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Abstract: The World Health Organization has estimated that approximately 3 million deaths are
attributable to alcohol consumption each year. Alcohol consumption is notably associated with the
development and/or progression of many non-communicable inflammatory diseases—particularly
in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity
of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at
the heart of this “inflammatory shift”. Purinergic signaling (notably through P2X7 receptors and the
NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of
alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means
of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of
alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.

Keywords: alcoholic-related liver disease; NLRP3 inflammasome; purinergic receptor; macrophage;
P2X7R; Kupffer cell; interleukin-1β

1. Overview

In its “Report on the World Alcohol and Health Situation”, the World Health Organiza-
tion estimated that approximately 3 million deaths (mainly among men) were attributable
to alcohol consumption in 2016—corresponding to one death every 10 s [1]. According to
the literature, 28.7% of these deaths might be attributable to non-communicable diseases, in-
cluding cardiovascular disease, certain cancers, neuropsychic disorders, and alcoholic liver
disease (ALD) [2,3]. ALD is a leading cause of liver-related death. The physiopathology
of ALD includes steatosis (fatty acid deposition in hepatocytes), steatohepatitis (inflam-
matory damage to the liver), and fibrosis/cirrhosis (excessive deposition of extracellular
matrix), which result from both the toxicity of ethanol metabolism and complex immune
reactions [4]. Here, we review current knowledge on the pathophysiology of ALD and
therapeutic perspectives for targeting certain inflammatory pathways.

2. The Architecture of the Liver

Due to its particular position, the liver is continuously exposed (through the portal
vein) to antigens from food, the intestinal flora, potentially pathogenic microorganisms, and
other xenobiotics (Figure 1a). Consequently, it is the site of complex immune mechanisms
that maintain the immune tolerance of intestinal antigens and enable the deployment of
effective responses against pathogens [5]. The liver is mainly composed of hepatocytes
(60%) but also includes endothelial cells, Kupffer cells (intrahepatic macrophages), biliary
epithelium cells (cholangiocytes), stellate cells (Ito cells), dendritic cells, and intrahepatic
lymphocytes. Within this structure, the innate immune system has a predominant role
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in orchestrating the first steps in the immune response (Figure 1b). During chronic al-
cohol consumption, damage to the architecture of the liver is closely linked to the toxic
metabolism of this alcohol [6]. Hence, understanding this architecture is essential for
characterizing the mechanisms of ALD.
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expressing the ADH2*2 allele (coding for a highly active enzyme) have a lower risk of ALD 
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(corresponding to the ALDH2*2 allele) and acetaldehyde levels that are 5 to 20 times higher 
than in people carrying the active isoform [9]. The accumulation of acetaldehyde in these 
populations may thus discourage the consumption of large quantities of alcohol in everyday 
life and therefore protect against alcoholism relative to Caucasian populations. 

Figure 1. The architecture of the liver. (a) Representation of the hepatic portal system, showing the intestines (in pink),
the portal vein (in blue), and the liver (red). (b) Representation of the main cell types in the liver: hepatocytes, sinusoidal
endothelial cells, Kupffer cells, and stellate cells.

3. The Toxicokinetics of Ethanol

Although ethanol is still used to treat some conditions (such as methanol or ethylene
glycol poisoning, neurolysis, and alcohol withdrawal syndrome) and as an antiseptic, these
uses have become less frequent over time as our knowledge of the compound’s toxicity
and metabolism has improved [7].

The rate of alcohol absorption depends on several parameters. It is fastest when the
stomach is empty and the alcohol concentration is between 20 and 30%. Hence, sherry-type
alcohols (20% alcohol) will be absorbed more quickly than beer (3–8%) or spirits (40%); the
latter slow down gastric emptying and inhibit the absorption of ethanol. Food (especially
carbohydrates) also slows down the absorption of alcohol; the blood concentration is
four-fold lower than for an empty stomach [8]. There are also sex differences; even after
adjustment for body weight, women have higher blood alcohol levels than men. This
might be because (i) alcohol penetrates poorly into fat and (ii) women have a higher
proportion of subcutaneous adipose tissue and a lower total blood volume [8]. After
the intestinal absorption of ethanol, this amphiphilic, low-molecular-weight compound
diffuses throughout the body and therefore has many sites of action. Although most organs
are exposed to an alcohol concentration similar to that found in plasma, the liver is an
exception; the blood in the portal vein comes from the stomach and the intestines and so
contains a higher concentration of ethanol.

Hepatic alcohol dehydrogenase (ADH) is the main enzyme responsible for phase I
oxidation of ethanol, along with the production of acetaldehyde (the main toxic metabolite
of ethanol) and nicotinamide adenine dinucleotide (NADH) [9]. The acetaldehyde is then
oxidized to acetate by aldehyde dehydrogenase (ALDH). However, acetate is not the final
metabolite because it can be transformed into CO2, fatty acids, ketones, cholesterol, or
steroids [9]. Interestingly, women also have lower gastric levels of ADH in their stomachs,
which reduces the metabolism of alcohol prior to intestinal absorption [8].

The effects of ethanol intolerance (such as vasodilatation—responsible in particular for
facial flushing—and nausea) have been attributed to acetaldehyde. The balance between
the different isoforms of ADH and ALDH regulates the concentration of acetaldehyde
and is a risk factor in the development of alcoholism [10]. Genetic variants of ADH and
ALDH have these characteristics and thus influence the metabolism of ethanol [11]. Certain
ADH genotypes have therefore been linked to differences in alcohol consumption; people
expressing the ADH2*2 allele (coding for a highly active enzyme) have a lower risk of
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ALD [12]. Furthermore, between 15 and 40% of people in southeast Asia have inactive
ALDH (corresponding to the ALDH2*2 allele) and acetaldehyde levels that are 5 to 20 times
higher than in people carrying the active isoform [9]. The accumulation of acetaldehyde in
these populations may thus discourage the consumption of large quantities of alcohol in
everyday life and therefore protect against alcoholism relative to Caucasian populations.

A secondary ethanol metabolism pathway involves a P450 cytochrome pathway,
namely CYP2E1. This ethanol-induced oxidative pathway is mainly located in the hepa-
tocyte’s endoplasmic reticulum and allows the production of acetaldehyde from ethanol
and then acetate from acetaldehyde. Hence, ethanol’s induction of its own metabolism
is thought to have a major role in ethanol tolerance among chronic consumers [9,13]
(Figure 2).
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Other minor pathways for ethanol metabolism include glucuroconjugation (giving
rise to ethylglucuronide), sulfoconjugation (producing ethyl sulfate), the fatty acid ethyl
ester synthase pathway (forming fatty acid ethyl esters), and the phospholipase D pathway
(producing phosphatidylethanol) [9].

Alcohol is eliminated by several organs, including the kidneys, skin, and lungs. As is
the case for absorption, many genetic and environmental factors influence the elimination
of alcohol; interindividual differences of a factor of three or four are observed. In 2010, a
study of 48 individuals aged 50 to 59 estimated the alcohol elimination rate at between
10 and 35 mg/100 mL blood/h [14].

4. Alcoholic Liver Disease

ALD occurs in three phases: alcoholic liver steatosis, alcoholic steatohepatitis, and
alcoholic fibrosis/cirrhosis (Figure 3).
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Alcoholic liver steatosis is characterized by the accumulation of lipids in and around
the hepatocytes. It constitutes the most common and earliest form of liver damage, affecting
more than 90% of individuals who consume four to five standard units of alcohol daily [15]
and binge drinkers (the consumption of four to five units of alcohol in less than 2 h). Liver
steatosis is reversible and therefore has a good prognosis, although chronic steatosis consti-
tutes a risk factor for fibrotic liver diseases [16] (Figure 3). The pathophysiology of alcoholic
liver steatosis is closely related to the oxidative metabolism of ethanol; the high resulting
levels of NADH and acetaldehyde alter the cell’s redox balance. This induces expression of
early growth response protein-1, which in turn leads to activation of the transcription factor
sterol regulatory element binding protein-1C, which induces the expression of lipogenesis
genes, and, on the other hand, to the synthesis of TNF-α, a lipogenic cytokine [4]. Parallel
to this increase in intrahepatic lipid production, ethanol alters the synthesis of lysosomes,
which are essential for the proper functioning of lipophagy [17]. Furthermore, the genera-
tion of NADH during alcohol oxidation and the mitochondrial toxicity of acetaldehyde
inhibit β-oxidation, resulting in greater lipid accumulation. Ethanol has also been shown to
inhibit the production of very-low-density lipoprotein, which is responsible for exporting
triglycerides and cholesterol from the liver [18]. Lastly, by causing lipolysis in adipocytes,
chronic alcohol consumption also increases the fraction of free fatty acids that can be
captured by the liver [19]. It is also noteworthy that the early production of reactive oxygen
species (ROS) linked to alcohol metabolism is responsible for a rapid increase in hepatocyte
membrane fluidity. This leads to a rise in cytoplasmic, low-molecular-weight iron content
and thus an increase in ROS production. This phenomenon then induces lipid peroxida-
tion and triggers apoptosis [20]. The massive ROS production linked to the increase in
membrane fluidity accounts for the perverse effects of chronic alcohol consumption. It is
now clear that the microsomal ethanol-oxidizing system (MEOS) is involved in Kupffer cell
activation, highlighting a key step in the transition from alcoholic fatty liver to alcoholic
steatohepatitis [21–23]. Key components of MEOS are several forms of cytochrome P450
(CYP), especially its CYP 2E1 isoform, the NADPH-dependent cytochrome P450 reductase,
and phospholipids [21]. Due to its radical scavenging properties, ethanol combines with a
small fraction of hydroxyl radicals and undergoes oxidation while the remaining radicals
attack phospholipids of liver cell membranes [22]. Chronic alcohol consumption upregu-
lates MEOS activity and CYP 2E1 gene expression, leading to increased rates of alcohol
degradation to acetaldehyde via MEOS and high amounts of toxic radicals that partially
escape the scavenging properties of ethanol and cause liver injury [21].

Alcoholic steatohepatitis develops from underlying steatosis, occurs in 30 to 40% of
individuals reporting chronic alcohol consumption, and is associated with a high short-
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term mortality rate [4]. In fact, lipids that have accumulated in hepatocytes are more prone
to lipid peroxidation and subsequent oxidative damage. The liver’s resident macrophages
(Kupffer cells) are thought to have a major role in these pathways. Kupffer cells are usually
located in the lumen of the hepatic sinusoids, where they are involved in tissue repair,
activation of the inflammatory response to danger signals, phagocytosis of pathogens from
the portal system, angiogenesis, and the resolution of inflammation [24]. During chronic
exposure to ethanol, complex interactions involving the effects of acetaldehyde, ROS,
intestinal lesions mediated by endotoxins like lipopolysaccharide (LPS) and other PAMPs,
and stress in the endoplasmic reticulum activate these macrophages [25] (see Section 5).
An innate immune response is then initiated, leading to an increase in phagocyte activity,
the recruitment of immune cells (e.g., neutrophils), the production of pro-inflammatory
cytokines (such as tumor necrosis factor alfa (TNF-α), interleukin (IL)-6, IL-1α, and IL-
1β), and a decrease in the production of anti-inflammatory cytokines (such as IL-10) [26]
(Figure 3).

The third phase of ALD (fibrosis/cirrhosis) reflects the progression of inflammatory
steatohepatitis, in which hepatocyte regeneration is severely compromised [4]. At this
stage, hepatic stellate cells have a key role in the deposition of extracellular matrix—a
characteristic component of fibrosis. The stellate cells are normally quiescent in the Disse
space but are activated in a complex process following liver damage and the release
of pro-inflammatory cytokines by Kupffer cells [4]. The progression of fibrosis during
ethanol-induced chronic inflammation leads to the progressive replacement of the hepatic
parenchyma by scar tissue, which compromises the liver’s metabolic and homeostatic
functions and results in cirrhosis [4] (Figure 3). This cirrhotic stage is followed by severe
complications, including portal hypertension and hepatocellular carcinoma (the second
leading cause of liver-related cancer death) [27].

5. Focus on Alcoholic Steatohepatitis: The Involvement of P2X7R-NLRP3 Signaling

The pro-inflammatory cytokine IL-1β is particularly involved in the development of
steatohepatitis. Following its release by Kupffer cells, IL-1β is responsible for the initia-
tion and amplification of many immune and inflammatory responses via the synthesis of
chemokines and adhesion molecules by endothelial cells and C-reactive protein by hepato-
cytes [28]. However, IL-1β release is dependent on activation of the NLRP3 inflammasome,
an intracellular signaling complex [29].

5.1. The NLRP3 Inflammasome

Inflammasomes are intracytoplasmic pattern recognition receptors that are part of
the innate immune system. They recognize pathogen-associated and danger-associated
molecular patterns (PAMPs and DAMPs) [29]. Inflammasomes are composed of three main
elements: a sensor protein, an apoptosis-associated speck-like protein containing a caspase-
recruitment domain (ASC), and a pro-inflammatory caspase (caspase-1) [30]. In response
to DAMPs and PAMPs, the assembly of inflammasomes activates caspase-1, which can
then cleave inactive pro-IL-1β and pro-IL-18 into active IL-1β and IL-18, respectively. This
inflammasome hyperactivation can also trigger pyroptosis, a cell death mechanism that
slows down the replication of intracellular pathogens [31]. The nucleotide-binding domain
and leucine-rich repeat containing receptors (NLRs) constitute a family of inflammasome-
forming sensor proteins [32]. Twenty-two NLR-encoding genes have been identified,
classified, and named according to their N-terminal domains. All NLRs (except for NLRP10)
contain a central NACHT domain and a C-terminal leucine-rich repeat domain. The
N-terminal domain can be a caspase activation and recruitment domain (CARD, giving
rise to the NLRC family) or a pyrin domain (PYD, forming the NLRP family). The CARDs
allow the direct recruitment of caspase-1, whereas the PYDs require an ASC adaptor
protein [33]. Along with the NLRs, the AIM2-like and the RIG-I-like receptor families can
induce inflammasome assembly [34,35].
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The NLRP3 protein complex is the most thoroughly studied inflammasome. Upon
activation, the NLRP3 inflammasome oligomerizes via interactions through NACHT do-
mains; this presents the NLRP3′s PYD domain to the PYD domain in the ASC protein [36].
The latter allows the recruitment and autocatalysis of pro-caspase-1 via interaction between
the respective CARD domains. This oligomerization forms a high-molecular-weight intra-
cytoplasmic platform [37]. The cysteine protease caspase-1 cleaves inactive pro-IL-1β into
active IL-1β, which can then be released into the extracellular space [38,39]. The cytokine
pro-IL-18 is also reportedly cleaved by caspase-1 [40]. For activity in macrophages, the
NLRP3 inflammasome requires two signals.

The first signal (known as pre-activation or priming) induces the expression of the
inactive pro-IL-1β and the NLRP3 protein. Certain agonists of Toll-like receptors (TLRs,
innate immunity receptors present on the plasma membrane and endosomes) are known to
generate this first signal. These include LPS (an essential component of the outer membrane
in Gram-negative bacteria) and certain pro-inflammatory cytokines (such as TNF-α) [29].

The second signal enables assembly of the inflammasome complex, which then con-
verts inactive pro-IL-1β into active IL-1β. This signal can be activated by a variety of factors,
including PAMPs; bacterial toxins [41–43]; viruses [44]; fungi [45]; protozoa [46]; DAMPs
like nigericin, crystals of cholesterol, silica, or uric acid; and ATP [47]. The diversity of
these signals means that they are unlikely to all activate the NLRP3 inflammasome directly;
the current opinion is that these various signals converge on a common signaling pathway.
Three main models have thus been suggested for activation of the NLRP3 inflammasome:
the lysosomal rupture model, the ROS model, and the ion flow model.

In the lysosomal rupture model, the phagocytosis of large particles or crystals (such
as uric acid, alum, silica, or β-amyloid) is responsible for ROS production, potassium
efflux, phagosome destabilization, and lysosome rupture [48,49]. The release of lysosome
contents (e.g., proteases like cathepsin B) into the cytoplasm is associated with caspase-1
activation [50].

In the ROS model, oxidative stress activates the NLRP3 inflammasome [30]. One
study suggested that elevated ROS levels cause thioredoxin-interacting protein (TXNIP) to
bind to, and thus activate, the NLRP3 inflammasome [51]. Since the main source of ROS is
the mitochondrion, other studies have reported that oxidized mitochondrial DNA released
during mitochondrial dysfunction can directly activate the NLRP3 inflammasome [52,53].
Furthermore, mitochondrial cardiolipin (a phospholipid from the inner wall of the mito-
chondrial membrane) has been shown to activate the NLRP3 inflammasome [54]. However,
it is not yet known whether the ROS-dependent pathway is a major or minor contributor
to inflammasome activation.

In the ion flow model, variations in the concentrations of various cations (K+, Ca2+,
and H+) activate the NLRP3 inflammasome. Several factors have been shown to induce
powerful ion fluxes. In particular, extracellular ATP (notably resulting from ethanol-
induced hepatocyte death) activates the P2X7 purinergic receptors, causes a potassium
efflux, and thus activates the NLRP3 inflammasome [48,55].

5.2. P2X7 Purinergic Receptors

Purinergic receptors are cell membrane receptors for extracellular nucleotides. They
are present in all cell types, although each receptor subtype has a preferential localiza-
tion [56]. The receptors are classified into two families on the basis of genetic and phar-
macologic criteria: P1 receptors are selective for adenosine, and P2 receptors are activated
by nucleotides (mainly ADP and ATP). The P2 class is subdivided into P2Y metabotropic
G-protein-coupled receptors and P2X ionotropic channel receptors [57]. There are seven
subtypes of P2X receptors (P2X1–7), for which ATP is the only physiological ligand [57].
The subtypes range from 379 to 595 amino acids in length and share 35–54% sequence
homology [58]. Functional P2X channel receptors are homo- or heteromultimers formed
by the association of at least three subunits [59]. Activation thus requires the binding of at
least three ATP molecules to the extracellular part of the receptors [60].
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The P2X7 receptor (P2X7R) is the best characterized P2X receptor with regard to its
role in regulating innate and adaptive immune responses. Consistently, P2X7R is one
of the most highly expressed P2X receptors in macrophages and is therefore an obvious
therapeutic target [61]. The binding of ATP to purinergic receptors might stimulate a rapid
potassium efflux, the production of ROS, and thus activation of the NLRP3 inflammasome
in particular [62,63]. The P2X7R can also activate many different intracellular kinase or
phospholipase signaling pathways [64–66]. Current literature data suggest that the P2X7R-
NLRP3 signaling pathway is involved in many inflammatory diseases, including diabetes,
gout, and pulmonary fibrosis [67].

The liver synthesizes most of the body’s nucleotides (ATP, ADP, UTP, and UDP). These
key signaling molecules are recognized by hepatocytes and influence metabolic processes
like biliary secretion and carbohydrate metabolism. Nucleotide levels are closely regulated,
in particular, by ectonucleotidases (ecto-ADPases, ecto-ATPases, etc.) [68]. Unsurprisingly,
perturbed nucleotide signaling causes inflammation, vascular damage, and the impairment
of liver regeneration processes [68]. It has been reported that ethanol and fructose induce
adenosine secretion, which influences lipid metabolism and promotes hepatic steatosis [68].

5.3. Effects of Ethanol on the P2X7R-NLRP3 Pathway

The P2X7R-NLRP3 pathway appears to be significantly involved in the pathophysiol-
ogy of alcoholic steatohepatitis. Indeed, exposure to ethanol causes the passage of various
PAMPS from the intestinal tract to the bloodstream, including bacterial and fungal prod-
ucts. LPS levels in systemic and portal blood are thus significantly increased in patients
and mice with chronic alcohol consumption [69,70]. LPS interacts with its receptor, TLR4,
to activate signal transduction and generate inflammatory cytokines, including TNF-α
and IL-1β [71]. Peptidoglycan, a component of Gram-positive bacteria, is also detected in
human ALD patients [72]. In addition, injected peptidoglycan has been shown to deterio-
rate liver injury and inflammation in alcohol-fed mice in a TLR2-dependent manner [73].
Particularly, N-acetylglucosamine, which is generated during peptidoglycan degradation
in mice macrophages, can trigger activation of the NLRP3 inflammasome by inhibiting
the function of the cytosolic glycolytic enzyme hexokinase [74]. Besides TLR4, many other
pathways and receptors could play a role in activation of the NLRP3 inflammasome. For
example, acute alcohol binge drinking results in increased bacterial 16S ribosomal DNA in
correlation with serum LPS levels in healthy human volunteers [75]. Interestingly, bacterial
DNA is recognized by TLR9 and can sensitize the liver to LPS [76]. It has been reported that
chronic alcohol consumption increased gut fungal populations in mice, and the subsequent
translocation of fungal β-glucans induced liver inflammation [77]. In particular, β-glucans
are recognized by membrane-associated dectin-1 and cytoplasmic NLRP3 inflammasomes,
resulting in IL-1β gene transcription and IL-1β secretion in human macrophages, respec-
tively [78]. In addition, ethanol exposure activates complements, interacts with the C3aR
and C5aR macrophage receptors, and leads to an increase in the production of pro-IL-1β
and other pro-inflammatory cytokines [79]. This complement-dependent phase in response
to ethanol occurs early in the progression of injury, since markers of complement activation
are detected in macrophages within four days of ethanol feeding to mice [79].

At the same time, hepatocyte damage and the release of associated danger signals
(such as ATP) linked to the oxidative metabolism of ethanol might be responsible for
activation of the NLRP3 inflammasome via purinergic receptors [24]. The subsequent
massive release of pro-inflammatory cytokines (particularly TNF-α) is directly responsible
for hepatocyte death by apoptosis and the maintenance of alcoholic steatohepatitis [80]
(Figure 4). Furthermore, ROS generated through P2X7R activation and ethanol oxidation
might be responsible for NLRP3 inflammasome activation. More precisely, it was recently
shown that ethanol-induced NLRP3 activation was partly triggered by downregulation of
the aryl hydrocarbon receptor and upregulation of TXNIP—both of which are mediated
by oxidative stress in human macrophages [81] (Figure 4). Furthermore, Heo et al. (2019)
showed that ethanol decreased the expression of miR-148a in mice hepatocytes, which
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promoted activation of the NLRP3 inflammasome and subsequent pyroptosis of these
cells [82]. Interestingly, the miRNA profile and PCR analyses also showed substantial
decrease of miR-148a in the livers of patients with alcoholic hepatitis [82].
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Figure 4. The main mechanisms of Kupffer cell activation during chronic ethanol exposure. Step 1: An increase in intestinal
permeability, leading to the release of LPS into the systemic circulation and activation of the TLR4 receptor. Step 2: Activation
of the complement system, in particular via LPS. Steps 1 and 2 lead to the production of chemokines, cytokines, and other
pro-inflammatory mediators. Step 3: Oxidative metabolism of ethanol; ROS and acetaldehyde lead to an increase in
TXNIP expression, activation of the NLRP3 inflammasome, and the production of pro-inflammatory cytokines (ii). Step 4:
Hepatocyte damage due to the oxidative metabolism of ethanol results in the release of danger signals, including ATP. Step 5:
Ethanol induces the expression of P2X7R, further sensitizing the cell to danger signals like ATP. Step 6: ATP activates the
NLRP3 inflammasome via purinergic receptors. Step 7: Release of the chemokines, cytokines, and inflammatory mediators
produced upstream. Abbreviations: DAMP: danger-associated molecular pattern; LPS: lipopolysaccharides; ROS: reactive
oxygen species; TXNIP: thioredoxin interacting protein.

Interestingly, ethanol itself inhibits ASC phosphorylation and thereby inhibits the
NLRP3 inflammasome during acute exposure in mice and human macrophages [83–85].
In chronic exposure, however, high levels of ROS and acetaldehyde have been reported
to activate the NLRP3 inflammasome and generate pro-inflammatory effects in mice
macrophages [86]. Furthermore, it was recently reported that ethanol induces the expres-
sion of P2X7R in human macrophages, which makes the macrophage more sensitive to
danger signals like ATP [85].

6. Conclusions and Therapeutic Perspectives

In light of the above data, ethanol’s immunomodulatory effects appear to be deter-
minants in the compound’s toxicity. This realization opens up many opportunities for
understanding the mechanisms of ethanol toxicity. Kupffer cells have a central role in the
pathophysiology of inflammatory ALD and are therefore attracting attention as possible
therapeutic targets. In particular, the discovery of the P2X7R-NLRP3 pathway’s involve-
ment in the pathophysiology of ALD has led to the development of new drug candidates.
Molecular design studies have shown that benzene sulfonamide analogs are likely to
inhibit the NLRP3 inflammasome and have prompted their development as potential
drugs [87]. Furthermore, Choudhury et al. (2020) have suggested that HSP90 (a chaperone
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protein involved in the activation of the NLRP3 inflammasome) is a potential therapeutic
target in ALD [88]. Li et al. (2018) showed that inhibition of the P2X7R-NLRP3 axis by
Pleurotus citrinopileatus extracts decreased steatohepatitis in male C57BL/6 mice fed an
ethanol-containing Lieber-DeCarli liquid diet [89]. Lastly, Freire et al. (2019) showed that
the P2X7R antagonist A804598 was able to decrease liver inflammation in C57BL/6J mice
fed a high-fat diet with chronic, intragastric ethanol administration [90].

In the liver, hepatocytes, stellate cells, cholangiocytes, and Kupffer cells express
purinergic receptors on their plasma membrane; modulation of the latter might be valuable,
especially in pathological situations [91]. Furthermore, purinergic receptors are known
to be involved in alcoholic liver steatosis and hepatic fibrosis [92–94]. Interestingly, the
P2XR antagonist pyridoxal-phosphate-6-azophenyl-2’,4’-disulfonate inhibited stellate cell
proliferation and prevented the transition from alcoholic steatohepatitis to hepatic fibro-
sis in a rat model [95]. Zhang et al. (2018) reported that dihydroquercetin (the most
abundant dihydroflavone found in onions, milk thistle, and Douglas fir bark) was able
to inhibit lipogenesis in hepatic HepG2 cells by decreasing the expression of P2X7R and
NLRP3 [96]. Xiao et al. (2014) showed that inhibition of hepatic TXNIP by Lycium barbarum
polysaccharide contributed to the reduction of cellular apoptosis, oxidative stress, and
NLRP3 inflammasome-mediated inflammation [97]. Lastly, Leucodin (a sesquiterpene
extracted from Artemisia capillaris) reduced hepatic lipid accumulation by inhibiting the
P2X7R-NLRP3 pathway [98]. Taken as a whole, these data suggest that the modulation of
purinergic signaling might constitute a novel treatment approach for ALD.

In a broader perspective, emerging evidence shows the involvement of the P2X7R-
NLRP3 inflammasome pathway in the induction of non-alcoholic fatty liver disease
(NAFLD) and liver fibrosis, suggesting possible therapeutic strategies targeting the P2X7
receptor/NLRP3 inflammasome [99]. In a CCL4-induced, nonhuman primate model of
liver fibrosis, treatment with a P2RX7 inhibitor (SGM-1019) improved histological char-
acteristics of non-alcoholic steatohepatitis (NASH), protecting from liver inflammation
and fibrosis [100]. Furthermore, Tung et al. (2015) found that a P2X7R blockade (using
brilliant blue G and oxidized ATP) ameliorates liver fibrosis, mesenteric angiogenesis, and
severity of portal-systemic shunting and improves the portal-systemic collateral vascular
responsiveness in ATP in rats with bile duct ligation-induced cirrhosis, suggesting the
potential of purinergic receptor antagonism in controlling liver cirrhosis-related compli-
cations [101]. MCC950, an NLRP3 selective inhibitor, was also found to partly reverse
liver inflammation, particularly in obese, diabetic mice used as NASH models. In addition,
such reduction of liver inflammation in NASH achieved with MCC950 partly reversed
liver scarring in methionine/choline deficient-fed mice, the process that links NASH to the
development of cirrhosis [102]. These recent advances in our understanding of Kupffer
cell regulation may bring new hope for the therapeutic manipulation of Kupffer cells to
help resolve inflammation and improve wound healing in liver disease, whether or not of
alcoholic origin.
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