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Abstract 

Neutrons and high energy ions create displacement cascades in materials, which have been 
simulated using Molecular Dynamics, for many decades now. The breakthrough of this work is 
to explore in a large statistics of more than 7000 cascades the relation between early cascade 
morphology and the final primary damage using a multivariate multiple regression analysis. 

For two energies in Fe and W, the total number of defects, the number of SIA and vacancy 
clusters and their full size distributions have been characterized using a multivariate multiple 
linear regression analysis based on 7 descriptors of the primary damage and 3 morphology 
descriptors. We find that the combination of the volume and the sphericity is significant. This 
analysis highlights several cascade properties, among them, that the large and spherical 
cascades create less defects and in particular, less mono defects than small and fragmented 
ones. 

13 interatomic potentials differing either by their equilibrium part or the way they were 
hardened have been included in this study and the multivariate analysis shows that the choice 
of potential has a limited influence on the total number of defects but a large one on the number 
of mono vacancies. On average, soft potentials create cascades of larger volume, smaller 
sphericity and producing more defects than hard potentials. 

Finally, the formation of vacancy clusters is different in Fe than in W. In Fe, the fraction of 
vacancies in clusters is larger than that of SIAs and larger vacancy clusters are created than SIA 
clusters. In W, it is the opposite. The reasons are the differences of stopping power and 
threshold displacement energies, which result in different spatial distributions of open volumes 
that form during the expansion stage of the cascade.  

Key words 
Radiation damage, Primary damage, Displacement cascades, Primary knock on atom, Metallic 
alloys, Empirical potentials, Multivariate multiple regression analysis. 

Highlights 
- Multivariate multiple regression analysis on a large cascade database 

- The cascade early morphology has a significant impact on the primary damage 

- The choice of potential has a larger effect on the number of mono vacancies 
than on the total number of defects 

- The number of defects predicted by the potentials for each element agrees with 
one another within a 50% margin. 

- All potentials predict similar SIA cluster sizes and vacancy cluster sizes that 
differ by a factor two at the most. 

- Potentials for Fe predict a larger fraction of vacancies in clusters, whereas 
potentials for W predict the opposite 
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- Soft potentials produce cascades which are less spherical, with more defects as 
well as more clusters.  

 

 

Graphical abstract  
  

 

 

  
  

  

 
 

Introduction 
The study of radiation damage, initiated by displacement cascade events has motivated and still 
motivates significant efforts to identify the mechanisms of damage generation and to predict 
the evolution of mechanical properties of materials under irradiation [1]. In the companion 
article to this one [2], the elementary energy transfer properties for primary damage generation 
in iron and tungsten has been studied using atomic scale modelling techniques, such as the 
binary collision approximation (BCA) and molecular dynamics (MD), as well as density 
functional theory (DFT). These atomistic techniques enable detailed investigation of 
fundamental interactions, as well as dynamics and complex many-body behavior.  
 
For the dynamic studies, there are several possible levels of sophistication, realistically starting 
from dynamic DFT, to semi-empirical MD, to BCA. Some fundamental properties can be 
addressed at the higher level of sophistication and cost but in order to perform larger dynamic 
studies, such as that of energetic displacement cascades, it is necessary to use less 
computationally costly methods, but to first validate and understand their range of applicability. 
Empirical interaction potentials (EIP) here provide an optimal middle ground in terms of cost, 
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reliability and physical accuracy. These are usually fitted to equilibrium and near-equilibrium 
properties of the intended material of interest.  
 
During displacement cascades the local compression conditions are often such that the atoms 
approach one another until they are much closer than what can be considered near-equilibrium. 
It is therefore necessary to extend, or harden, the potentials to include appropriate physics for 
very small distances. For the very short range, the Ziegler-Biersack-Littmark [3] (ZBL) model 
for the screened Coulomb interaction is well motivated and highly used, and it is spliced to the 
fitted equilibrium potential using some interpolation scheme. The choice of interpolation 
scheme is, however, usually much less well-motivated with often arbitrarily chosen knot points. 
Historically, a central idea for how to perform the hardening has been to make sure that the EIP 
would predict threshold displacement energies (TDE) in agreement with available experimental 
values. In the companion article to this one [2], there is an overview of the issues related to the 
choice of hardening methodology. 
Nowadays, the number of EIP available for Fe and W, including potentials with the same 
equilibrium part which have been hardened differently [2] allows important progress in the 
comprehension of the primary damage formation, compared to the first studies [4] of this kind. 
Furthermore, thanks to the increase of computing resources larger statistics are possible, 
allowing the production of meaningful distributions. The statistical analysis done on BCA 
cascades almost 20 years ago with 5000 to 15000 cascades [5] is nowadays accessible, thanks 
to high performance computing resources, with MD and thus with a much better description of 
the recombination phase of the cascade.  
 
In this work, we compare a large number of EIPs for damage production in tungsten and iron 
and continue the companion article [2] by expanding the energy range and complexity of 
phenomena studied. Based on a large statistical data base, we evaluate the characteristics of 
displacement cascades and the relation between the cascade morphology and the defect 
production. For this purpose, two categories of descriptors have been chosen: 
- three morphological descriptors for the cascades (the volume, the number of subcascades and 
the sphericity) 

- seven primary damage descriptors (the total number of defects, the number of mono vacancies 
and SIAs, the number of vacancy and SIA clusters and the maximum size of the SIA and 
vacancy clusters). 
Using these descriptors, the fraction of vacancies / SIAs in clusters and the mean vacancy / SIA 
cluster size can be easily obtained.  
 
The first section presents briefly the different numerical methods used. In the second section, 
the means and the variance of the descriptors, i.e. the characteristics of the cascades are 
presented. In the third section, we describe the main outcome of the multivariate multiple 
regression analysis. 
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I. Methods 

1) Modelling the displacement cascades 
 

Displacement cascades were simulated using the MD code DYMOKA [6] at 100 K for the 
cascade energies 80 keV for Fe and 50 keV for W using all the potentials in the micro 
canonical ensemble with periodic boundary conditions. The time-step was adjusted during the 
simulations and no electronic losses were considered, as is the case in most MD studies. 
Studies of the impact of taking into account the electron-phonon coupling have shown that 
strong electron-phonon coupling leads to the reduction of the number of defects as well as of 
the size of point defect clusters [7]. The purpose of this work is to compare potentials and show 
how properties correlate and thus neglecting electronic losses and electron phonon coupling is 
not an issue here. It means however that cascade energy is not the same as what is traditionally 
called the PKA energy. Indeed, in real materials, the PKA energy is partitioned into energy loss 
due to electronic stopping and elastic processes. The latter is called the damage energy and is 
the fraction of the PKA energy that produces defects [8]. In our MD simulations, the cascade 
energy is thus more like the damage energy than the PKA energy and we thus use the term 
damage energy to characterize the kinetic energy that is given to the PKA in our simulations.  
 
The choice of the simulation box size depends upon the energy of the PKA and was chosen to 
be large enough (respectively 120 × 120 × 120 and 96 × 96 × 96 bcc unit cells for Fe and W) to 
avoid the displacement cascade to interfere with itself by periodic overlap. Before initiating the 
displacement cascade, the system of particles was equilibrated for 3 ps at the chosen 
temperature. Variability was introduced by changing the initial distribution of the velocities 
(which follows a Maxwell distribution) as well as the PKA direction. The PKA directions were 
chosen to be representative of an average behavior. Stoller examined the influence of the PKA 

direction and showed that the 〈135〉 cascades should provide a reasonable representation of 

average behavior [8]. We have observed similar trends for 〈253〉 directions. The OVITO 

software is used for the 3D visualization [9]. 
 
6 (in Fe) and 7 (in W) empirical potentials have been used. For W, we have used four modified 
versions of the potential originally derived by Finnis and Sinclair [10]: one version modified by 
Mason et al. [11], that will be referred to as MN, one version modified by Juslin et al. [12], 
referred to as JW, one version modified by Derlet et al. [13] and hardened by Björkas et al. 
[14], referred to as DD and one derived by Ackland and Thetford [15] and hardened by Zhong 
et al. [16] referred to as AT. A new potential derived by C. Marinica et al. [17] and hardened in 
two different ways (softer and harder) by A. Sand [18] will be referred to as MS-s and MS-h. 
The potential derived by Mason et al. has also been hardened in two different ways also and the 
two versions will be referred to as MN-s and MN-h. 

For Fe, the potentials investigated will be referred to as MA10A for the MO7 potential initially 
published in [19], MEND10 for the potential derived by Ackland et al. [20] and CO21013, 
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CO21620 and CO30912 for potentials newly derived by Marinica et al. [21] and hardened in 
the companion paper [2]. 
 

2) Point defect and cluster characterization 

The point defect population and their clusters were estimated using a classical lattice site 
analysis. A cluster is defined by all entities, vacancy and self-interstitial atoms (SIA), within a 
critical distance. We chose for both elements a point defect cluster (PDC) capture distance, i.e. 
the vacancy (or interstitial) cluster capture distance for point defects between 2nn (nearest 
neighbor) and 3nn; more precisely, 3 Å for Fe and 3.5 Å for W. The net defect sum determines 
the cluster size which is used for the statistics of defect clusters. Note that the amount of point 
defects and the proportion of defects in clusters depend on the choice of this critical distance, or 
PDC capture distance. This issue will be discussed in the result section as well as in the 
supplementary materials. 
 

3) Cascade characteristics and subcascades 

The overall cascade morphological characteristics, i.e. their shapes and the number of 
subcascades produced, have been analyzed following the method proposed in [22]. At different 
moments of the simulation, the position and the kinetic energy of the atoms whose kinetic 
energy is above 0.1 eV (this guarantees that they are not at equilibrium and have thus been 
involved in collisions) is recorded. The simulation box is divided in cubic cells and the average 
kinetic energy is calculated in each cell. Cells where the average kinetic energy is larger than a 
specific criterion are considered to be part of the cascade. 

Subcascades are determined as regions separated from each other by cells where the average 
kinetic energy is smaller than the criterion. In [22], we showed that it is important to pick a 
value larger than 0 and smaller than the maximum energy that can be lost by the PKA in a 
small volume of material. A systematic study showed that the results do not vary much given 
that the energy criteria is close to the energy required to melt this volume and we chose 26 
eV/nm3. For the analysis in this work, the subcascade decomposition was taken at the 
maximum expansion of the cascade, the edges of the cubic cells were 1.5 nm for W and 1.0 nm 
for Fe. We chose to compare 50 keV cascades in W and 80 keV cascades in Fe in order to 
compare cascades of similar volumes, in two different damage energy regimes. The volumes 
were chosen to be large enough to contain clusters that are big enough for statistical analysis. 
50 keV cascades in W correspond to the single cascade regime as the damage energy is lower 
than the average subcascade energy formation threshold (W: 75 keV [22]); whereas in Fe, 80 
keV is well above the subcascade threshold (15 keV [22]) and subcascades are formed. 

The cascade volumes and surfaces have been calculated using our decomposition method. The 
cascade volume V is the sum of all the cubic cells and its surface γ is the number of external 
facets of the cubes forming the subcascades. Note that, with this method, the volumes and 
surfaces obtained depend on the cube size chosen but further studies of this is beyond the scope 
of this paper and our purpose here is to compare cascades obtained with the different potentials. 
Instead of considering the surface, we calculated the cascade sphericity, defined as:  

� = �
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�
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II. Results 
In what follows, we will characterize the primary damage using 7 descriptors for each cascade: 
- nDef, the total number of defects 
- monoV, the number of mono vacancies 
- monoI, the number of mono SIA 
- nClusterV, the number of vacancy clusters 
- nClusterI, the number of SIA clusters 
- maxSizeV, the maximum size of the vacancy clusters 
- maxSizeI, the maximum size of the SIA clusters. 
 
Using these descriptors, other characteristics of the primary damage can be obtained: for 
example, the fraction of vacancies in clusters is (nDef –monoV)/(nDef) and the mean vacancy 
cluster size is (nDef - monoV)/(nClustersV). Note that the variance of these combinations is 
unfortunately not that simple to obtain because of the covariances.  
 
The cascade morphology is described by 3 descriptors: 
- vol, the cascade volume 
- nbSC, the number of subcascade 
- sphericity, the cascade sphericity.  
 
Thanks to the large number of cascades (see Table S1 in the supplementary material) we 
obtained accurate means of the descriptors and, more important, we explored their distributions 
(see Figure S1 in the supplementary). Interestingly, some distributions are neither symmetrical 
nor normal distributions, in particular for the maximum cluster sizes. For the sake of brevity, 
we will not enter into details here. To take into account the shape of the distributions on the 
plots, we use first and third quartiles and stress that the variance of the descriptors is the key 
point of the multivariate multiple regression analysis. 
 
An important remark is the impact of the PDC capture distance chosen: here 0.3 nm for Fe and 
0.35 nm for W. This point is discussed in detail in the supplementary material which presents 
the evolution of the mean of the primary damage descriptors as a function of the PDC capture 
distance varying from 0.3 nm to 1 nm, as well as a discussion of how it impacts differently each 
descriptor and each element (Fe or W). The sensitivity of the primary damage descriptors to the 
PDC capture distance is related to the spatial distribution of the defects. 

 

1) Primary damage 

Figure 1 sketches the distributions of the primary damage descriptors for displacement 
cascades with 80 keV damage energy in Fe (a) and 50 keV damage energy in W (b). Box-and-
whisker plots, a typical method of descriptive statistics, have been used. The median, the first 
and third quartiles, the left and right tails and the individual outlying cascades are represented. 
When the median is not in the middle, the asymmetry of the distributions is revealed, 
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particularly for the cluster maximum sizes. The interquartile range is an indication of the 
standard deviation. Considering that the standard error of the mean which scales reciprocally to 
the square root of the number of cascades (larger than 100), is by one order of magnitude 
smaller than the standard deviation, one can be convinced that the mean is accurately captured 
by our dataset. One also observes that the data sets have a relatively large variance. 

  

 
 

 

(a) Fe  

 

 

(b) W  

Figure 1: Primary damage created in a (a) 80 keV cascade in Fe and (b) a 50 keV cascade in 
W: total number of point defects, total number of mono defects, number of defect clusters and 
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defect clusters maximum sizes. Distributions are compactly displayed by box-and-whisker 
plots with five summary statistics: the median, the first and third quartiles (hinges), ~1.5 
interquartile range from the median (whiskers which include95 % of the points) and "outlying" 
points shown individually.  
 

As could be expected, we find that the potentials with the lowest TDEs (CO21620, MEND10 
for Fe and MN-s and MS-s for W, see the companion paper [2]), i.e. the softest potentials 
predict more residual defects in agreement with [18] [23]. Overall, though, the number of 
defects predicted by each potential agrees with one another within a 50% margin. 
Our data also show that, in Fe, the fraction of vacancies in clusters is higher than the fraction of 
SIA in clusters (i.e., there are more mono SIAs than mono vacancies). More than 70% of 
vacancies are in clusters except for MEND10 and MA10A. In W, it is the opposite: there are 
more mono vacancies than mono SIAs.  

Figure 1 also underlines that displacement cascades in Fe and W create more SIA clusters than 
vacancy clusters, except for MEND10 and MA10A and that the soft potentials for W predict 
more clusters than the other potentials. 
 

A clear correlation between the average number of point defects (for a PKA of given energy) 

and the mean TDE values along the 〈100〉, 〈110〉 and 〈135〉 directions can be seen in Figure 

2 where the lines are regression fitted power laws (guide for the eyes) for the mean number of 
defects created versus the mean TDE value. The lower the TDE, the higher the number of 
defects. The correlation is even much better when the data corresponding to the DD potential 
for W is removed. Note that there are no reasons to believe that the behavior of this potential, 

which exhibits several energy barriers in the RCS along 〈111〉 (Figure S2 of the 

supplementary material of paper I [2]), is realistic. 

  

  

(a) Fe (b) W 

Figure 2: Mean number of defects created by a 80 keV cascade in Fe (a) and 50 keV 
cascade in W (b) versus mean TDE energy. The lines are regression fitted power laws. The 
data obtained with DD potential has been omitted. 

 

Along the 〈111〉 direction, no such correlation is found, most probably because of the fact that 

this direction being close packed, the energy transmission is mostly 1D and thus does not 
represent well what happens in cascades.  
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The average point defect cluster size distributions are represented in Figure 3. The distributions 
show the typical power law which vanishes at the maximum cluster size [24] with a bump 
which is a due to the distribution of the largest defect in each cascade [25]. These data clearly 
show that soft W potentials predict the smallest clusters. 
 

  
(a) (b) 

  
(c) (d) 

Figure 3: point defect cluster size distributions in 80 keV displacement cascades created in 
Fe (a) and (c) and 50 keV displacement cascades created in W (b) and (d). (a) and (b): 
vacancy cluster, (c) and (d): SIA cluster. The bin width increases exponentially and each data 
point corresponds to the sum of all the clusters having a size within the bin, divided by the 
bin width and the number of cascades. The vertical bars correspond to the standard error. 
 

 
The primary damage descriptors also describe the cluster size distribution: the number of mono 
defects is the value for the smallest size equal to 1 (low limit), the number of clusters is the area 
below the distribution, the total number of defects is the integral of the distribution times the 
cluster size and finally, the maximum size of the clusters is related to the distribution tail (large 
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limit). The value for which the distribution drops (see Figure 3) is not only related to the mean 
value but also the variance of the maximum size, which is particularly large (see Figure 1). 
In agreement with the box-and-whisker plots of maxSizeI and maxSizeV, we can see that in Fe, 
the size for which the size distribution vanishes is larger for vacancy clusters than for SIA 
clusters. In W, however, it depends on the potentials.  
 
There are interesting correlations between the VAC and SIA clusters, between monoV and 
monoI but also between the maxSizeV and maxSizeI as can be seen in Figure 4. This indicates 
that cascades which create large SIA clusters, also create large vacancy clusters and vice versa, 
as previously pointed out by Calder et al.[26].   
 

(a) 80 keV cascades in Fe (b) 50 keV cascades in W 
Figure 4: Maximum SIA cluster size vs maximum vacancy cluster size for all the potentials. 
Each point corresponds to one cascade, the solid curves are the 95% isocontour of the kernel 
density estimation, which estimates the region containing 95% of the cascade and the highest 
density of points. The points which lie outside the solid lines are cascades with extreme values.  
 

 

2) Cascade morphology: cascade volume, sphericity and number of subcascades 

Figure 5 represents the means and the first and third quartiles of the volumes, number of 
subcascades and sphericities, at the maximum cascade expansion. As expected from our choice 
of damage energy for this study, we find that the great majority of 50 keV cascades in W form 
one compact core, whereas for 80 keV Fe cascades, the number of subcascades is much larger. 
In W the energy chosen in this work is below but close to the fragmentation energy. Here, most 
of the cascades consist of one main subcascade decorated by one small subcascade. See [22] for 
a description of the subcascade volume distributions and the spatial correlation distance 
between subcascades.  
 
On average for all the potentials studied, the number of subcascades is 1.48 for 50 keV W and 
7.34 for 80 keV in Fe. Considering that there is a shift due to the absence of electronic losses in 
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this work, these numbers are in agreement with our work done on BCA cascades which gave 
the fragmentation energy equal to 15 keV, resp. 75 keV for Fe, resp. W [22]. The fragmentation 
is also captured by the sphericity: a volume v distributed in n identical spheres decreases as n-

1/3. In Fe, the cascades are more fragmented and the sphericity is lower than in W.  
  

 

 
 

 

(a) Fe (b) W 
Figure 5: Morphology descriptors for 80 keV cascades in Fe (a) and 50 keV cascades in W 
(b) at the maximum expansion of the cascades. Distributions are compactly displayed by 
box-and-whisker plots, with five summary statistics: the median, two hinges (corresponding 
to first and third quartiles), two whiskers (not further than 1.5 interquartile range from the 
median and which include 95 % of the points) and "outlying" points shown individually. 
 
In W, the soft potentials, MS-s and MN-s, produce cascades with the largest average volume 
but their sphericity is the smallest because they are fragmented (indicated by nbSC larger than 
one). Our data also show that the fragmentation energy depends on the hardness of the 

potential. An explanation for this behavior may be found in the RCS analysis along 〈111〉. Soft 

potentials tend to transfer kinetic energy perpendicular to the RCS direction, at lower energies 
than the other potentials, i.e. the energy transfer regime change takes place at lower energies 
(Table 3 and Figure 6 of the companion paper [2]), this indicates that given a distribution of 
energies in the cascade, for the soft W potentials, the threshold to channel away energy at long 
distances through RCS or focuson is much lower, so there should be more subcascades. For the 
Fe potentials, on the other hand, no real difference regarding the subcascade sizes can be 
observed, however, the softest potentials in Fe are not as soft as the softest potentials in W.  

3) Correlation between cascade properties and morphologies 

Having such a database at hand, it was tempting to look for correlations between cascade 
properties. In Figure 6 are correlation plots of the number of vacancy clusters (nClusterV) as 
well as the volume (vol), with the number of mono vacancies (monoV), in Fe; and of the 
sphericity as well as the number of defects (nDef), with the number of mono vacancies 
(monoV) in W. These plots show that, in Fe, small cascades containing the largest amount of 
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mono vacancies also have the largest number of vacancy clusters. In W, this correlation is 
observed for cascades of high sphericity rather than large volume, and the trends are more 
potential dependent (i.e. the clouds corresponding to each potential do not have the same 
slope).  

  

  
(a) (b)  

Fe 

  
(c) (d)  

W 
Figure 6: correlation between descriptors: (a) volume versus number of mono vacancies in 
Fe (b) number of vacancy clusters versus number of mono vacancies in Fe. (c) sphericity 
versus number of mono vacancies in W (d) number of defects versus the number of mono 
vacancies in W. The solid curve is the 95% isocontour of the kernel density estimation which 
estimates the region containing 95% of the cascade and the highest density of points. The 
points which lie outside the solid lines are cascades with extreme values. 
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4) Models and MANOVA 

After having looked at correlations, for all potentials, between our 10 descriptors (and others 
not presented here), we tested linear and non-linear models to explain the primary damage 
properties with an increasing number of explanatory variables. We analyzed the p-values which 
indicate the confidence one can have in the model (the smaller the value, the larger the 
confidence) and R-squared, R2

, that evaluates (in %) how much of the variance of the response 
variable is explained by the explanatory variable. The results have been analyzed in details, 
potential by potential, as well as averaged on all potentials and variables. Table S4 in the 
supplementary provides examples of the models we tested, and the fraction of experiments (one 
experiment being one potential and one variable) whose p-value is below 0.01, n0 and R2. 
Interestingly, in the supplementary are the radar plots of R2 which indicate that a linear model 
including volume and sphericity is the best option. 

The main outcomes of our investigations are:  

- linear models are the best compromise between simplicity and prediction capacity, 

- in general, the morphological descriptor sphericity performs better than the number of 
subcascades, 

- the combination volume + sphericity, is better than each taken individually. 

- monoV and monoI have the largest R2, hence a large sensitivity to the cascade morphology at 
the maximum expansion 

In order to rationalize our findings, we present, in what follows, a multivariate multiple linear 
regression analysis. This multivariate analysis of variance (MANOVA) considers: 

- the potential: one categorical variable pot with 6 levels for Fe and 7 levels for W 

- seven continuous variables of the primary damage, the total number of defects, nDef, the 
number of mono vacancies, monoV, the number of mono SIAs, monoI, the number of 
vacancy clusters, nClusterV, the number of SIA clusters, nClusterI, the vacancy cluster 
maximum size, maxSizeV, the SIA cluster maximum size, maxSizeI. 

- two continuous variables describing the morphology, the volume, vol and the sphericity, 
sphericity. 

- one discrete variable describing the morphology, the number of subcascades, nbSC. 

We first consider the MANOVA based on pot alone. The global p-value is very low which 
proves the effect of the potential on the primary damage. Indeed, the p-value gives the 
probability of the null hypothesis, i.e. the probability that the difference between the means of 
two sets of data, has been found by chance. The probability is large if 1/ the means are similar, 
2/ the variance is large and 3/ the number of data is too small, which indicates that no 
conclusion can be drawn. 

The impact of the potentials on the primary damage is confirmed for all variables. This means 
that one pair of two potentials does give different means for the response variables. Note that 
the conclusion would be different if we decreased the number of cascades in the data set. For 
example, in Fe, if one takes only 20 cascades per potential, the confidence of an effect of the 
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potential on the mean of one descriptor decreases drastically: the p-value = 98% for the volume 
(because the mean values are close to each other) and the p-value = 3% for the maxSizeV and 
maxSizeI (because of their large variance). We now look for the percentage of the full dataset 
variance explained by the potentials. Table 1 compares the variance for the full data set 
containing all the cascades obtained with all the potentials (2733 cascades for Fe and 4283 
cascades for W), the variance of the residuals with the pot analysis and the R2, the % of the full 
dataset variance explained by the potentials. 

Table 1: variance of the primary damage descriptors for the full data set (Var_full), variance of 

the residuals with the pot analysis (Var_pot), � = 1 −
������

�������
, % of the variance explained by 

pot. The color indicates if potentials are strongly or not responsible for the variance of the full 
data set.  

 nDef monoV monoI nClusterV nClusterI maxSizeV maxSizeI 

Fe        

Var_full 1595.3 1009.2 617.0 53.5 31.3 1893.9 536.5 
Var_pot 1043.4 270.0 447.5 38.5 20.1 1667.2 482.2 

R2 35 73 27 28 36 12 10 
W        

Var_full 553.3 325.7 212.9 14.4 18.5 81.3 110.1 
Var_pot 284.7 101.0 80.7 9.7 9.3 72.3 75.8 

R2 49 69 62 33 50 11 31 
 

  strong impact of the potential 
  medium impact of the potential 
  small impact of the potential 
 

Interestingly, Var_pot can be seen as an intrinsic variance due to the variation from one cascade 
to another within each potential dataset. R2 in Table 1 compares the variation due to the 
potentials and the intrinsic variation, and its values indicate that there are 3 categories of 
variables: 

- monoV (and monoI for W) which has a larger variance due to the potential than the intrinsic 
variance. 

- nDef, (monoI for Fe), nClusterV, nClusterI (and maxSizeI in W) which exhibit a variance due 
to the potential similar to the intrinsic variance. 

- maxSizeV (and maxSizeI for Fe) which has a larger intrinsic variance within the full database 
than the one due to the potentials. 

These findings indicate that all potentials agree on the total number of defects and it 
furthermore draws attention to the vacancies. We previously showed that the fraction of 
vacancies in clusters depends on the material. The analysis here adds clearly that this property 
is highly potential dependent.  

The large intrinsic variations of maxSizeV and maxSizeI agree with their broad distributions. 
One immediate consequence is that the number of cascades necessary to get accurate results is 
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large; the other one is that it can hide the impact of the potentials on these two properties, hence 
the need to use statistical tools. 

In the next step, we increase the number of terms in the function that is used in the analysis. 
Now the reference is the analysis with ‘pot’ alone and we investigate the effect of the volume 
(analysis “vol +pot” compared to “pot”), the effect of the sphericity (analysis “sphericity+pot” 
compared to “pot”) and the effect the number of subcascades (analysis “nbSC + pot” compared 
to “pot”). 

Table 2 presents the variance of the residuals for the three analyses. By comparing the new 
variances of the residuals to the ones obtained with the analysis “pot”, we obtain the % of 
variance explained by one aspect of the morphology. The results are given in Table 2.  

For both Fe and W, we find that the volume and the sphericity have a significant explainability 
however, volume performs better in Fe and sphericity in W. 

 

Table 2: Variance of the residuals and R2 for the “vol+pot” analysis compared to the “pot” 

analysis, Var_vol+pot, � = 1 −
��� �������

������
; for the “sphericity+pot” analysis, 

Var_sphericity+pot, � = 1 −
������ !"#"�$����

������
 and for the “nbSC+vol” analysis, Var_nbSC+pot, 

� = 1 − %&
�'()*+,���

������
. The cells colored in red indicate the morphological descriptor which 

explains the best the variables.  

 nDef monoV monoI nClusterV nClusterI maxSizeV maxSizeI 

Fe        
Var_vol+pot 990.6 177.5 244.1 24.9 17.9 1531.8 457.2 

R2 5 34 45 35 11 8 5 
Var_sphericity+pot 1031.3 216.0 361.9 32.1 17.5 1338.4 405.8 

R2 1 20 19 17 13 20 16 

Var_nbSC+pot 1009.6 205.0 307.6 29.3 18.0 1556.7 462.5 
R2 3 24 31 24 11 7 4 
W        

Var_vol+pot 257.9 91.7 72.0 9.1 8.8 72.1 75.6 
R2 9 9 11 6 5 0 0 

Var_sphericity+pot 277.9 80.5 61.4 9.5 8.6 67.5 70.2 
R2 2 20 24 1 8 7 7 

Var_nbSC+pot 268.8 90.8 71.5 9.4 8.7 72.3 75.7 
R2 6 10 11 3 7 0 0 

 

Finally, we combined 2 morphological descriptors simultaneously and for completeness, all 
three descriptors together. The reference remains the ‘pot’ analysis. The new R2 are presented 
in Table 3. In general, they are larger than in Table 2 and in fact they are equal to the sum of 
the corresponding R2 in Table 2, despite the fact that we found some correlation between the 
three morphological predictors. Note that taking the three descriptors together does not increase 
the R2. 
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Table 3: variance of the residuals and R2 for the “vol+sphericity+pot” analysis, 

Var_vol+sphericity+pot, � = 1 −
��� ����-�./�010�2����

������
; for the “vol+sphericity+nbSC+pot” 

analysis, Var_vol+sphericity+nbSC+pot, � = 1 −
��� ����-�./�010�2�3456����

������
.  The cells 

coloured in red indicates which combination of morphological descriptors explains the best the 
variance of the primary damage descriptors.  

 nDef monoV monoI nClusterV nClusterI maxSizeV maxSizeI 

Fe        
Var_vol + sphericity+pot 977.8 125.4 162.3 18.8 15.3 1209.1 382.1 

R2 6 54 64 51 24 27 21 

Var_vol + 
sphericity+nbSC+pot 

974.6 125.2 161.5 18.8 15.3 1209.1 381.9 

R2 7 54 64 51 24 27 21 
W        

Var_vol+sphericity+pot 252.3 72.3 53.8 9.0 8.1 67.2 69.8 
R2 11 28 33 7 12 7 8 

Var_vol+sphericity+nbSC+pot 251.3 71.6 53.3 9.0 8.0 67.2 69.8 
R2 12 29 34 7 14 7 8 

 

One interesting result is that the number of subcascades, nbSC, has no impact or very little 
impact on R2. The number of subcascades is a descriptor which comes naturally to mind as it is 
easy to imagine that fragmented cascades do not produce the same sort of primary damage as 
compact ones. Furthermore, one would expect a multiple core cascade to not cool down the 
same way as a compact core cascade and that possibly, subcascade interaction would take 
place. However, our results show that it is not a good descriptor. Possible reasons are its integer 
nature which in our case implies a limited variation, especially for W and the fact that it does 
not capture the shape of the subcascades. These results are consistent with the discussion in 
[28] where the authors investigate the impact of subcascade formation. On the contrary, the 
sphericity, as we calculate it, is sensitive to the number of subcascades, has a large range of 
possible values and its variance is similar to the variance of the volume (6 - 15%).  

In the multivariate multiple linear regression analysis presented here, the interpretation of the 
regression coefficients is not trivial. On the one hand, our variables are not normalized and on 
the other hand, there is a non-negligible covariance between volume and sphericity. However, 
we observed that the coefficients of models with two morphological variables are similar to the 
ones in models with one morphological variable, indicating that the effect of volume and 
sphericity simply adds up. The sign of the coefficients, however, provides information on the 
correlations: a positive value means that there is a correlation between the data, and a negative 
value, indicates anti correlation. 

The signs of the coefficients are presented in Table 4. Our results show that the larger the 
cascade and the more spherical, the lower the number of defects, the number of mono defects 
and the number of clusters.  

Table 4: sign of the coefficients for the “vol” and “sphericity” variable in the multivariate 
multiple linear regression analysis.  
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 nDef monoV monoI nClusterV nClusterI maxSizeV maxSizeI 

Fe        
Sign of the 
coefficient for the 
« vol » variable. 

− − − − − + + 

Sign of the 
coefficient for the 
«sphericity» variable 

+ − − − − + + 

W        
Sign of the 
coefficient for the 
« vol » variable 

− − − − − − − 

Sign of the 
coefficient for the 
«sphericity» variable 

− − − − − + + 

 

The analysis of the sign shows thus that in Fe and W, the large cascades create less defects, less 
mono defects and less clusters. A difference can be noticed between Fe and W about the effect 
of the sphericity on the number of defects. This comes from one of the W potentials, DD, for 
which, the most spherical cascades give more defects, more mono vacancies (monoV) but less 
mono SIAs (monoI) and more clusters with larger maximum sizes (maxSizeV and maxSizeV) 
in contrast with the correlations revealed by the other potentials. The clouds of cascades for 
MS-h and DD potentials are compared in Figure 7. The possibility of atypical cascades is not 
excluded as it seems that there is one cloud of cascades with a slight negative correlation and a 
less dense cloud of spherical cascades creating a particularly large number of defects and thus 
reversing the sign of the correlation. These two clusters of data are clearly visible on Figure 7. 
A simple linear regression cannot capture this aspect of the data which requires the 
combination with a clustering algorithm. 

 

(a) MS-h (b) DD 

Figure 7: correlation plots between the number of defects (nDef) and the sphericity for MS-h 
(a) and DD (b). The red lines correspond to simple linear regression between the two 
variables. For DD, two clusters of points are visible; the points which are within the grey lines 
correspond to atypical cascades and are responsible for the positive correlation with a simple 
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linear model. 

 

An interesting result is that, overall, R2 are better for Fe than for W which indicates that the 
cascade morphology has a stronger impact in Fe than in W. Another result is the R2 for the total 
number of defects, which is lower than the ones of the mono defects (particularly in Fe). This 
latter point is also probably a consequence of the occurrence of “atypical” cascades. The weight 
of atypical cascades probably depends on each variable. A dedicated study with a clustering 
algorithm is required. The R2 for the maxSize are not very good either, however this can be 
related to their large variance. 

The difference in R2 between Fe and W does not arise from the fact that we chose different 
effective energies and thus from the fact that the two materials were observed in two different 
fragmented states. Indeed, fragmentation is taken into account into the model, since one of our 
descriptors is the sphericity and another one the number of subcascades. Furthermore, we did a 
similar R2 analysis on cascade energies below the fragmentation limit in Fe with the MEND 
potential, and the predictability was similar to the results obtained at 80 keV despite the fact 
(and this is important) that the point defect clusters were small and thus the conditions very 
different from our present analysis. This, we believe, shows that it is not the fragmentation 
level which degrades the R2. 

The difference between 100% and the obtained R2, indicates that there are some aspects of 
randomness of the cascades that are not accounted for in our analysis. It may be not related to 
the cascade morphology. However, one possibility is still that the maximum expansion of the 
cascade may not be the only crucial moment of the cascade development and it could be thus 
interesting to analyze other moments of the development. Furthermore, we did not include a 
descriptor of the subcascade spatial correlation in our models.  

III. Discussion 
 

1) Comparison with literature 

Some of the results presented here seem at odds with most of what has been previously 
reported for iron from MD simulations using similar potentials. Indeed, it has generally been 
observed, in Fe, that the fraction of vacancies in clusters is much lower than that of interstitials 
and that larger interstitial clusters are formed than vacancy clusters. Our results indicate that for 
all the Fe potentials, the fraction of vacancies in clusters is higher (more than 70 % of vacancies 
are in clusters except for MEND10 and MA10A) than the fraction of SIAs in clusters (Figure 

1) and that the largest clusters are always vacancy clusters in Fe (Figure 3).  
To start the discussion, it is necessary to first point out that the large majority of results for Fe 
in the literature has been obtained with other and older Fe potentials. The only Fe potential we 
can compare our results to is the Mendelev potential (MEND10) for which we predict that the 
amount of vacancy in clusters is close to that of SIAs for reasonable PDC capture distances, i.e. 
capture distances lower than 0.5 nm.  
We believe that there are many reasons behind the discrepancy regarding whichever point 
defect tends to cluster the most and form the largest clusters in Fe: 



20 

 

 
- The statistics: the data presented in our paper have been obtained with statistics on 1960 
80 keV cascades in Fe (for MEND10). Aliaga et al. [29] presented the results of 14 cascades in 
bulk Fe, Byggmastar [23] database contained 50 cascades of 100 keV and Terentyev [30] had 
10 cascades per damage energy.  
- The PDC capture distance: the data presented in our paper have been obtained with a 
similar PDC capture distance for SIA and vacancies, taken to be between 2nn and 3nn. Aliaga 
et al. [29] presented the results of 14 cascades in bulk Fe with a PDC capture distance between 
1nn and 2nn for both SIA clusters and vacancy clusters, whereas Byggmästar and Sand used 
(2nn+3nn)/2 for vacancies and (3nn and 4nn)/2 for SIAs [23], i.e. they used a larger PDC 
capture distance for SIAs than for vacancies. Terentyev [30] used a visual inspection method to 
extract the number of SIA clusters as “it has been observed that automated procedures tend to 
provide somewhat smaller fractions of SIA in clusters”. 

- The data analysis: if one represents our data, using exactly the same bins as 
Byggmastar, we also find that SIA clusters are larger and more numerous than vacancy 
clusters. However, if one, because of the statistics, has access to longer distribution tails, the 
results are different. 

 
To illustrate this, we picked 50 randomly chosen 100 keV cascades done with the Mendelev 
potential and used the representation in bins chosen by Byggmastar et al. [23]. The results are 
presented in Figure S3 in the supplementary and show that, we, also, find that there are more 
SIA clusters than vacancy clusters.  
 
Another possible difference is the fact that our calculations do not take into account the 
electronic stopping power (ES); however, Sand et al. [31] clearly showed that, at least in W, the 
ES did not change much the ratio of the fraction of vacancy in clusters to that in SIA in clusters 
which was close to 0.3 (Table 1 in [31]) for the DD potential. Another difference between the 
results obtained by Byggmästar and ours is the fact that their simulations were run at 0 K, 
extracting the heat, whereas our cascades were simulated at 100 K, without any removal of the 
heat.  
Finally, let us add that one of the first displacement cascade simulation in Fe, done by Beeler 
[32] using a potential derived by Erginsoy and co-workers [33] showed that, for damage 
energies ranging from 0.5 keV to 20 keV, close to 66 % of the vacancies were in clusters.  
 
Our work thus shows that the methodology used until now by many groups to identify two 
defects as belonging to the same cluster, which relies only on the distance between the defects, 
is not sufficient to properly characterize the cluster. Indeed, beyond the number of point 
defects, the shape (loops, C15 and all kinds of imperfect structures) is also very important, 
raising the question of the classification of defects as shown for instance in [34,35]. Here, we 
describe in detail our methodology to be able to compare with the work reported in the 
literature, but the purpose here is not to propose a new methodology which would require a 
significant amount of statistics and which is out of the scope of the present study. 
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2) Comparison between damage prediction in W and in Fe 

 
We have compared the primary damage obtained in W and Fe predicted by 6 and 7 potentials, 
respectively. We compare 50 keV cascades in W and 80 keV cascades in Fe. As mentioned 
previously, with this choice we compare cascades of similar volume but in two different 
damage energy regimes. 50 keV cascades in W correspond to the single cascade regime more 
or less, whereas in Fe, 80 keV is well above the subcascade threshold (15 keV [22]) and 
subcascades are formed. It is far from straight forward to compare Fe and W in the same 
fragmentation conditions because it would imply very different subcascade volumes. 
Furthermore, W and Fe have a range of more significant differences (atomic mass, melting 
temperature, ...). We are aware that some questions will thus remain unanswered until we 
report more comparisons with, for instance, other cascade energies.  
 
We find that the number of defects predicted by all the potentials is three times larger in Fe 
than in W in agreement with the TDE and the damage energy differences between the two 
materials. 

Regarding the fraction of defects in clusters, we find that in Fe, more vacancies than SIAs are 
in clusters (i.e., there are close to twice more mono SIAs than mono vacancies) in agreement 
with the picture that vacancies are created in the cascade core and thus they lie closer to one 
another. In W, it is the opposite: there are more mono vacancies than mono SIAs, i.e. the 
fraction of clustered SIAs is higher than the fraction of clustered vacancies. This later result is 
in agreement with what Fikar et al. [36] observed using the DD and AT potentials. Sand et al., 
[31] in a study of the impact of electronic stopping power in W, using the DD potential also 
found that, whatever the stopping power value they chose, the clustered fraction of SIAs in W 
was higher than that of vacancies. Setyawan, with three different W interatomic potentials [37], 
also observed a larger clustered fraction of SIAs but a smaller clustered fraction of vacancies. 

The difference in clustering behavior is not due to temperature. Indeed, as W and Fe have very 
different melting temperatures, one can argue that our simulations were not done at the same 
temperature. However, according to Gao et al. [38], Stoller [39] and Setyawan et al. [37] higher 
temperature tends to increase the clustering fraction of SIAs. Furthermore, according to 
Setyawan, the impact of temperature in the clustering behavior is asymmetric: the SIA 
clustering increases with temperature, while the vacancy clustering decreases. Therefore, in Fe, 
where the cascades were simulated at a ‘higher relative temperature” than W, there should be 
more SIA clustering and less vacancy clustering. Temperature is therefore not the reason 
behind the difference in clustering behavior. 
Examination of the evolution of the number of clusters during the cascade development shows 
that they exist quickly (before the first ps). For both Fe and W, the fraction of mono SIAs 
decreases during the full cascade process, because SIA clusters continuously form by 
agglomeration of the very mobile SIAs which also eliminate vacancies. However, the evolution 
of the fraction of mono vacancies is not similar for Fe and W. In W, it increases continuously, 
whereas in Fe, except for MEND10, which behaves similarly to W in that regard, it decreases 
in a manner similar to the population of SIAs. Thus, the fact that the fraction of vacancies in 
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clusters is larger than the fraction of SIA in clusters in Fe (and the opposite in W) is the 
consequence of a continuous process initiated at the early stage of the cascade.  

We looked at the possible location of the early created vacancies. A close examination of the 
cascade morphology shows that cascades in W are similar to Baobab trees, i.e. a thick trunk 
and almost no branches and leaves, whereas cascades in Fe look more like Joshua trees with 
thin trunks and pockets of leaves at the end of the trunks. At the end of the cascades, in W, the 
vacancy clusters form in the trunk and thus there are less of them, whereas in the Joshua tree 
like cascades, the vacancy clusters are mostly created in the “leaves” and thus are more 
numerous. This appears clearly on Figure 8 where the green spheres indicate vacancies. The 
difference in the cascade morphology arises from, on the one hand, the stopping power which 
is three times lower in Fe than in W: high energy Fe atoms will create less vacancies, and the 
TDEs which are close to twice lower in Fe than in W: low energy atoms (i.e. the atoms in the 
“leaves of our trees”) will create more defects in Fe than in W. The stopping power does have 
an impact on the fragmentation state of the cascade, but as mentioned above, the Joshua tree 
like versus Baobab tree like morphologies observed do not come from the fact that the cascade 
energies have been chosen in a different subcascade regime for Fe and W but from the two 
reasons exposed above. 

 
Fe Ma10A W MS-h 

Figure 8: typical cascade morphologies: red spheres represent the SIAs, green spheres 
represent vacancies. For these pictures, 30 frames have been selected between 0 and 0.2 ps. The 
cubes represent positions where one atom, in any of the frames, has a kinetic energy higher 
than 40 eV in Fe and 80 eV in W. The 30 frames are superimposed here, so as to underline the 
trajectories of atoms of energy large enough to create one vacancy. 
 

In Fe, vacancy clusters are created right from the beginning of the cascades and remain there 
during the cooling phase, whereas in W, vacancy clusters form, disappear and reappear 
elsewhere as the cores cool down. Despite the fact that the overall volumes of the cascades are 
similar, the cores in W are much bigger than those in Fe. There are thus pockets of vacancy 
clusters that appear and disappear during the cooling of the cascade cores. This can only 
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happen in large and dense cascade cores and this mechanism is not consistent with the typical 
picture of a recrystallization front propagating inward from the outside of the cascade as 
proposed for instance by Rubia and coworkers [40].  

 

This study also shows that within a specific element (Fe or W), the number of defects predicted 
by each potential agrees with one another within a 50% margin (Figure 1). Furthermore, all 
potentials predict similar SIA cluster sizes and vacancy cluster sizes that differ by a factor two 
at the most and the sizes of the largest clusters in each distribution also differ by a factor two at 
the most. The multivariate multiple analysis actually suggests that a consensus based on all 
potentials can be found to build statistical models of the main features of the primary damage. 
However, another outcome of this study is the impact of atypical cascades, and more generally, 
the clustering of the data which needs to be accounted for. 

Conclusions 
 
We have characterized a large panel of EAM potentials for W and Fe, differing either by their 
equilibrium part or the way they were hardened. In the companion paper to this one, we have 

found correlations between TDE, QSD and RCS along the 〈110〉 direction. Here, after 

analyzing a very large cascade database, we show that another correlation exists between the 
average number of point defects created by a PKA of given energy and the mean TDE values 

along the 〈100〉, 〈110〉 and 〈135〉 directions: as could be expected, the lower the TDE, the 

more defects are created.  
 
The analysis of a large statistics for 80 keV cascades in Fe and 50 keV cascades in W for all 
potentials, representing a total of about 7000 displacement cascades allowed to characterize 
qualitatively and quantitatively the role of the cascade morphology on the primary damage. The 
statistical analysis of the cascade database indicates that the sphericity of the cascades is a good 
predictor of the primary damage, in particular in W. The best model is the combination of the 
volume and the sphericity for both Fe and W. Among the properties investigated, we showed 
that soft potentials produce larger cascades, which are less spherical, more subcascades, more 
defects and more defect clusters. They also predict smaller maximum cluster sizes than the 
other potentials. Another outcome of this study is the impact of atypical cascades, and more 
generally, the clustering of the data. 
 
Comparing cascade debris in W and Fe, we find that Fe potentials predict a larger fraction of 
vacancies than SIAs in clusters, and they also predict larger vacancy clusters than SIA clusters. 
W potentials predict larger SIA clusters than vacancy clusters or clusters of similar sizes and a 
larger fraction of SIA than vacancy in clusters. The difference in the clustering behavior 
between the two metals arises from the difference in their mass and their TDEs as well as 
stopping power which lead to very distinct cascade morphologies. Comparing cascades with 
trees, W cascades look like Baobabs, with thick trunks, where the vacancy clusters form, 
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whereas Fe cascades look more like Joshua trees, with thinner trunks and small but numerous 
branches where the vacancy clusters form.    
 
This study also shows that within a specific element (Fe or W), the number of defects predicted 
by each potential agrees with one another up to 50% margin; all potentials predict similar SIA 
cluster sizes and vacancy cluster sizes that differ by a factor two at the most and the same 
applies for the size of the largest clusters in each distribution. 
 

Another important conclusion that can be drawn from our study is that a methodology that 
identifies two defects as belonging to the same cluster which relies only on the distance 
between the defects is not sufficient and a new methodology should be defined. 

 

Beyond the detailed description of the difference between potentials, our multivariate multiple 
analysis performed on one energy per material of a large cascade database is a new step of 
understanding of the primary damage, which actually suggests that a consensus based on all 
potentials can be found to build statistical models of the main features of the primary damage to 
model microstructure evolution.  
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