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Abstract

While the Mohr-Coulomb criterion is widely used in geotechnics, the Drucker-
Prager is common in Finite Element Methods software. Its circular shape is really a
great advantage from a numerical point of view, even it is a drawback from a physical
point of view.

In contrast, the Matsuoka-Nakai criterion seems to best fit material behaviour, par-
ticularly with regard to true triaxial tests. More over its smooth shape is also closer to
the Mohr-Coulomb shape than that of the Drucker-Prager.

However, the circular shape of Drucker-Prager allows rapid and straightforward
computations of plastic strain, due to the use of the radial return closed form. In
contrast, the closest point projection method used to compute plastic strain for other
criteria is more complex to implement and need more computation time.

Maiolino and Luong have shown that using the Drucker-Prager criterion as a substi-
tution for a Mohr-Coulomb criterion induces great discrepancies of the friction angle.
But in previous work we have already shown that the choice of an alternative criterion
should not be made without considering the particularities of load and structure. We
have also already demonstrated that we obtain acceptable results on our models when
we used an appropriate Drucker-Prager Criterion.

In this paper, we analyse the discrepancy induced by the use of alternative criteria
to the Mohr-Coulomb in order to choose a criterion which provides both faster analysis
and a good approximation of the stress strain state in ballast.

Keywords: railway, ballast, geomaterials, criterion, Mohr-Coulomb, Drucker-Prager,
Matsuoka-Nakai, numeric modelling, finites elements.
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1 Introduction

Today numerical models are widely used to predict the behaviour of structures under
a specific load. Finite element analysis is one of the most commonly used modelling
methods in engineering studies.

Studying railways, the ballast materials is generally modelled with elastic-plastic
behaviour models commonly used in geotechnicals studies. The most common failure
criterion encountered in geotechnical engineering is the Mohr-coulomb criterion. Its
parameters are meaningful for engineers and are easy to deduce from tests. However,
this criterion is less straightforward to implement due to the presence of corners in the
yield surface shape. In opposition, the Drucker-Prager criterion and the Matsuoka-
Nakai criterion has smooth shape and are also commonly used in geotechinicals stud-
ies. Both criteria have advantages and drawback compared to the Mohr-Coulomb
Criterion. Easier to implement, faster to computes, over or under estimated resistance
of the materials, better fitting to experimental results, are pros and cons arguments for
the Mohr-Coulomb criteria substitution by one of these two.

In order to accelerate computation, and keep accurate representation of the mate-
rials behaviour we wanted to use and wisely chosen alternative criterion instead of
Mohr-Coulomb. Some more complex models used to describe ballast behaviour such
has Suiker’[1] and Einav’[2, 3, 4] models are based on Drucker-Prager like criterion.
A wisely choose Drucker-Prager criterion could help to better fit those models.

In this paper we define a method to choose the best alternative criterion to the
Mohr-Coulomb for a particular study. Maiolino and Luong [5] have proposed a way
of measuring the discrepancies between criteria. Based on this measurement and on
some models, we have exposed an innovative choosing process [6] investigating a way
of measuring the discrepancies induced using an alternative criterion. In this paper
we extend previous work by illustrating the process with railways ballast modelling.
The behaviour of two railways structures are computed using each of Mohr-Coulomb,
Matsuoka-Nakai and Drucker-Prager criteria. Then results are compared in order to
choose alternative criterion for a specific study. Finally, parametrized Drucker-Prager
criteria are introduced to improve and optimise the alternative results’ accuracy.

2 Criteria and tools used

In this paper we use the positive tensile stress convention and principal stresses are or-
dered as follows: σI ≥ σII ≥ σIII . Stress invariants are mean stress, σm = 1

3
Tr(σ),

second and third invariant of shear stress: J2 = 1
2
Tr(s2), J3 = 1

3
Tr(s3). The

polynomial invariant are: II = σI + σII + σIII , III = σIσII + σIIσIII + σIIIσI ,
IIII = σIσIIσIII .
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2.1 Some criteria commonly used in geotechnics

In this paper we compare Mohr-Coulomb Criterion, Drucker-Prager criterion and
Matsuoka-Nakai criterion. These are three commonly used criteria in geotechnics.
Criterion are expressed with a yield function f(σ) and yield surface correspond to
f(σ) = 0.

2.1.1 Mohr-Coulomb

(a) Principal stress space
representation

σIσII

σIII

σIσII

σIII

(b) π-plane representation

Figure 1: Mohr-Coulomb criterion

The Mohr-Coulomb criterion is one of the most commonly used criteria in geotech-
nics. It’s parameters (cohesion C and the internal friction angle φ) are easy to deduce
from laboratory test and are meaningful for engineers. This criterion is commonly
defined with the yield function (1), depending on the principal stresses.

In the principal stress space, its yield surface is a hexagonal conical prism. In the
π-plane its representations are irregular hexagons. With these representations, we can
easily see the non-smooth nature of the Mohr-Coulomb criterion.

f(σ) = (σI − σIII) + (σI + σII) sinφ− 2C cosφ (1)

2.1.2 Drucker-Prager

The Drucker-Prager criterion [7] is commonly defined with the yield function (2) de-
pending on the second invariant of the shear stress J2 and the mean stress σm. The
parameter H is the de-cohesion pressure (H = C

tanφ
) and α is a frictional parameter.

Its representation in the principal stress space is a circular cone and in the π-plane
a circle. On both representations we can easily see the smooth nature of the criterion.

f(σ) = 3α(σm −H) +
√
J2 (2)
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(a) Principal stress space
representation

σIσII

σIII

(b) π-plane representation

Figure 2: Drucker-Prager Criterion

2.1.3 Matsuoka-Nakai

(a) Principal stress space
representation

σIσII

σIII

σIσII

σIII

(b) π-plane representation

Figure 3: Matsuoka-Nakai criterion

The Matsuoka-Nakai criterion [8] is defined with the yield function (Equation (3))
depending on the polynomials invariants II , III and IIII . It’s parametrised with the
frictional parameter k1. The Matsuoka-Nakai criterion was developed for cohesion-
less materials, but can be adapted to materials with cohesion [9].

On its representations in the principal stress space and π-plane, we can see that the
Matsuoka-Nakai criterion has a non circular smooth shape.

f(σ) = k1IIII − IIIII (3)

The Matsuoka-Nakai criterion is commonly assumed to be a good smooth approx-
imation to the Mohr-Coulomb criterion. This criterion is even considered closer to
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experimental results than the Mohr-Coulomb criterion[10]. But the closest point pro-
jection method [11] or other alternative ones [12], used to compute plastic strain for
non-circular smooth criteria are more complex to implement and need more comput-
ing time.

2.2 Some commonly used tools

Criterion shape has a major importance on plastic strain computation, and on compu-
tation time. In this part we present some usable tools to study yield surface shape.

2.2.1 Extension ratio

σIσII

σIII

compression

extension

Figure 4: Extension ration measurement on the devitoric shape

The extension ratio is defined in order to describe the difference between the values
of
√
J2 in the configuration of extension( σI = σII ≥ σIII ) and compression( σI ≥

σII = σIII ) for the same mean stress. It is described with Equation (4).

Ls =

√
J2(extension)√
J2(compression)

=
(σI − σIII)(extension)

(σI − σIII)(compression)
(4)

For the Drucker-Prager criterion, which has a circular shape, the extension ratio is
Ls = 1. For the Mohr-Coulomb criterion the ratio extension can be described with
Equation (5).

Ls =
3− sinφ

3 + sinφ
(5)

2.2.2 Lode angle and polar decomposition

The third invariant of the shear stress J3 is often replaced by the Lode angle θ. This
description of the Lode angle was introduce by Zienkiewics and Pande[13]. (Equation
(6))
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θ = 1
3

arcsin(−3
√
3

2
J3√
J2

3 ) (6)

The Lode angle can be used to describe a polar decomposition of the yield surface
in the π-plane (

√
J2, θ) (Figure 5). We could also describe

√
J2 with the deviatoric

radius (σ+ =
√
J2/θ=π

6
) and the shape function (gp(θ)) as

√
J2 = σ+gp(θ).

σIσII

σIII

σIσII

σIII

θ

σ+gp(θ)
σ+

Figure 5: Polar decomposition of the yield surface in the π-plane

Drucker-Prager The shape function of the Drucker-Prager yield surface is the eas-
iest to describe because of its circular shape. (Equation (7))

gDPp (θ) = 1 (7)

Mohr-Coulomb The shape function of Mohr-Coulomb is given by equation (8).

gMC
p (θ) =

3− sinφ
2(
√

3 cos θ − sinφ sin θ)
(8)

Matsuoka-Nakai Matsuoka and Nakai do not directly expose decomposition of the
yield surface from their criterion. To decompose the yield surface we have to look at
the Maiolino criterion [14] which is equal to the Matsuoka-Nakai if both are fitted onto
the Mohr-Coulomb Criterion. Maiolino explains that the Bigoni and Piccolroaz[15]
function (Equation(9)) is the numerical solution for the shape function of this criterion
with β = 0 and γ = cos(3 arccos(

√
3

2
√
1−Ls+Ls2

)).

gp(θ) =
cos(β π

6
− arccos(−γ)

3
)

cos(β π
6
− arccos(−γsin(3θ))

3
)

(9)
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2.3 Correspondence between criteria

We are looking to substitute the Mohr-Coulomb criterion with other criteria, we have
to use the fitted form of these criteria. The criteria parameters have to be linked to the
Mohr-Coulomb parameters, cohesion C and the friction angle φ.

2.3.1 Drucker-Prager fitted to Mohr-Coulomb

There are currently three ways to fit a Drucker-Prager Criterion to a Mohr-Coulomb
criterion. With the compression fit, the two criteria will be equal in a standard com-
pression situation. With the extension fit, the two criteria will be equal of a standard
extension situation. And with the inscribed-circle fit, in the π-plane the Drucker-
Prager criterion yield surface will correspond to the circle inscribed in the Mohr-
Coulomb hexagon. (Figure 6)

σIσII

σIII

Compression fit

Extention fit

Inscribed circle fit

Figure 6: Drucker-Prager fitted onto a Mohr-Coulomb criterion

The values of the Drucker-Prager parameter α for each situation, and the Lode
angle values at the matching point θc are given in Table 1. In part 5 we will introduce
and compare other Drucker-Prager fitted criteria with a parametric study on θc.

α θc

Extension fit 2 sinφ√
3(3−sinφ)

π
6

Compression fit 2 sinφ√
3(3+sinφ)

−π
6

Inscribed circle fit sinφ
√
3
√

(3+sin2 φ)
− sinφ√

3

Table 1: Parameters for Drucker-Prager fitted to Mohr-Coulomb

2.3.2 Matsuoka-Nakai fitted to Mohr-Coulomb

Usually, we only use the Matsuoka-Nakai criterion fitted onto the corners of the Mohr-
Coulomb hexagon. This criterion fit allows correspondence at both extension and
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compression corners of the Mohr-Coulomb hexagon (Figure 2.3.2). To make this
fitted form of the criterion we use the parameter k1 given by Equation (10).

σI
σII

σIII

k1 =
(3− sinφ)(3 + sinφ)

(1− sinφ)(1 + sinφ)
(10)

Figure 7: Matsuoka-Nakai criterion fitted to the Mohr-Coulomb criterion

3 Discrepancy measure and criterion choosing process

Alternative criteria such as Drucker-Prager can over estimated or under estimated the
shear resistance of materials for the same mean stress. Those miss estimated resistance
can influence the stress-strain state computation.

Choosing an alternative criterion, we commonly assume that the Matsuoka-Nakai
criterion is the best alternative criterion for the Mohr-Coulomb. On the other hand,
with the simpler Drucker-Prager criterion, we commonly use the inscribed-circle fitted
criterion because it guaranties safety and stability of the material.

In order to improve the choosing process, we use Angle Gap as an innovative mea-
sure of discrepancies to compare criteria. And we expose a choosing process based
modelling comparison.

3.1 Apparent friction angle and angle gap measure

Miss-estimated resistance can be seen and measure on a π-plane representation of
the criteria. A difference between shear radius (

√
J2) can be measured, but not sim-

ply used and understand. Alternatively, Maiolino and Luong[5] exposed a method
for measuring the discrepancies between criteria as a difference between a reference
friction angle and an "instant friction angle".

We assume that the cohesion pressure H is the same for every criteria. For any
stress state (σm,

√
J2, θ), we can use their equation to give the friction angle parameter

of the supposed criterion encountered on this point (Equation (11)). We will call this
angle the "resistance angle" (φr), in default situations.
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φr(θ) = arcsin

√
3
√
J2 cos θ√

3(H − σm) +
√
J2 sin θ

(11)

If this stress state also encounters an examined criterion, we can call this angle the
"apparent friction angle" (φa) of this criterion. Moreover, if the studied criterion is use
as an alternative for an original Mohr-Coulomb criterion described with the internal
friction angle φ. The miss estimated shear resistance can be measures as the angle
gap between the apparent friction angle φa and the original friction angle φ. (Equation
(12), figure 8)

∆φ = φa − φ (12)

σIσII

σIII

φ

φa

• (σm,
√
J2,θ)

Apparent MC criterion

Original MC criterion

Substitutive criterion

Figure 8: Angle gap measure

3.1.1 Application to the criteria

Based on Equation (12),(7),(9),(10) and Table (1), we can represent these discrepan-
cies for all values of the Lode angle and for φ between 0° and 45°. (Figure 9)

With these graphs we can anticipate bigger discrepancies on models using the
compression-fitted Drucker-Prager criterion.

3.2 Criterion choosing process

We based our study on the comparison between the results of two models (2D and
3D). On both models we compute the stress-strain state using each different criteria.
We choose to present an associated plastic potential. A simulation with non-associated
potential gives similar comparison and conclusion.

On the geometry examined we calculated the final stress-strain state, for every
assumption on the criterion. We compared the results to the reference model which
uses a Mohr-Coulomb criterion with several meaningful measurements. We used the
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(a) Drucker-Prager compression-fit (b) Drucker-Prager extension-fit

(c) Drucker-Prager inscribed-circle fit (d) Matsuoka-Nakai

Figure 9: ∆φ as a discrepancy measure

following norm for the plastic strain.

εeff =

√
2

3
εp : εp (13)

We considered only plastic strains greater than 1E−5 in order to avoid numerical
artefacts due to the finite element interpolation.

During the studies we observed that ∆φ as a discrepancy measurement is not really
helpful for choosing the best fitted criterion, because of the localization of discrepan-
cies in the structure. To help with this we introduced "weighted discrepancies" in part
4.2.4 as a new measurement of discrepancies defined as the angle gap ∆φ multiplied
by the norm of the plastic strain εeff :

∆φw = |∆φ|εeff (14)
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We compared the following measurements:

• Total displacement on a particular meaningful point, frequently the maximal
total displacement

• Average plastic strain

• Proportion of plastified zones in the structure

• Total weighted discrepancies

4 Models and results

Throughout this study we will not present the results for the Drucker-Prager extension
fitted criterion because they are really close to those for the inscribed-circle fitted crite-
rion. Note that this is not a general rule: considering the three distinct Drucker-Prager
criteria may be useful for a different structure or with a different value of friction
angle.

4.1 Models

To illustrate the process we will compute stress-strain states on two railway track
models using different criteria. We will compare the results in order to choose which
criterion is the best to replace the Mohr-Coulomb criterion for the studies of a railway
track studies.

First, we built a simplified 2D geometry for the tracks. Our models use a 50 cm
high layer of ballast under the sleepers. We modelled the sleepers based on a twin-
block model. Each block is placed 50 cm away from the middle of the tracks. Blocks
are 60 cm long and 25 cm high. At the end of the sleeper we have 50 cm wide shoulder
and a 2/3 downward slope.

For the 3D geometry we use the same dimension for the tracks. The face is extruded
to build a quarter of a railway track, 3 m long, with two and half sleepers. Sleepers
are 25 cm wide and distributed every 60 cm.

We have also examined the results obtained with other models using different track
geometry and different sleeper and we obtain the same conclusions.

The ballast parameters are taken from Profillidis’[16] and Suiker’s[17] works. Young’s
modulus E = 110 MPa, Poisson’s ratio ν = 0.2, volumetric mass density ρ =
1.8 t/m3, internal friction angle φ = 40°. The ballast supposed cohesion-less (C =
0 Pa) but we take the value of 5 Pa, insignificant comparing to the loading, to avoid
zero division issues in plastic strain computation. The sleeper concrete is modelled
with Comsol’s standard materials parameters, E = 25 GPa, ν = 0.33, and ρ =
2.3 t/m3.
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(a) (b)

Figure 10: Used models

The 25 cm on the top of the geometry is supposed to have elastic behaviour, the
under layer is supposed to have elastic-plastic behaviour.

The load is static, monotonic, vertical and uniformly distributed at the top of the
sleepers. The axle load is distributed between the sleepers as the typical distribution
from V. Profillidis [16] (Figure 11). The maximum load is 0.3 MPa and the total load
correspond approximately to the maximum load of 20 t per axle. The 2D load is also
0.3 MPa. Gravity affects the entire structure.

Figure 11: Distribution of the load on the sleeper[16]

We used trapezoidal elements with distribution tools to control meshing. The ele-
ments are sized to be smaller near the load in order to limit the quantity of elements
and the computation time, but to remain accurate near the load (Figure12). The 3D
meshing elements are bigger to improve the convergence of the solution.

(a) (b)

Figure 12: Trapezoidal mesh used
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2D model
Used Criterion Maximal total displace-

ment (mm)
Difference with the ref-
erence model

Mohr-Coulomb criterion 0.823 -
Drucker-Prager compression
fitted criterion

0.784 −4.7%

Drucker-Prager Inscribed cir-
cle fitted criterion

0.880 +6.9%

Matsuoka-Nakai criterion 0.794 −3.5%

3D model
Mohr-Coulomb criterion 0.392 -
Drucker-Prager compression
fitted criterion

0.383 −2.3%

Drucker-Prager Inscribed cir-
cle fitted criterion

0.433 +10.5%

Matsuoka-Nakai criterion 0.386 −1.5%

Table 2: Maximal total displacement depending on the used criterion

4.2 2D and 3D Results

In this section we will measure the four parameters named in section 3.2, for each
model and each criterion and compare the measurements. We will also explain the
choice of some parameters.

4.2.1 Maximal total displacement

We measure and compare the maximal total displacement as the meaningful displace-
ment. It is measured under the sleeper. (Table 2)

(a) (b)

Figure 13: Total Displacement using the Mohr-Coulomb criterion

As expected, in both 2D and 3D models, the displacement for the inscribed-circle
fitted criterion is the biggest: the smallest is for the compression-fitted Drucker-Prager
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Used Criterion Average plastic defor-
mation (def )

Difference with the ref-
erence model

2D model
Mohr-Coulomb criterion 2.01E−4 -
Drucker-Prager compression
fitted criterion

6.43E−5 −68.0%

Drucker-Prager Inscribed cir-
cle fitted criterion

4.25E−4 +111.4%

Matsuoka-Nakai criterion 1.18E−4 −41.3%

3D model
Mohr-Coulomb criterion 2.06E−5 -
Drucker-Prager compression
fitted criterion

1.01E−5 −50.9%

Drucker-Prager Inscribed cir-
cle fitted criterion

5.94E−4 +188.3%

Matsuoka-Nakai criterion 1.36E−4 −34.0%

Table 3: Average plastic deformation depending on the used criterion

and the closest to the reference with the Matsuoka-Nakai criterion. But we can observe
that the result is closer to the reference with the compression-fitted Drucker-Prager
than with the inscribed-circle fitted one.

4.2.2 Average plastic strain

As explained in our previous work [6], comparing the maximal plastic strain is inap-
propriate. Because of this, we prefer to observe the average plastic deformation (Table
3).

Again, the inscribed circle Drucker-Prager criterion gives the least accurate re-
sults. Both compression-fitted Drucker-Prager and Matsuoka-Nakai criteria gives re-
sults with comparable accuracy.

4.2.3 Plastified zones

We showed the plastified zones on Figure 14. These representations are helpful to see
how sensitive the model is to the choice of criterion. We will not attempt to compare
these figures qualitatively. Instead, we can measure and compare the proportion of
plastified zones in the structure (Table 4).

We can see that the results are relatively close to one other excepted for the inscribed-
circle fitted Drucker-Prager Criterion. As with the others comparison parameters, the
Matsuoka-Nakai models give the closest result to the reference, and the compression-
fitted Drucker-Prager also gives good results.
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(a) (b)

Mohr-Coulomb criterion

(c) (d)
Compression-fitted Drucker-Prager criterion

(e) (f)
Inscribed-circle fitted Drucker-Prager criterion

(g) (h)
Matsuoka-Nakai criterion

Figure 14: Plastified zones in the structure
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Used Criterion Proportion of plastified zones in the
structure

2D model
Mohr-Coulomb criterion 53.1%
Drucker-Prager compression fitted
criterion

59.5%

Drucker-Prager Inscribed circle fit-
ted criterion

98.0%

Matsuoka-Nakai criterion 55.7%

3D model
Mohr-Coulomb criterion 30.7%
Drucker-Prager compression fitted
criterion

17.8%

Drucker-Prager Inscribed circle fit-
ted criterion

88.5%

Matsuoka-Nakai criterion 21.6%

Table 4: Proportion of plastified zones in the structure depending on the used criterion

More interestingly, it seems that the inscribed-circle fitted criterion gives the worst
result at each comparison parameter, whereas it is commonly selected as a "safer" fit.
Especially, in measuring the proportion of plastified zones, we can see that almost
all the structure is plastified. This is perfectly representative of the problem of the
inscribed-circle fitted Drucker-Prager criterion. It has modelled a material that is too
weak to represent realistic behaviour of railway ballast.

4.2.4 Weighted discrepancies

As we explore the discrepancy measurement as the angle gap [5] (equation 12), we
realised that this measure is not meaningful by itself because of the difference of
localisation, the positive or negative gap, etc. To avoid this problem, we introduced
weighted discrepancies (equation (14)) as a new measurement for discrepancies. We
designed this measurement as follows: if a small angle gap is associated with large
plastic strain, then the induced discrepancies are much greater. In contrast, even if the
angle gap is big, if it is associated with infinitesimal plastic strain, the discrepancies
induced are not significant.

Figure 15 show the weighted discrepancies measured in the 2D and 3D models.
We can see that the maximal weighted discrepancies are biggest for the compression-
fitted Drucker-Prager or Matsuoka-Nakai criteria. But for the same criteria these are
restricted to smaller areas. Conversely, for the inscribed-circle fitted Drucker-Prager
criterion, the weighted discrepancies are spread extensively.

Finally, we measure and compare the total weighted discrepancies in the structure

16
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Used Criterion Total weighted discrepancies
(rad.def.m2/rad.def.m3)

2D model
Drucker-Prager compression fitted
criterion

1.27E−5

Drucker-Prager Inscribed circle fit-
ted criterion

4.40E−5

Matsuoka-Nakai criterion 8.46E−6

3D model
Drucker-Prager compression fitted
criterion

2.25E−6

Drucker-Prager Inscribed circle fit-
ted criterion

2.51E−5

Matsuoka-Nakai criterion 1.59E−6

Table 5: Total weighted discrepancies depending on the used criterion

in order to compare the different models. (Table 5).

Comparison of this measure lead to the same conclusion, Matsuoka-Nakai give the
closest result to the reference, compression-fitted Drucker-Prager criterion gives also
good results and inscribed-circle fitted criterion gives the worst results.

4.2.5 Conclusion of the comparison

Finally, for both 2D and 3D models we reached the same conclusion for the four
comparison parameters. The Matsuoka-Nakai criterion gives the closest result to the
reference. And the compression-fitted criterion also gives a good approximation to
the result we can get with the Mohr-coulomb criterion. The inscribed-circle Drucker-
Prager criterion gives the worst result. We realised that this criterion is inappropriate
for modelling railway ballast, and the stress strain state we can compute using this
behaviour model is not reliable. In addition to this simple conclusion we can deduce
that, even though the inscribed-circle fitted Drucker-Prager criterion is commonly se-
lected as a "safer" fit, it can provide the least accurate results, and sometimes should
not be selected.

4.3 Computation time

The purposes of this study is to evaluate the impact of faster computation criterion.
But when we look at the computation times (Table 6), we see that the Matsuoka-Nakai
slowed the plastic strain computation, unlike the Drucker-Prager criterion which gave
faster computation times. While it is less close to the Mohr-Coulomb criterion, the
Drucker-Prager criterion can be useful to provide rapid approximation of material

17



PROOF(a) (b)

Compression-fitted Drucker-Prager criterion

(c) (d)

Inscribed-circle fitted Drucker-Prager criterion

(e) (f)

Matsuoka-Nakai criterion

Figure 15: Measurement of the weighted discrepancies in the structure
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behaviour, if it is wisely selected.

Computing times(s) 2D Model 3D Model
Mohr-Coulomb crite-
rion

68 250

Drucker-Prager com-
pression fitted criterion

40 190

Matsuoka-Nakai crite-
rion

75 321

Table 6: Computation times depending on the models

5 Drucker-Prager parametric study

In the previous section of this paper we showed that the compression-fitted Drucker-
Prager, surprisingly seems to be the best simple criterion to replace the Mohr-coulomb
criterion in our case. Because of the simple shape of the Drucekr-Prager criterion,
computation process will lead to the same computation time with any fitting parameter.
Based on this assumption we wonder if we can improve model Drucekr-Prager model
accuracy with other fitting parameters.

5.1 Parametrised Drucker-Prager

In this section we will look at a different way to fit the Drucker-Prager criterion onto
a Mohr-Coulomb criterion. We parametrized the Drucker-Prager Criterion in order to
link the two criteria at the point of a pre-set: θc Lode angle. (Figure 16)

σIσII

σIII

θc Parametrized fitθc

Figure 16: Drucker-Prager fitted onto a Mohr-Coulomb criterion
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Using equations (2) and (1) we can easily find the expression for α(θc) (Equation
(15))

α(θc) =
1

3

√
3 sin(φ)√

3 cos(θc)− sin(φ) sin(θc)
(15)

5.2 Stress state study

To help us to choose a fitted criterion and to understand previous conclusion, we study
the stress state in the structure. To this end, we computed the Lode angle on the elastic
models (Figure 17). This figure shows that almost the entire structure is in a pure
compression state, or close to one. When measuring we find the average Lode angle
to be 22° for the 2D model and 24° for the 3D model.

(a) (b)

Figure 17: Lode angle on the elastic models

From this measurement we can deduce that our previous conclusions are logical.
For these Lode angles the discrepancies measured as ∆φ are +4° and +3.5° respec-
tively for Matsuoka-Nakai almost, −11° and -10.5° for Drucker-Prager fitted to the
inscribed-circle and +6.5° and +5° for the compression-fitted Drucker-Prager (Fig-
ure 18). This means that in an average condition in our structures, in comparison
with φ = 40° for the ballast, we will over estimate the friction angle by 10% if we
use Matsuoka-Nakai, and by 13% if we use the compression-fitted Drucker-Prager.
But we will underestimate it by more than 25% if we use the Inscribed-circle fitted
Drucker-Prager.

With these measurements we can easily understand our result in the previous sec-
tion. Even thought the compression-fitted Drucker-Prager criterion generally gives
greater discrepancies, in our particular cases they are almost equal to those we obtain
with Matsuoka-Nakai. Conversely, the discrepancies are much more significant if we
use the inscribed circle fitted Drucker-Prager.

In the same stress condition we can minimise ∆φ by choosing θc equal to the
average stress state Lode angle. In our case we should choose θc = 22° and θc = 24°,
respectively in our two models. With these criteria, and in an average stress condition,
we do not miss estimated the shear resistance of the materials.

20



PROOF
(a) Drucker-Prager compression fit (b) Drucker-Prager extension fit

(c) Drucker-Prager inscribed-circle fit (d) Matsuoka-Nakai

Figure 18: ∆φ with a φ = 40° Mohr-Coulomb criterion

5.3 Parametric study

To confirm this supposition we will do a parametric study and compute the stress-
strain state using parametrized Drucker-Prager for each θc from 30° to 15°. Then we
will measure the four parameters of the comparison list of section 3.2, for each value
of θc in 2D and 3D models. The result are presented in Table7. In blue, we note the
average Lode angle for each 2D and 3D elastic model and in green we note the best
fitted result for each comparison parameter.
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θc
Meaningful total

displacement
Average plastic

strain

Proportion of
plastified zones in

the structure

Total weighed
discrepancies

2D (mm) (10−5def) (%) (10−5def.rad.m2)

MC 0.823 20.1 53.1 0.00
MN 0.794 11.8 55.7 0.86
30° 0.784 6.43 59.5 1.27
29° 0.786 7.32 65.5 1.27
28° 0.787 8.23 68.6 1.26
27° 0.789 9.18 72.9 1.24
26° 0.791 10.1 75.9 1.20
25° 0.793 11.1 77.8 1.17
24° 0.795 12.1 78.1 1.14
23° 0.798 13.0 78.5 1.12
22° 0.800 14.0 80.6 1.11
21° 0.802 15.0 81.7 1.11
20° 0.805 15.9 83.1 1.13
19° 0.807 16.9 83.8 1.15
18° 0.810 17.8 83.9 1.19
17° 0.812 18.8 85.0 1.19
16° 0.815 19.7 85.2 1.24
15° 0.818 20.7 85.9 1.37

3D (mm) (10−5def) (%) (10−6def.rad.m3)

MC 0.392 2.06 30.7 0.00
MN 0.386 1.36 21.6 1.59
30° 0.385 1.02 17.9 2.35
29° 0.386 1.15 20.2 2.24
28° 0.387 1.30 23 2.14
27° 0.388 1.45 25.3 2.09
26° 0.390 1.60 27.4 2.10
25° 0.391 1.76 29.4 2.19
24° 0.392 1.92 31.1 2.37
23° 0.393 2.08 32.5 2.61
22° 0.395 2.24 33.8 2.91
21° 0.396 2.39 35.1 3.27
20° 0.398 2.54 36.4 3.70
19° 0.399 2.69 37.3 4.18
18° 0.401 2.84 38.4 4.72
17° 0.402 2.98 40.0 5.31
16° 0.404 3.13 41.1 5.94
15° 0.405 3.26 42.8 6.59

Green: best fitted results; Blue: average Lode angle in elastic models

Table 7: Result for parametrised Drucker-Prager
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For the 2D model results, none θc parameters gives best fit on several measures.
But θc = 22° gives the minimal total weighted discrepancies. Moreover, except for
the proportion of the plastified zone, this θc parametrised Drucker-Prager gives even.
For the 3D model results, θc = 24° gives the best measurement on two parameters.
The two other parameters are also close to the best measurements. Moreover, except
for the total weighted discrepancies, this θc parametrised Drucker-Prager criterion is a
better fitted result to Mohr-Coulomb than Matsuoka-Nakai.

Alternatively and because the Matsuoka-Nakai criterion is considered to be closer
to the experimental results, we can also look for the best parametrised Drucker-Prager
to fit to the Matsuoka-Nakai. For the 2D model it seems that this is θc ≈ 25° and
θc ≈ 28° for the 3D models.

In any case, using a θc parametrised criterion could be useful to improve the fit of
a Drucker-Prager criterion onto a Mohr-Coulomb criterion.

We suggest fitting the Drucker-Prager criterion using θc equal to the average lode
angle measure on an elastic model (rapid pre-computation). Experimentally, and as
presented in the examples, those fitted criterion provides better results than those we
obtained from the compression-fitted Drucker-Prager on almost every comparison pa-
rameters. For most of these, results are even better with parametrised criterion than
with Matsuoka-Nakai.

6 Conclusion

To efficiently use numerical models to predict long-term behaviour of structures, we
need to reduce computation time. For geomaterial modelling, using an alternative
criterion is a means of achieving this. Replacing an angular criterion with a smooth
criterion is supposed to allow faster computation. But using too complex smooth
criterion, even if it provides better result from a physical point of view, could slow
down the computation, as we can see with the Matsuoka-Nakai criterion. Instead of
this, the compression-fitted Drucker-Prager criterion improves the speed of calculation
and gives comparable results to those obtained with the Matsuoka-Nakai criterion.

We can also use a θc parametrized Drucker-Prager criterion in order improve the
accuracy of the results and find a better fitted criterion. This method seems to be suc-
cessful using θc equal to the average Lode angle measured in the elastic models. With
this new criterion we can get betters result than those we obtain with the compression-
fitted Drucker-Prager or even the Matsuoka-Nakai Criterion.

Finally, we show that the obvious choice of the inscribed-circle fitted Drucker-
Prager criterion as an alternative for the Mohr-Coulomb, in order to improve safety
could severely over-estimated the plastic strain and reflect weak behaviour compared
to that expected. The choice of a Matsuoka-Nakai criterion is also not always ap-
propriate because it slows down the strain computation. Some other Drucker-Prager
criteria could be just as accurate and save computation time.

The choice of an alternative criterion must be argued with a specific study for
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each structure and loading considering their particular features. As an almost com-
pressive situation railway tracks should preferably be modelled with a compression-
fitted Drucker-Prager criterion as an alternative for the Mohr-Coulomb criterion, or
even better, a correctly θc parametrised Drucker-Prager criterion. We suggest to pre-
compute stress state and average lode angle on an elastic model. In our case we mea-
sure an average stress lode angle of 22° and 24° for 2D and 3D model respectively.
Those fitting parameters indeed provide better fitted Drucker-Prager criterion.

While the Drucker-Prager criterion represented a drawback from a physical point
of view, it is sufficient to obtain a good approximated model, combined with faster
computation and analysis.
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