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Parameters for Epistemic Gossip Problems

Hans van Ditmarsch∗ Davide Grossi† Andreas Herzig‡

Wiebe van der Hoek† Louwe B. Kuijer†

Abstract

We introduce a framework that can model different kinds of epistemic
gossip problems. We also formalize some parameters that distinguish the
different types of gossip problem. Finally, we present a few results that
show the effect of the parameters.

1 Introduction

The so-called gossip problem [11, 7, 8] can be described as follows: there are n
agents and each of them knows a secret. In the beginning, each agent knows
only their own secret. The agents then start making phone calls to each other.
Whenever one agent calls another, they tell each other all the secrets they
know—including their own secret as well as all secrets that they learned prior
to the current call. The goal is to make sure that all agents learn all secrets, and
to use as few calls as possible in the process. The gossip problem is of interest
as an abstract puzzle, but it also has implications for more practical problems
related to information gathering.

Originally, the gossip problem was studied mostly from a combinatorial and
graph-theoretical point of view. See [8] for a survey of the combinatorial results
about the gossip problem. For our current purpose, the most important com-
binatorial result is that, if n ≥ 4, the optimal solutions to the gossip problem
require 2n − 4 calls. More recently, people have started to study the gossip
problem from a knowledge based or epistemic point of view [2, 3, 1].

The difference between the two approaches lies in the perspective they take.
In the combinatorial approach, we look at protocols through the eyes of an all-
knowing scheduler who tells the agents whom they have to call, and when they
should do so. In the epistemic approach, we look at protocols through the eyes
of the individual agents, who must make a decision about which call to make
based on the information that they have available.

Here we follow the epistemic approach, so the agents base their decision
whom to call on what they know. This, of course, makes it important to specify
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what information is available to the agents and what it means for agents to act
on this information (cf. knowledge-based programs [5]). For example, we need
to specify whether the system is synchronous, so whether the agents know how
many calls have already been made. The usual approach is to choose one answer
to this and other questions. In this case, however, we leave these questions open
and treat them as parameters. This allows us to study many different gossip
problems in one framework.

This brings us to our goals in this paper. First, we develop a framework
for gossip problems that is general enough to encompass many of the different
parameters. Then, we formally define some of the parameters in this framework.
Finally, we prove a few results about the consequences of choosing certain values
for the parameters. Since our main goal is to develop a framework for gossip
problems, this paper will be rather heavy on definitions. Please bear with us,
it can’t be helped in this situation.

2 The Formal Framework

The choice of framework requires a balance between generality and usefulness.
The more general we make the framework, the more parameters we can model.
But this generality comes at the cost of a more unwieldy and complicated sys-
tem. In order to achieve the desired balance there are a few important things
that we will treat as invariant truths, instead of parameters. Firstly, we model
the gossip problem on complete graphs, instead of the problem on general graphs
or the dynamic gossip problem [4]. This means that we assume that for every
two agents a and b, it is always possible for a to call b. So a “knows b’s phone
number.” Secondly, we assume that agents have perfect memory. This does not
mean that once an agent knows ϕ it will always know ϕ in the future. It does
mean that if a used to know ϕ, then it knows that it used to know ϕ. Finally, we
assume that calls are made sequentially. These assumptions can be weakened
by making small changes to the framework, but for reasons of simplicity we will
not make these changes in this paper.

In order to reason about knowledge and protocols, we use a variant of Propo-
sitional Dynamic Logic [10, 6] that includes a few epistemic operators. Specifi-
cally, the language we use is defined as follows.

Definition 1. Let A be a finite set of agents and let P be a countable set of
propositional variables such that for every a, b ∈ A there is an element kab ∈ P.
Furthermore, let C := {cab | a, b ∈ A, a 6= b}. The sets L of formulas ϕ and Π
of protocols π are given by the following normal forms:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kaϕ | Cϕ | [π]ϕ

π ::= cab | ϕ? | π t π | π;π | π∗ | π−1

where p ∈ P, a, b ∈ A and cab ∈ C.

We use ∧,→,↔, K̂a, 〈π〉,
∧
,
∨

and
⊔

in the usual way as abbreviations.
Furthermore, we also define Eϕ :=

∧
a∈AKaϕ and Init :=

∧
a 6=b ¬kab ∧

∧
a kaa
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as abbreviations. Finally, by convention we let the empty sequence of calls
represent >?, so in the degenerate case n = 0 the sequence ca1b1 ; · · · ; canbn
represents >?.

We use cab to represent the action “agent a calls agent b.” We don’t allow
an agent to call itself, so C = {ca,b | a, b ∈ A : a 6= b}. Furthermore, if a, b ∈ A
we use kab ∈ P to represent “agent a knows agent b’s secret.” The reason we
use kab instead of, say, Kasb is that Kaϕ means that a knows that ϕ is true.
Secrets are neither true nor false, so they cannot be known in the Ka sense.

Note that while P is required to include kab for every a, b ∈ A it also contains
other propositional variables. These other variables can be used to encode
relevant information. For example, if an agent bases its next call on a coin toss,
we can use p ∈ P to represent the outcome of the toss.

The agents’ goal is to have everyone know all secrets. We define the for-
mula Goal as a representation of this goal in the object language, i.e. Goal :=∧
a,b kab.

This language can be evaluated on Kripke models with two sets of relations:
an indistinguishability relation R(a) for every agent a and an outcome relation
O(cab) for every distinct a, b.

Definition 2. A model M is a tuple M = (S,R,O, V ) where S is a set of states,
R : A → 2S×S assigns to each agent an equivalence relation on S, O : C → 2S×S

assigns to each call a relation on S and V : P → 2S is a valuation.

The language L is evaluated on these models in the usual way.

Definition 3. Let M = (S,R,O, V ) be a model and s ∈ S. The satisfaction
relation |= is given inductively by

M, s |= p ⇔ s ∈ V (p), for p ∈ P
M, s |= ¬ϕ ⇔ M, s 6|= ϕ
M, s |= ϕ1 ∨ ϕ2 ⇔ M, s |= ϕ1 or M, s |= ϕ2

M, s |= Kaϕ ⇔ M, s′ |= ϕ for all s′ such that (s, s′) ∈ R(a)

M, s |= Cϕ ⇔ M, s′ |= ϕ for all s′ such that (s, s′) ∈
(⋃

a∈AR(a)
)∗

,
where ∗ indicates the reflexive transitive closure

M, s |= [π]ϕ ⇔ M, s′ |= ϕ for all s′ such that (s, s′) ∈ O(π)

and

(s, s′) ∈ O(ϕ?) ⇔ s = s′ and M, s |= ϕ
(s, s′) ∈ O(π1 t π2) ⇔ (s, s′) ∈ O(π1) or (s, s′) ∈ O(π2)
(s, s′) ∈ O(π1;π2) ⇔ there is an s′′ such that

(s, s′′) ∈ O(π1) and (s′′, s′) ∈ O(π2)
(s, s′) ∈ O(π∗) ⇔ (s, s′) ∈ O(π)∗, where ∗ indicates the

reflexive transitive closure
(s, s′) ∈ O(π−1) ⇔ (s′, s) ∈ O(π).

We write M |= ϕ if M, s |= ϕ for all s ∈ S.
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We can coherently evaluate L on all models. In general, models do not
accurately represent the gossip problem, however. For example, there is nothing
in the definition of a model to guarantee that every agent starts out knowing its
own secret, or that agents exchange secrets during calls. We therefore define the
subclass of gossip models, that model the gossip problem. But before defining
gossip models, we first need a few auxiliary definitions.

Definition 4. Let M = (S,R,O, V ) be a model and let s, s′ ∈ S. The state s′

is a predecessor of s if there are a, b ∈ A such that (s, s′) ∈ O(cab). The state
s is an initial state if it has no predecessors.

Definition 5. Let M = (S,R,O, V ) be a model and let s ∈ S. If there are
unique finite sequences ca1b1 ; · · · ; cakbk of calls and s1, · · · , sk+1 of states such
that

• sk+1 = s and (sm, sm+1) ∈ O(cambm) for all 1 ≤ m ≤ k,

• s1 is an initial state

then p(s) = ca1b1 ; · · · ; cakbk is the past of s and h(s) = s1, · · · , sk+1 is the his-
tory of s. If there is no such unique sequence, then p(s) and h(s) are undefined.

If p(s) and s(s) exist, then the state s1 is the origin state of s, and k is the
length of p(s).

Intuitively, p(s) is the sequence of calls that have already taken place in
s, and h(s) is the sequence of states that preceded s. Unfortunately, in gen-
eral models such sequences are not guaranteed to be well-defined, because the
relations O(cab) may be cyclical and because a world may have multiple prede-
cessors. Gossip models are defined in such a way that every state s does have a
(by definition unique) past p(s) and history h(s).

Definition 6. Let M = (S,R,O, V ) be a model and let s ∈ S. Suppose p(s) =
ca1b1 ; · · · ; cakbk and let a ∈ A. Then the a-reduction of p(s), denoted p(s)|a, is
the subsequence of p(s) that contains exactly those terms cambm where am = a
or bm = a.

So p(s)|a is the sequence of calls that a participated in.

Definition 7. Let M = (S,R,O, V ) be a model and let s, t ∈ S and a ∈ A.
Suppose h(s) = s1; · · · ; sk, sk+1 and h(t) = t1; · · · ; tm, tm+1. Then h(s) and h(t)
are a-similar, denoted h(s) ∼=a h(t), if there are functions f1 : {1, · · · , k+ 1} →
{1, · · · ,m+ 1} and f2 : {1, · · · , k + 1} → {1, · · · ,m+ 1} such that

1. f1 and f2 are increasing,

2. for every 1 ≤ i ≤ k + 1, (si, tf1(i)) ∈ R(a),

3. for every 1 ≤ i ≤ m+ 1, (ti, sf1(i)) ∈ R(a),

4



If h(s) and h(t) exist, then h(s) 6∼=a h(t) exactly if a could use its memory
to distinguish between s and t. For example, agent a could reason “I used to
be in state si, or some state indistinguishable from si. But there is no state tj
in the history of t that is indistinguishable from si. So I cannot be in t.”

Definition 8. A gossip model M is a model M = (S,R,O, V ) such that:

1. if s is an initial state then for all a, b ∈ A we have s ∈ V (kab) if and only
if a = b;

2. if (s, s′) ∈ O(ca1a2), then s′ ∈ V (ka3a4) if and only if s ∈ V (ka3a4) or
(a3 ∈ {a1, a2} and (s ∈ V (ka1a4) or s ∈ V (ka2a4)));

3. if s is a non-initial state, then it has exactly one predecessor s′ and there
is exactly one pair (a, b) such that (s, s′) ∈ O(cab);

4. for every s and every a 6= b there is exactly one s′ such that (s, s′) ∈ O(cab);

5. if (s, s′) ∈ R(a) then s ∈ V (kab) if and only if s′ ∈ V (kab);

6. if (s, s′) ∈ R(a) then p(s)|a = p(s′)|a;

7. if (s, s′) ∈ R(a), then h(s) ∼=a h(s′).

Given a class M of gossip models we write M |= ϕ if M |= ϕ for all M ∈ M.
If M is the class of all gossip models we write |= ϕ for M |= ϕ.

Definition 8 is quite complicated, so let us explain which aspect of the gossip
problem is encoded in which requirement in the definition.

In the gossip problem every agent starts out knowing its own secret, and
only its own secret. This is encoded in condition 1. Agents only learn secrets by
being involved in calls, and in a call they exchange all secrets they know. This
is encoded in condition 2.

We assume that any uncertainty in a gossip setting is epistemic in nature.
So in a given state s it is fully determined which calls have taken place in the
past, and given an action cab it is determined what the outcome of performing
cab in s would be.1 In Definition 8 this is encoded as conditions 3 and 4.

The last three conditions constrain the indistinguishability relations of the
agents. Recall that we modeled a knowing b’s secret as the propositional vari-
able kab. This means that introspection about the knowledge of secrets is not
guaranteed by the fact that R(a) is an equivalence relation. We use condition 5
to guarantee that agents are introspective about which secrets they know.

Condition 6 demands that the agents remember the calls that they them-
selves participated in. Finally, condition 7 makes sure that if an agent a is
uncertain about whether it is in s1 or in s2, then the histories of s1 and s2 are
consistent, at least as far as a is concerned. So a cannot dispel its uncertainty
simply by checking which of the two histories is consistent with its memory.

1Note that while the past and the outcomes of actions are fixed, this does not imply that
the agents know the past or the outcome of actions.
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At this point, we should note that Definition 8 is stronger than what we
need for the proofs presented here. We could have omitted conditions 6 and
7 and weakened some of the other conditions without invalidating any of the
results that we present. Typically, we would use definitions that are as weak as
possible, since this provides the most general results. In this case, however, one
of our goals is to design a general framework to reason about different kinds of
epistemic gossip problems. As such, we add not just the conditions that we need
for our results, but also the other conditions that we believe to be reasonable
for a model of the gossip problem.

3 Modeling the Parameters

Our main goal is to provide a framework that can be used to formalize the
parameters that distinguish different kinds of epistemic gossip problem. We
cannot discuss every parameter here, so we restrict ourselves to two important
ones. The first of these parameters is the nature of the protocols that we
consider: all protocols, epistemic protocols or symmetric epistemic protocols.
The second parameter is the amount of knowledge agents have about calls that
they are not directly involved in: is communication asynchronous, synchronous
or observable?

Synchrony and observability are not new concepts, of course. But their
formalization in the gossip framework is new. Epistemic protocols have already
been defined in the context of gossip protocols [3, 2], but the distinction between
epistemic and symmetric epistemic protocols is new.

3.1 Constraints on Protocols

In principle, every PDL protocol can be considered on a gossip model. But in
general such protocols may require agent a to make a call cab even if a doesn’t
know that this call should be made. We are therefore mostly interested in two
subclasses of protocols, the epistemic and epistemic symmetric protocols. We
follow [3] and [2] in the definition of epistemic protocols.

Definition 9. A protocol π is an epistemic protocol if it is of the form

π =

 ⊔
a6=b∈A

Kaψab?; cab

∗ ;

¬ ∨
a 6=b∈A

Kaψab

?

where ψab is a formula for every a 6= b ∈ A. The formula Kaψab is called the
call condition for cab in π.

Many constructions in PDL have abbreviations that resemble the way one
would phrase a protocol in a programming language. Using such an abbrevia-
tion, an epistemic protocol π can be written as

while
∨
a 6=b

Kaψab do
⊔
a6=b

(if Kaψab then make call cab).
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So as long as at least one of the call conditions is true, the protocol nondeter-
ministically executes one of the actions cab for which the call condition holds.
We allow only one call condition per pair a, b, but we can always combine multi-
ple call conditions into one. If, for example, we want to allow a call cab if either
Kaϕab or Kaχab, this is equivalent to allowing the call cab if Ka(Kaϕab∨Kaχab).

In some cases we want to restrict the available protocols even further, to the
symmetric epistemic protocols. A symmetric protocol is one where all agents
are treated in the same way. In other words, a protocol is symmetric if all agents
“are running the same software.” So, for example, a protocol is not symmetric
if it assigns one pre-determined agent a the role of leader, and requires this a
to call every other agent.

Definition 10. A permutation on A is a bijection σ : A → A. Given a
permutation σ and a formula ϕ, the formula σ(ϕ) is obtained by simultaneous
replacement of all occurrences in of a in ϕ by σ(a) for all a ∈ A.

Definition 11. Let π be an epistemic protocol, and for every a 6= b ∈ A let
Kaψab be the call condition for cab. The protocol π is symmetric if for every
permutation σ on A and every a 6= b ∈ A, we have σ(ψab) = ψσ(a)σ(b).

3.2 Knowledge of Other Agents’ Calls

In our gossip models we assume that agents are aware of all calls that they
themselves participate in, so if a cannot distinguish between state s and s′ then
p(s)|a = p(s′)|a. In some cases we may also want to make assumptions about
agents’ knowledge of calls they do not participate in. We distinguish three levels
of such knowledge.

Firstly, it is possible that the agents are simply unaware of calls that they
do not participate in. In this case, the setting is asynchronous. Secondly, it is
possible that the agents know how many calls take place, but don’t know who
is participating in the calls (unless they are one of the participating agents). In
this case, the setting is synchronous. Finally, it is possible that the agents know
exactly which calls take place, although they cannot observe the content of the
call (so an agent that is not involved in the call will not learn the values of the
secrets that are exchanged). In this case, the setting is observable.

The three different levels of knowledge can be represented by constraints on
the knowledge relation in gossip models. For the asynchronous case we need
not place any restrictions, we can consider the class of asynchronous models
to be equal to the class of all gossip models. The classes of synchronous and
observable models do require restrictions. The observable models can easily be
defined as follows.

Definition 12. A gossip model M = (S,R,O, V ) is observable if for all s, s′ ∈
S and all a ∈ A such that if (s, s′) ∈ R(a), we have p(s) = p(s′). Let MObs be
the class of observable models.

Defining the synchronous models is slightly harder, and requires an auxiliary
definition.

7



Definition 13. Let M = (S,R,O, V ) be a gossip model, s ∈ S and a ∈ A.
Suppose p(s) = ca1b1 ; · · · ; cakbk . The synchronous a-reduction of p(s), noted
p(s)|syncha , is the sequence x1; · · · ;xk where xm = cambm if am = a or bm = a
and xm = ε otherwise.

The symbol ε is used as a placeholder for “a call took place, but I don’t
know which one”.

Definition 14. A gossip model M = (S,R,O, V ) is synchronous if, for every
s, s′ ∈ S and all a ∈ A such that (s, s′) ∈ R(a), we have p(s)|syncha = p(s′)|syncha .
Let MSynch be the class of synchronous models.

4 Optimal Solution Length

Now that we have defined some of the parameters for gossip protocols, we can
determine how the parameters affect the gossip problem. There are several
aspects of the gossip problem that can change based on the parameters. For
example, in some cases we can get common knowledge of Goal while in other
cases this is impossible. The aspect of the gossip problem that we study here
is closer to the traditional questions about gossip: we want to determine how
many calls are required to achieve Goal in the different scenarios.

Definition 15. Let M be a class of models. A protocol π is executable on M if
for all M ∈M and every initial state s of M we have M, s |= 〈π〉>. A protocol
π is effective on M if for all M ∈ M and every initial state s of M , we have
M, s |= [π]Goal. Given m ∈ N, a protocol π is m-effective on M if it is effective
on M and furthermore, for every M ∈ M and every initial state s of M , all
traces of π in M, s are of length at most m.

Definition 16. Let M be a class of models and Γ a set of protocols. The optimal
solution length for Γ on M is the lowest m ∈ N such that there is a protocol
π ∈ Γ that is executable and m-effective on M.

We have not yet fully determined the optimal solution length for all combi-
nations of models and protocols discussed above. The ones that we do know, as
well as bounds for the ones that we have not yet fully determined, are as follows
(assuming n ≥ 4, and in the asynchronous/symmetric epistemic case that n ≥ 8
and n is even).

Observable Synchronous Asynchronous
All protocols 2n− 4 2n− 4 2n− 4
Epistemic 2n− 4 2n− 4 ≤ 2n− 3
Symmetric Epistemic 2n− 4 2n− 3 ≥ 2n

We do not yet have a proof for the exact optimal solution lengths on asyn-
chronous models, but we conjecture that the optimal solution length on asyn-
chronous models is 2n − 3 for epistemic protocols and in O(n2) for symmetric
epistemic protocols. We do not provide full proofs for these optimal solution
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lengths here, but we do give proof sketches for all but one of the non-trivial
cases. In the proof sketches we informally describe a number of protocols.
These protocols can be formalized in a straightforward way, but such formaliza-
tions are harder to read than the informal description. We therefore omit the
formalizations.

Observable models. In observable models all agents know the call history.
Consider the protocol where a call cab is allowed if and only if a knows that the
current history followed by cab is an initial segment of some effective sequence
of calls with length 2n − 4. This is an epistemic symmetric protocol, and it is
executable and (2n− 4)-effective on the class of observable models.

Synchronous models. In synchronous models all agents know how many
calls have taken place. Fix any call sequence that causes all agents to know all
secrets after 2n− 4 calls. We can then require all agents to take turns creating
this call sequence: if the k-th call in the sequence is cab, then agent a should
make that call after k − 1 other calls have happened. This is an epistemic
protocol, but not a symmetric one.

For the lower bound of the synchronous/symmetric case we need a combina-
torial property that holds for any call sequence of 2n− 4 calls that is effective:
there are at least two calls cab and ca′b′ between “fresh” agents that had not
participated in any calls before. After all, suppose towards a contradiction that
there is only one call between fresh agents. Then in the first call the number of
fresh agents decreases by 2, and every call afterwards it decreases by at most 1.
So after n−2 calls there is at least one fresh agent left. Consider the number of
agents that know this last fresh agent’s secret. After n− 2 calls, only the agent
itself knows it. Every call afterwards can teach it to at most one more agent, so
it takes at least n − 1 more calls for every agent to know this secret. In total,
the call sequence therefore has to contain at least 2n− 3 calls.

This property of having at least two calls between fresh agents cannot be
guaranteed by an epistemic symmetric protocol in a synchronous model; agents
know how many calls have taken place but not who was involved in the calls
so they cannot decide to call an agent that has not been called yet. As such,
the optimal solution length for symmetric epistemic protocols on synchronous
models is at least 2n− 3.

To see that 2n − 3 is also an upper bound, consider the following protocol:
every agent starts out by trying to call every other agent. One of the agents,
say agent a1, will be the first one to successfully place a call. On synchronous
models, all agents know that the first call has taken place. While most agents
do not know who placed the first call, they do know that it wasn’t them. So
after the first call, continue by having everyone but a1 remain passive while a1
calls all other agents. Then, after a1 has called all agents and therefore knows
all secrets, a1 calls every agent again, except for the agent that was called last
in the first round (because that agent already knows all secrets). This protocol
is symmetric epistemic, and it is (2n− 3)-effective on synchronous models.

Asynchronous models. We are not yet certain whether an epistemic
(2n− 4)-effective protocol exists on asynchronous models, although we suspect
it does not. We do know that there is an epistemic (2n− 3)-effective protocol:
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fix one agent a. Like in the symmetric epistemic/synchronous case, have a call
all other agents and then all but one of the other agents again. We fixed one
particular agent a, so this protocol is not symmetric. It is epistemic, however.

This leaves only the asynchronous/epistemic symmetric case. The proof for
the 2n lower bound in this case is rather long and not very insightful. As such,
we omit it here.

5 Conclusion

We introduced a framework that is capable of modeling many different kinds
of epistemic gossip problem. We also formally defined some of the parame-
ters for epistemic gossip protocols, and showed the effect of choosing different
parameters by considering how they affect the optimal solution length.

One target for future research is the exact optimal solution length on asyn-
chronous models. The case of symmetric epistemic protocols is especially inter-
esting, since there is a relatively large difference between the bound of 2n that
we can prove and the O(n2) bound that we believe to hold.

Furthermore, although we have formalized some parameters, there are many
more that we have not yet formalized. As such, another interesting target for
future research is to treat more of these parameters. One interesting variant is to
consider higher-order knowledge: in the variants of the gossip problem that we
discussed here, the agents try to make sure that every agent knows all secrets.
But there are other variants, where the agents want to make sure that every
agent knows that every agent knows every secret, and so on. For the set of all
protocols, it was proved in [9] that shared knowledge of depth d, for d ≥ 1 can
be achieved in at most (d+ 1)× (n− 2) calls. For the smaller sets of protocols,
it is not yet known how hard it is to achieve higher order knowledge of secrets.

Other interesting parameters include how much agents tell each other in their
conversations (do they only tell each other their secrets, or also when and how
they learned the secrets?) and how much the agents know about the protocol
that they are collectively following (is the protocol common knowledge?).
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