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Résumé

Ces dernières années, de nombreuses sémantiques

pour l’argumentation ont été définies, et leurs proprié-

tés étudiées. Des critères de comparaison entre séman-

tiques ont été proposés, mais aucune mesure de diffé-

rence entre sémantique n’a été définie. De telles mesures

se révèlent utiles dans le cas où la sémantique associée

à un système d’argumentation doit être changée, d’une

manière qui assure que la nouvelle sémantique n’est pas

trop éloignée de l’ancienne. Trois principales mesures de

différence sont proposées dans cet article. Nous mon-

trons que certaines de ces mesures sont des distances,

des semi-distances, ou des pseudo-distances.

Abstract

In the last decades, many argumentation semantics

have been defined, and their properties studied. Some

comparison criteria between semantics have been high-

lighted, but no measures of difference between seman-

tics have been defined. Such measures turn helpful in

the case where the semantics associated to an argumen-

tation framework may have to be changed, in a way that

ensures that the new semantics is not too dissimilar from

the old one. Three main notions of difference measures

between semantics are defined in this paper. Some of

these measures are shown to be distances, semi-distances

or pseudo-distances.

1 Introduction

Abstract argumentation frameworks (AFs) are clas-
sically associated with a semantics which allows to eva-
luate arguments’ statuses, determining sets of jointly
acceptable arguments called extensions [10, 2]. In
[5, 4], a method to modify an AF in order to satisfy
a constraint (a given set of arguments should be an
extension, or at least included in an extension) is defi-
ned; this process is called extension enforcement. The

authors distinguish between conservative enforcement
when the semantics does not change (only the AF
changes) and liberal enforcement when the semantics
changes. But they do not explain why the semantics
should change, nor which semantics should be the new
one.

Apart from this use of a semantic change for an ex-
tension enforcement purpose, a change of the seman-
tics may be necessary for other reasons, for instance,
for computational purposes: if a given semantics was
appropriate at some point in a certain context for some
AF, one may imagine that changes over time on the
structure of the AF (number of arguments, of attacks)
may make this semantics too “costly” to compute. It
may then be interesting to pick up another semantics
to apply to the AF, possibly not too dissimilar to the
former one.

In another revision context, [9] defines revision ope-
rators for AFs which proceeds in two steps. First, re-
vised extensions are computed, then a set of AFs is
associated with these revised extensions. Indeed, it is
not possible in general to associate a single AF with an
arbitrary set of extensions, under a chosen semantics.
Modifying the semantics in the revision process could
permit to obtain a single AF in some situations, or at
least to minimize the number of AFs in the result.

Whatever be the context where a semantic change is
necessary, we think that such a semantic change should
not be performed any old how, and should respect
some kind of minimality, exactly as belief change ope-
rations usually require minimal change (see e.g. [15] for
belief revision in a propositional setting). Defining dif-
ference measures between semantics, to quantify how
much a semantics is dissimilar to another one, allows
to define different minimality criteria. Such criteria can



be used to select the new semantics among several op-
tions when a semantic change occurs.

Main contribution We propose in this paper three
sensible ways to quantify the difference between two
semantics:

– depending on the properties which characterize
the semantics;

– depending on the relations between semantics;
– depending on the acceptance statuses of argu-
ments the semantics lead to.

The first ones (property-based and relation-based) are
said to be absolute measures, since they only depend
on the considered semantics; they apply to any graph.
The last one (acceptance-based) is said to be relative:
the definition of the measure depends on a particu-
lar AF. We study the properties of our measures, in
particular we show that some of them are distances,
semi-distances or pseudo-distances.

2 Background Notions

An argumentation framework (AF) [10] is a directed
graph 〈A,R〉 where the nodes in A represent abstract
entities called arguments and the edges in R represent
attacks between arguments. (ai, aj) ∈ R means that ai
attacks aj ; ai is called an attacker of aj . We say that
an argument ai (resp. a set of arguments S) defends
the argument aj against its attacker ak if ai (resp.
any argument in S) attacks ak. The range of a set of
arguments S w.r.t. R, denoted S+

R , is the subset of A
which contains S and the arguments attacked by S;
formally S+

R = S ∪ {aj | ∃ai ∈ S s.t. (ai, aj) ∈ R}.
Different semantics allow to determine which sets of
arguments can be collectively accepted [10, 16, 3, 7,
11, 8, 12].

Definition 1. Let F = 〈A,R〉 be an AF. A set of
arguments S ⊆ A is

– conflict-free w.r.t. F if ∄ai, aj ∈ S s.t. (ai, aj) ∈
R;

– admissible w.r.t. F if S is conflict-free and S de-
fends each of its arguments against all of their
attackers;

– a naive extension of F if S is a maximal conflict-
free set (w.r.t. ⊆);

– a complete extension of F if S is admissible and
S contains all the arguments that it defends;

– a preferred extension of F if S is a maximal com-
plete extension (w.r.t. ⊆);

– a stable extension of F if S is conflict-free and
S+
R = A;

– a grounded extension of F if S is a minimal com-
plete extension (w.r.t. ⊆);

– a stage extension of F if S is conflict-free and
there is no conflict-free T such that S+

R ⊂ T+
R ;

– a semi-stable extension of F if S is admissible and
there is no admissible T such that S+

R ⊂ T+
R ;

– an ideal set of F if S is admissible and S is in-
cluded in each preferred extension;

– an ideal extension of F if S is a maximal (w.r.t.
⊆) ideal set of F ;

– an eager extension of F if S is a maximal (w.r.t.
⊆) admissible set that is a subset of each semi-
stable extension.

These semantics are denoted, respectively, cf, adm, na,
co, pr, st, gr, stg, sem, is, id, eg. For each σ of them,
Extσ(F ) denotes the set of σ-extensions of F .

Let us recall the definition of some usual decision
problems for argumentation.

Definition 2. Let F = 〈A,R〉 be an AF and σ a
semantics.
– An argument ai ∈ A is said to be credulously ac-

cepted by F w.r.t. σ if ∃E ∈ Extσ(F ) s.t. ai ∈ E.
– An argument ai ∈ A is said to be skeptically ac-

cepted by F w.r.t. σ if ∀E ∈ Extσ(F ), ai ∈ E.
The set of credulously (resp. skeptically) accepted argu-
ments in F w.r.t. σ is denoted crσ(F ) (resp. skσ(F )).

Example 1. Let us consider the argumentation fra-
mework F1 given at Figure 1, and let us illustrate some
of the semantics, and related decision problems.
Extadm(F1) = {∅, {a1}, {a4}, {a4, a6}, {a1, a4, a6},
{a1, a3}, {a1, a4}}, Extst(F1) = {{a1, a4, a6}},
Extpr(F1) = {{a1, a4, a6}, {a1, a3}}, Extco(F1) =
{{a1, a4, a6}, {a1, a3}, {a1}}, Extgr(F1) = {{a1}}. a1
is skeptically accepted in F1 w.r.t. the stable, preferred,
complete and grounded semantics. a4 is credulously ac-
cepted in F1 w.r.t. the preferred and complete seman-
tics, but it is not w.r.t. the grounded semantics.

a1 a2 a3 a4 a5

a6

a7

Figure 1 – The AF F1

In order to compare, in the following section, the
semantics, and propose measures of their differences,
let us introduce a useful notation: given two sets X,Y ,
X∆Y is the symmetric difference between X and Y .
Let us recall also the definition of a distance and an
aggregation function.



Definition 3. Given a set E, a mapping d from E×E

to R+ is
– a pseudo-distance if it satisfies weak coincidence,

symmetry and triangular inequality;
– a semi-distance if it satisfies coincidence and sym-

metry;
– a distance if it satisfies coincidence, symmetry

and triangular inequality.

weak coincidence ∀x ∈ E, d(x, x) = 0;

coincidence ∀x, y ∈ E, d(x, y) = 0 iff x = y;

symmetry ∀x, y ∈ E, d(x, y) = d(y, x);

triangular inequality

∀x, y, z ∈ E, d(x, y) + d(y, z) ≥ d(x, z).

Definition 4. An aggregation function is a function
⊗ which associates a non-negative real number to every
finite tuple of non-negative numbers, and which satis-
fies:

non-decreasingness if y ≤ z then
⊗(x1, . . . , y, . . . , xn) ≤ ⊗(x1, . . . , z, . . . , xn);

minimality ⊗(x1, . . . , xn) = 0 iff x1 = · · · = xn = 0;

identity ∀x ∈ R+,⊗(x) = x.

For instance, we will use the sum
∑

as an aggrega-
tion function.

3 Property-based Difference Measures

We propose a first way to measure how much two
semantics are different. Here, the idea is to split a se-
mantics into a set of properties which characterize it,
and to give a weight to each property, these weights
corresponding to the importance of the property in
the context where the semantics have to be compared.
Then, measuring the difference between two semantics
is equivalent to adding the weight of the properties
which appear in the characterization of exactly one of
the semantics.

Definition 5. A set of properties P characterizes a
semantics σ if for each AF F ,

1. each σ-extension of F satisfies each property from
P,

2. each set of arguments which satisfies each property
from P is a σ-extension of F ,

3. P is a minimal set (w.r.t ⊆) among those which
satisfy 1. and 2.

P rop(σ) denotes the set of properties that characte-
rizes a semantics σ.

Beyond the use of characterizations to define diffe-
rence measures, characterizations can have a compu-
tational interest. For instance, verifying if a set of ar-
guments is a σ-extension can be done by checking if it

satisfies all the properties in Prop(σ). In this case, the
computation can stop as soon as one of the properties
is not satisfied.
Let us point out interesting properties, and esta-

blish which ones characterize each semantics. We dis-
tinguish between absolute properties (which concern
only a set of arguments itself, Definition 6) and rela-
tive properties (which concern a set of arguments with
respect to other sets of arguments, Definition 7).

Definition 6. Given an AF F = 〈A,R〉, a set of ar-
guments S satisfies
– conflict-freeness if S is conflict-free;
– acceptability if S defends itself against each atta-

cker;
– reinstatement if S contains all the arguments that

it defends;
– complement attack if each argument in A\S is at-

tacked by S.

Definition 7. Given an AF F = 〈A,R〉 and a set of
properties P, a set of arguments S satisfies
– P-maximality if S is maximal (w.r.t. ⊆) among

the sets of arguments which satisfy P;
– P-minimality if S is minimal (w.r.t. ⊆) among

the sets of arguments which satisfy P;
– P-inclusion if S is included in each set of argu-

ments which satisfies P;
– P-R-maximality if S has a maximal range (w.r.t.

⊆) among the sets of arguments which satisfy P.

It can be noticed that, by definition, if a set
S satisfies P-maximality (resp. P-minimality, P-R-
maximality), then S satisfies P.
Now, we establish a characterization of the different

semantics, that follows from the previous definitions.

Proposition 1. The extension-based semantics consi-
dered in this paper can be characterized as follows:
– Prop(cf) = {conflict-freeness}.
– Prop(adm) = Prop(cf) ∪ {acceptability}.
– Prop(na) = Prop(cf)-maximality.
– Prop(co) = Prop(adm) ∪ {reinstatement}.
– Prop(gr) = Prop(co)-minimality.
– Prop(pr) = Prop(adm)-maximality.
– Prop(sem) = Prop(adm)-R-maximality.
– Prop(stg) = Prop(cf)-R-maximality.
– Prop(st) = Prop(cf) ∪ {complement attack}.
– Prop(is) = Prop(adm) ∪ {Prop(pr)-inclusion}.
– Prop(id) = Prop(is)-maximality.
– Prop(eg) = Prop(pr) ∪ {Prop(sem)-inclusion}.

Let us notice that we could consider other proper-
ties, and give alternative characterizations of the se-
mantics. Even if the value of the difference between
two semantics (obviously) depends of the chosen cha-
racterizations, the general definition of property-based



difference measures is the same whatever the charac-
terizations.

Our intuition which leads to define the characteriza-
tion as the minimal set of properties is related to com-
putational issues. Indeed, computing some reasoning
tasks related to the semantics thanks to the seman-
tics characterization can be done more efficiently with
this definition. For instance, to determine whether a
set of arguments is a stable extension of a given AF,
checking the satisfaction of conflict-freeness and com-
plement attack proves enough. For instance, we could
add Prop(adm)-maximality in the characterization of
the stable semantics, but computing the result of our
problem would then be harder.

A weight can be associated to each property, depen-
ding on the importance of the property in a certain
context.

Definition 8. Let P be a set of properties. Let w

be a function which maps each property p ∈ P to a
strictly positive real number w(p). Given σ1, σ2 two se-
mantics such that Prop(σ1) ⊆ P and Prop(σ2) ⊆ P,
the property-based difference measure δwprop between
σ1 and σ2 is defined as:

δwprop(σ1, σ2) =
∑

pi∈Prop(σ1)∆Prop(σ2)

w(pi)

The specific property-based difference measure defi-
ned when all the properties have the same importance
is defined as follows.

Definition 9. Given two semantics σ1, σ2, the
property-based difference measure δprop is defined by
δprop(σ1, σ2) = |Prop(σ1)∆Prop(σ2)|.

Example 2. Let us suppose that the initial seman-
tics is the admissible one. When we consider δprop,
naive and preferred semantics are “equivalent”, since
δprop(adm, na) = δprop(adm, pr) = 3. On the opposite,
with a weighted measure δwprop such that w(Prop(cf)-
maximality) = 1 and w(Prop(adm)-maximality) = 2,
the naive semantics is “better” since δprop(adm, na) <
δprop(adm, pr).

Proposition 2. Given a set of semantics S, the
property-based measures defined on S are distances.

4 Relation-based Difference Measures

The second absolute method to measure the diffe-
rence between semantics that we propose, is based on
the fact that most of the usual semantics are related
according to some notions. For instance, it is well-
known that each preferred extension of an AF is also a
complete extension of it, and the grounded extension

is also complete, but in general it is not a preferred
extension. The preferred semantics may thus be seen
closer to the complete semantics, than to the grounded
semantics. We formalize this idea with the notion of
semantics relation graph.

Definition 10. Let S = {σ1, . . . , σn} a set of seman-
tics. A semantics relation graph on S is defined by
Rel(S) = 〈S, D〉 with D ⊆ S × S.

This abstract notion of relation graph, where the
nodes are semantics, can be instantiated with the in-
clusion relation between the extensions of an AF.

Definition 11. Let S = {σ1, . . . , σn} a set of seman-
tics. The extension inclusion graph of S is defined by
Inc(S) = 〈S, D〉 with D ⊆ S×S such that (σi, σj) ∈ D

if and only if:
– for each AF F , Extσi

(F ) ⊆ Extσj
(F );

– there is no σk ∈ S (k 6= i, k 6= j) such
that for each AF F , Extσi

(F ) ⊆ Extσk
(F ) and

Extσk
(F ) ⊆ Extσj

(F ).

This idea is discussed in [2], but that paper does not
formalize the notion of relation between semantics as
we do here.

Example 3. For instance, when S =
{co, pr, st, gr, stg, sem, is, id, eg, adm, cf, na}, Inc(S)
is the graph given at Figure 2.

cf naadm

co

pr sem st

gr

is

id stg

eg

Figure 2 – Extension Inclusion Graph Inc(S)

Now, we define a family of difference measures bet-
ween semantics which is based on the semantics rela-
tion graphs, to measure what it costs for an agent to
change her semantics.

Definition 12. Given S a set of semantics, a S-
relation difference measure is the mapping from two
semantics σ1, σ2 ∈ S to the non-negative integer
δRel,S(σ1, σ2) which is the length of the shortest non-
oriented path between σ1 and σ2 in Rel(S).
In particular, the S-inclusion measure is the length of
the shortest non-oriented path between σ1 and σ2 in
Inc(S), denoted by δInc,S(σ1, σ2).

Example 4. Given two semantics σ1 and σ2 which
are neighbours in the graph given at Figure 2, the dif-
ference measure δInc,S(σ1, σ2) is obviously 1. Other-
wise, if several paths allow to reach σ2 from σ1, then



the difference is the length of the minimal one. For
instance, δdep,S(st, cf) = 3 since the minimal path is
st → stg → na → cf , but other paths exist (for ins-
tance, st → sem → pr → co → adm → cf). Since
here the question is to define the difference between se-
mantics, the possibility to obtain several minimal paths
(for instance, there are two minimal paths between the
ideal and admissible semantics: id → is → adm and
id → co → adm) is not problematic.

Proposition 3. The S-inclusion difference measure
is a distance.

We could instantiate the relation graph with ano-
ther relation between semantics. For instance, we can
define a graph such that there is an edge from σ1 to
σ2 if ∀F, skσ1

(F ) ⊆ skσ2
(F ), or similarly with the cre-

dulous acceptance. This requires a deep investigation
of the relations between semantics w.r.t. skeptical or
credulous acceptance.

For the possible instantiations of the relation graph
that have been proposed, we can also define a relative
version. In this case, the edges in the graph depend
on the inclusion relations for a given AF, while our
first proposal considers the inclusion relations which
are true for any AF. This AF-based relation graph
can lead to an interesting new measure.

The graph resulting from the intertranslatability re-
lationship of semantics [13] may also provide another
instantiation of the relation graph.

5 Acceptance-based Difference Measures

We have defined previously two approaches to quan-
tify the difference between semantics which are abso-
lute, which means that the difference between two se-
mantics is always the same, whatever the situation and
the AF. It may be interesting for some applications
to take into account the AF of the agent to measure
the difference between the semantics. We propose here
such a family of measures. Now, the difference between
semantics depends on the acceptance status of argu-
ments in a given AF, w.r.t. the different semantics in
consideration.

Our first acceptance-based measure quantifies the
difference between the σ1-extensions and the σ2-
extension of the AF to quantify the difference between
σ1 and σ2.

Definition 13. Let F be an AF, d be a dis-
tance between sets of arguments, and ⊗ be an ag-
gregation function. The F -d-⊗-extension-based dif-
ference measure δ

d,⊗
F is defined by δ

d,⊗
F (σ1, σ2) =

⊗ǫ∈Extσ1
(F ) minǫ′∈Extσ2

(F ) d(ǫ, ǫ
′).

Proposition 4. In general, the extension-based diffe-
rence measures are not distances, they do not satisfy
coincidence, symmetry.

Example 5. For instance, we consider the Ham-
ming distance between sets of arguments, defined as
dH(s1, s2) = |s1∆s2|. Now, we define the F1-dH-

∑
-

extension-based difference measure δ
dH ,

∑

F from dH and
the AF F1 given at Figure 1. Its set of stable extensions
is Extst(F1) = {{a1, a4, a6}}.
When measuring the difference between the stable

semantics and the other classical Dung’s semantics,
we obtain:
– δ

dH ,
∑

F1
(st, gr) = 2 since Extgr(F1) = {{a1}};

– δ
dH ,

∑

F1
(st, pr) = 0 since Extpr(F1) = {{a1, a3},

{a1, a4, a6}}; on the opposite, δdH

F1
(pr, st) = 3;

– δ
dH ,

∑

F1
(st, co) = 0 since Extco(F1) = {{a1},

{a1, a3}, {a1, a4, a6}}.

The following result shows that the restriction of
the extension-based measure to some particular sets
of semantics leads to satisfy the coincidence property.

Proposition 5. For a given F and a given set of
semantics S = {σ1, . . . , σn}, if for all σi, σj ∈ S
such that σi 6= σj, Extσi

(F ) * Extσj
(F ), then the

extension-based measure δ
dH ,

∑

F satisfies coincidence.

Even in this case, the measure does no satisfy all
the properties of distances. However, we can use the
intuition behind this measure to define another one.

Definition 14. Let F be an AF, d be a distance
between sets of arguments, and ⊗ be an aggregation
function. The symmetric F -d-⊗-extension-based diffe-
rence measure δ

d,⊗
F,sym is defined by δ

d,⊗
F,sym(σ1, σ2) =

max(δd,⊗F (σ1, σ2), δ
d,⊗
F (σ2, σ1)).

This measure satisfies the distance properties under
some conditions.

Proposition 6. For a given F and a given set of se-
mantics S = {σ1, . . . , σn}, if for all σi, σj ∈ S such
that σi 6= σj, Extσi

(F ) 6= Extσj
(F ), then the symme-

tric extension-based measure δ
dH ,

∑

F,sym is a semi-distance.

We propose here some extension-based measures.
We can also use the set of skeptically (resp. credu-
lously) accepted arguments instead of the whole set
of extensions to define a difference measure between
semantics.

Definition 15. Given F an AF, d a distance between
sets of arguments, and S a set of semantics, the F -d-
skeptical acceptance difference measure δdF,sk is defi-
ned, for any σ1, σ2 ∈ S, by

δdF,sk(σ1, σ2) = d(skσ1
(F ), skσ2

(F ))



The F -d-credulous acceptance difference measure
δdF,sk is defined, for any σ1, σ2 ∈ S, by

δdF,cr(σ1, σ2) = d(crσ1
(F ), crσ2

(F ))

If two semantics lead to the same set of credu-
lously (resp. skeptically) accepted arguments, then
these measures cannot distinguish between these se-
mantics. Other properties are satisfied.

Proposition 7. Given F and AF and d a distance,
the F -d-skeptical acceptance difference measure and
the F -d-credulous acceptance difference measure are
pseudo-distances.

6 Combining Measures to Obtain New

Minimality Criteria

In the context of a semantic change, our difference
measures may be used to define different minimality
criteria. With σ1 the initial semantics, and S the set
of options for the new semantics (for instance, the se-
mantics which permit to have a single AF as the result
of a revision, as mentioned in the introduction), the
new semantics should be σ′ ∈ S such that ∀σ′′ ∈ S,
δ(σ1, σ

′) ≤ δ(σ1, σ
′′), with δ the chosen measure. Ho-

wever, this does not always lead to a single result, as
we have seen in the previous examples. So, to distin-
guish between several possible semantics which are mi-
nimal with respect to a first measure, we can apply a
second measure to refine the result; and so on. In ge-
neral, there is no guarantee to obtain a single result,
but using different levels of minimality, induced by dif-
ferent measures, permits the agent to choose her new
semantics amongst fewer possible options. Also, the or-
der of application of the different measures may lead
to different results.

Definition 16. Let D = 〈δ1, . . . , δn〉 a vector of diffe-
rence measures between semantics. Let σ be a seman-
tics, and S a set of semantics. The D-minimal seman-
tic change selection function is defined by γD(σ,S) =
γn
D(σ,S) with γn

D as follows:

γ1
D(σ,S) = {σi ∈ S | ∀σj ∈ S, δ1(σ, σi) ≤ δ1(σ, σj)}

γk
D(σ,S) = {σi ∈ γk−1

D (σ,S) | ∀σj ∈ γk−1
D (σ,S),

δk(σ, σi) ≤ δk(σ, σj)}

Let us notice that this definition is general enough
to encompass any difference measure yet to be defined.

7 Conclusion

In this paper, we have defined several ways to quan-
tify the difference between extension-based semantics.

Some of them are absolute (they only depend on the
semantics), while the other ones are relative (they de-
pend on the considered AF). Let us mention the fact
that there is no general relation between these dif-
ference measures; for instance we have seen on se-
veral examples that it may occur that δ1(σ1, σ2) >

δ1(σ1, σ3) while δ2(σ1, σ2) < δ2(σ1, σ3). When a se-
mantic change occurs, this permits the agent to use
some very different notions of minimality to select the
new semantics, depending on which difference mea-
sures make sense in the context of her application. In
addition, the combination of these “basic” measures
permits to express even more notions of minimality.
Let us notice that only the relation-based and

property-based measures are distances, other methods
failing in general to satisfy the distance properties,
which seem to be desirable to quantify the difference
between objects. However, the skeptical and credulous
acceptance difference measures are pseudo-distances.
Further study could lead to identify the necessary
conditions that a set of semantics must satisfy to en-
sure that these are distances.

δwprop δInc,S δ
d,
∑

F δ
d,
∑

F,sym δdF,sk δdF,cr

WC X X ◦ X X X

Co X X × ◦ × ×
Sym X X × X X X

TI X X X X

Table 1 – Summary of properties satisfied by our
measures

Table 1 depicts the properties satisfied by our mea-
sures. WC, Co, Sym and TI stand respectively for weak
coincidence, coincidence, symmetry and triangular in-
equality. A X symbol means that the property is al-
ways satisfied, and × means that it is not satisfied in
general. ◦ means that the property is satisfied under
some additional assumption.
We consider several tracks for future works. We have

noticed that we can order semantics, with respect to
an initial semantics σ and a measure δ: σ1 ≤σ,δ σ2 if
and only if δ(σ, σ1) ≤ δ(σ, σ2). In this case, we can
investigate the relation of the orderings defined by dif-
ferent measures. For instance, if some pairs (σ, δ1) and
(σ, δ2) lead to the same ordering, then we can choose
to use the measure which is the least expensive one to
compute among δ1 and δ2.
We also plan to define a similar notion of difference

measures for labelling-based semantics [2], and for
ranking-based semantics [1, 14, 6]. In this last context,
we need to determine whether some relevant proper-
ties characterize the ranking which is used to evaluate
arguments, or to determine meaningful notions of dif-
ference between the rankings.



Finally, we will investigate the question which is
mentioned in the introduction: using (minimal) seman-
tic change to define enforcement and revision methods.
In particular, we think that semantic change can be
used to guarantee minimal change on the attack rela-
tion, or to ensure that the result of the process is a
single AF.
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A Proofs

Proof of Proposition 2. From our definition of charac-
terizations, the mapping that associates a semantics σ
to a set of properties Prop(σ) guarantees that a se-
mantics cannot be associated with two different sets
of properties, and a same set of properties cannot cor-
respond to different semantics.

The weighted sum on sets of properties obviously
defines a distance (in particular, when all weights
are identical, we obtain the well-known Hamming dis-
tance; other weights just define generalization of Ham-
ming distance). Since we can identify the semantics to
the sets of properties, δwprop is a distance.

Proof of Proposition 3. From the definition of the Σ-
relation graph,

– the difference between σ1 and σ2 is 0 iff they are
the same node of the graph (i.e. σ1 = σ2), so
coincidence is satisfied;

– the shortest path between two semantics σ1, σ2

has the same length whatever the direction of the
path (from σ1 to σ2, or vice-versa), since we do
not consider the direction of arrows, so symmetry
is satisfied;

– the shortest path between σ1 and σ3 is at worst
the concatenation of the paths (σ1, . . . , σ2) and
(σ2, . . . , σ3), or (if possible) a shorter one, so tri-
angular inequality is satisfied.

Proof of Proposition 4. Example 5 gives the counter-
examples for coincidence and symmetry.

Proof of Proposition 5. We consider a given AF F and
a set of semantics Σ = {σ1, . . . , σn}, such that for all
σi, σj ∈ Σ with σi 6= σj , Extσi

(F ) * Extσn
(F ).

Obviously, for any semantics σi, δ
dH ,

∑

F (σi, σi) =
0. Now, let us assume the existence of two seman-

tics σi, σj ∈ Σ such that δ
dH ,

∑

F (σi, σj) = 0. We
just rewrite this, following the definition of the mea-
sure:

∑
ǫ∈Extσi

(F ) minǫ′∈Extσj
(F ) dH(ǫ, ǫ′) = 0. Since

all distances are non-negative number, if the sum
is equal to zero it means that ∀ǫ ∈ Extσi

(F ),
minǫ′∈Extσj

(F ) dH(ǫ, ǫ′) = 0. Because of the properties

of the Hamming distance, it means that ǫ ∈ Extσj
,

and so Extσi
⊆ Extσj

. From our starting assumption,
we deduce that σi = σj .

Proof of Proposition 6. From the definition of the

measure, δ
dH ,

∑

F,sym(σ1, σ2) = 0 iff Extσ1
(F ) = Extσ2

(F ).
Under our assumptions, this is possible only if σ1 = σ2.
The other direction is trivial, so coincidence is satis-
fied. Symmetry is obviously satisfied, since σ1, σ2 can
be inverted in max(δd,⊗F (σ1, σ2), δ

d,⊗
F (σ2, σ1)).

Proof of Proposition 7. Weak coincidence and sym-
metry are trivial from the definition of the measures.
δdF,sk(σ1, σ2) + δdF,sk(σ2, σ3)

= d(skσ1
(F ), skσ2

(F )) + d(skσ2
(F ), skσ3

(F ))
≥ d(skσ1

(F ), skσ3
(F )) = δdF,sk(σ1, σ3)

The same reasoning apply for the credulous acceptance
measure. So both satisfy the triangular inequality.
Coincidence is not satisfied by the skeptical acceptance
measure. For instance, for each AF F , ∅ ∈ Extcf (F )
and ∅ ∈ Extadm(F ), so skcf (F ) = skadm(F ) = ∅, and
so δdF,skep(cf, adm) = 0. The same conclusion holds as
soon as two semantics yield the same skeptically or
credulously accepted arguments.
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