
- 128 polystyrene scintillating fibers BCF-12 per plane
- 1 mm² squared section
- 8 multi-anode PM tubes for a two side read-out

The read-out electronics

• Each PM tube is readout by an ASIC "HODOPIC" FE board

	MHz	97 % (logical OR) at 20 MHz
Time resolution	< 2 ns	1.8 ns (10 MHz)
Radiation hardness	Operationnal for 1000 clinical	< 10 % loss of detection efficiency after an equivalent of
	irradiations	1000 clinical irradiations

Current limitations : ground fluctuations in the ASICs

10 November

Beam tagging hodoscope for online ion range verification in hadrontherapy

ML Gallin-Martel GDR MI2B ARCHADE

Diamond hodoscope

4 diamond detectors in a mosaic arrangement

4 x 4.5 x 4.5 mm²~1 cm²

1 x 20 x 20 mm²~4 cm²

Front-End electronics

Front End electronics developed at lab

R&T IN2P3 DIAMTECH + ANR DIAMMONI 2020

Fast preamps + QDC in discrete electronics

R&T IN2P3 DIAMASIC LPSC - LPC Caen ASIC Preamps +TDC+ QDC

- CMOS 130 nm (CERN)
- Radiation tolerant

10 November

ML Gallin-Martel GDR MI2B ARCHAD

Diamond hodoscope

Diamond hodoscope

Beam tests in ARRONAX with 68 MeV proton beam

cividec

Polycrystalline diamond

- Large available surface 20 x 20 mm² \geq
- Intrinsic radiation hardness
- Time resolution <100 ps \geq
- High rate particle counting \geq capabilities up to clinical intensity

1 x 20 x 20 mm²~4 cm²

Designed to be used right now with carbon ions

10 November

ML Gallin-Martel GDR MI2B ARCHADE

Diamond hodoscope application to « Flash Therapy »

Conclusion

> Fibre hodoscope:

beam hodoscope could be used at ARCHADE to provide clinical intensity mm and ns spatio-temporal labeling

Diamond hodoscope:

- at ARCHADE cyclotron C400 for 10⁸ ion C/s it would be undubitabely possible to make beam time stamped and ion/ion particle counting
- with different types of ions (Z> 1), we can reach few tens of ps of resolution (in any case significantly <100ps)</p>
- the diamond hodoscope can be integrated into a detection system, as part of a collaborative work, 16 cm2 sensitive surface can be reached using polycrystalline diamond sensors in a 2 x 2 mosaic arrangement

14