Characterization of a beam-tagging hodoscope for hadrontherapy monitoring

O. Allegrini^a, J.-P. Cachemiche^b, C.P.C. Caplan^b, B. Carlus^a, X. Chen^a, S. Curtoni^c, D. Dauvergne^c, R. Della Negra^a, M.-L. Gallin-Martel^c, J. Hérault^e, J.M. Létang^d, C. Morel^b, É. Testa^a, and Y. Zoccarato^a

^aUniv. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France. ^bAix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France. ^cUniversité Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, UMR 5821, 38000 Grenoble, France. ^dUniv. Lyon, INSA-Lyon, Univ. Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, LYON, France. ^eDepartment of Radiation Oncology, Antoine-Lacassagne Cancer Center, Nice, France.

- ✤ Introduction
- The scintillating fibers hodoscope
- ✤ The performance tests
- ✤ Results
- Discussion/Conclusion

Data obtained from https://www.ptcog.ch/index.php/facilities-in-operation - July 2020

Lühr, A., Löck, S., Roth, K. et al. Concept for individualized patient allocation: ReCompare—remote comparison of particle and photon treatment plans. Radiat Oncol 9, 59 (2014).

Introduction

beam-tagging hodoscope

The performance tests

Results

Discussion

Higher local control of the tumor

A limited energy deposition at the entrance of the patient

Ion beam therapy facilities have known a rapid spread

Potential rapid recovery

The benefits offered by the physical properties of ions are:

٠

•

this last decade.

(Bragg peak)

The beam-tagging hodoscope

٠

performance

tests

Results

Discussion

• Anatomical changes of the patient during the treatment

of the ions: The uncertainty on the ion range

However, a limitation still remains to fully exploit the benefits

• Organ motion during the treatment

Conversion of CT number to HU

• Approximations used in dose calculation

Antje-Christin Knopf and Antony Lomax 2013 Phys. Med. Biol. 58 R131

Several techniques are investigated to reduce this uncertainty:

The beam-tagging hodoscope

The performance tests

Results

Discussion

Absorber : 32 BGO blocks 8×8 pseudo-pixels / block 4 photomultiplier tubes (PMTs) / block

Collimator : 1.5×120×170 mm³ tungsten alloy slabs

Scatterer : 7 Double Sided Silicon Detector layers 96×96×2 mm³ 64 strip segmentations per detector side

The beam-tagging hodoscope

The performance tests

Results

Discussion

Role of the hodoscope:

Provide a time tagging per bunch or per ion

CREATIS

		synchrotron		$\operatorname{cyclotron}$	synchro-cyclotron
				(IBA, Varian)	(S2C2, IBA)
		Carbon	Protons		
Typical intensity $(ions/s)$		10^{7}	10^{9}	10 ¹⁰	$\sim 10^{10}$
Macrostructure	Period (s)	1 - 10		Ø	10^{-3}
Typical inte Macrostructure Microstructure	Bunch width (ns)	20 - 50		0.5 - 2	8
	Period (ns)	100 - 200		10	16 (variable)
	Ions/bunch	2 - 5		200	4000

Table 3: Typical time structures of various clinical accelerator types.

J. Krimmer, D. Dauvergne, J.M. Létang, and É. Testa, *Prompt-gamma monitoring in hadrontherapy: A review.*, *Nucl. Instrum. Meth. A*, **878** (2018) pg. 58–73

The performance tests

Results

Discussion

- Time resolution : < 2 ns</p>
- Counting rate capabilities: up to 100 MHz
- Radiation hardness : operationnal for at least 1000 clinical irradiations

DD

The performance tests

Results

Discussion

- 2 perpendicular planes for a 2D mapping
- 128 polystyrene scintillating fibers BCF-12 per plane
- 1 mm² squared section
- 8 multi-anode PM tubes for a two side read-out

The beam-tagging hodoscope

performance tests

Results

Discussion

The read-out electronics

 Each PM tube is readout by an "HODOPIC" FE board

II. The scintillating fibers hodoscope

Specific connexion to maximize the counting rate:

- Two adjacent fibres are handled with different PM tubes.
- Every fibres are read-out by two neighboring channels

Criteria and settings methodology

Introduction

The

beam-tagging

hodoscope

The

performance tests

Results

Discussion

Logical signal generation:

• For each ion detected, a logical OR is generated by the ASICs

- Logical signals associated to hitted channels can have two states:
 - **State high** if the duration of the analog signal over the threshold is higher than 1.5 ns
 - **State low** if the pulse duration over the threshold is shorter than the time to create the logical OR

The beam-tagging hodoscope

The O performance tests

Results

Discussion

Two types of events exist:

Criteria and settings methodology

- good events (GEs): events for which at least one logic signal state is high
- events with short pulse (ESPs): undesired events for which the logic signal is not long enough to have a high state when the reading of the channel states by the FPGA is requested by the ASIC.

Objective: Optimize the efficiency

Adjustable settings:

- A common threshold for all channels connected to a same ASIC
- A **specific gain** for each channel

The beam-tagging hodoscope


```
The
performance
tests
```


Results

Discussion

Experimental setup used in centre Antoine Lacassagne to assess the performance of the hodoscope with the small size hodoscope (32 channels per plane read by 1 front-end card)

CREATIS

General principle :

The hodoscope is placed between two plastic scintillators (PS). An external trigger signal is provided by the coincidence signal generated from the two PS when a proton impinges the hodoscope.

Grepsble

III. The in-beam performance tests

Scheme of the experimental setup with the data acquisition chain

- Detection efficiency

- Multiplicity
- Time resolution
- Radiation hardness

Assessment in terms of:

IV. Results

✤ Multiplicity

Introduction

Discussion

Multiplicity (M) = Number of involved fibers per plane when a trigger is generated

- For intensities < 1 MHz, more than 70% of events have a M = 1
- The probability of event with M > 1 increases when the intensity is over 1 MHz (ground fluctuations in the ASICs)

CPPN

- Events with M = 0 correspond to empty events including ESP

Detection efficiency (DE)

Introduction

Discussion

Measurements with 65 MeV protons

- **DE** is almost constant around **84%** and **90%** in X and Y planes respectively.
- DE with the logical OR condition on both planes is upper than
 97% whatever the beam intensity in the range 17 kHz to 20 MHz.
- DE with the logical AND condition on both planes is close to
 74% until a beam intensity of ~ 6 MHz.

Hardness resistance:

After an irradiation of 3.6×10^{12} C6+ 95 MeV/u ions·cm⁻² (more than 1000 irradiations), at GANIL, a slight decrease of ~ 10% of the DE was observed.

✤ Time resolution

- The time resolution is close to 1.5 ns (FWHM) at low intensity (estimated with a Gaussian fit)
 - At 10 MHz, an additionnal component can be noticed due to ASIC oscillations

Discussion

CDDV

V. Discussion and Conclusion

Measured performance

66 % (logical AND) at 20 MHz

97 % (logical OR) at 20 MHz

1.8 ns (10 MHz)

< 10 % loss of detection efficiency after an equivalent of

1000 clinical irradiations

The	

Introduction

beam-tagging hodoscope

The performance tests

Current limitations : ground fluctuations in the ASICs

Results

\checkmark

Discussion

Perspectives:

Detection efficiency

Time resolution

Radiation hardness

- Coupling of the hodoscope with the Compton camera foreseen within the next year.

Specifications

 \sim 90 % (logical AND) at 100

MHz

< 2 ns

Operationnal for 1000 clinical

irradiations

- An improvement of the ASICs would allow to reach the specifications.

