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Abstract

Until now, computer-aided proofs of the liveness of byzantine consensus algorithms assumed synchrony
to reason in lock steps or the error-prone manual intervention of experts in the proof checker but could not be
automated through model checking.

We propose a compositional approach to verify a consensus algorithm, for any number n of processes and
any upper bound t < n/3 on the number of byzantine processes. To this end, we identify a fairness property
that makes this—otherwise purely asynchronous—byzantine consensus algorithm amenable to model checking.
We decompose the algorithm in two parts: an inner broadcast algorithm and an outer decision algorithm. We
encode these algorithms using threshold automata, and we formalize their properties in temporal logic. This
allows us to automatically check the inner broadcasting algorithm, assuming fairness. For the verification of the
outer algorithm, we simplify the automaton of the inner algorithm by relying on its checked properties. We verify
in less than 70 seconds, not only the safety of byzantine consensus but also its liveness.

1 Introduction

Reasoning about executions of distributed algorithms is hard due to several sources of non-determinism, such
as asynchrony and faults. It therefore requires expert knowledge to design and to rigorously prove distributed
algorithms. Unsurprisingly, bugs in specifications and in proofs of theoretical work appear in the literature. With
the resurgence of interest in byzantine consensus largely driven by blockchains, correctness of these algorithms
has become crucial for security.

Thankfully, recent progress in automated verification are first steps towards the model checking of fault-
tolerant consensus algorithms. For instance, parameterized model checking allows one to verify algorithms
for an arbitrary number n of processes [12] that is unknown at design time. In addition, it reduces the model
checking for any fault number f and its upper bound t to bounded model checking questions [33]. The threshold
automaton (TA) framework for communication-closed algorithms [41, 7] exploits thresholds in guards such
as “number of messages from distinct processes exceeds 2t + 1”, and in the resilience condition of the form
n > 3t. The parameterized model checking of threshold automata builds upon a reduction [30, 47] that moves
steps of asynchronous (interleaved) executions to obtain simpler executions, which are equivalent to the original
executions with respect to safety and liveness properties. As moving steps preserves the admissibility of the
execution, this reduction is, however, closely tied to the asynchronous semantics. Such a technique has recently
proved instrumental in verifying fully asynchronous parts of consensus algorithms, like broadcast algorithms [41].

Due to the famous impossibility result [32], the above method could not be applied to proving deterministic
consensus algorithms1 in the asynchronous setting. The aforementioned reduction technique does not apply
to partial synchrony [29] either: moving the message reception step to a later point in the execution might
violate an assumed message delay. In fact, these delays are important as typical partially synchronous consensus
algorithms feature monotonically increasing timers to catch up with the unknown bound on the delay to receive a
message. The crux of the problem is to automatically prove liveness or the consensus termination. Due to similar
complications, most known verification results are designed for either synchronous (lock step) or asynchronous
semantics.

1We refer to a deterministic consensus algorithm as a consensus algorithm that satisfies linear temporal properties such as safety (agreement,
validity) and liveness (termination), even if the environment (e.g., communication delays, scheduler) introduces non-determinism in the
algorithm execution.
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In addition, partially synchronous consensus algorithms generally rely on a coordinator process that helps
other processes converge and whose identifier rotates across rounds. Some efforts were devoted to proving the
termination of partially synchronous consensus algorithms, like Paxos, assuming synchrony [35]. The drawback is
that such algorithms aim at tolerating non-synchronous periods before reaching a global stabilization time (GST)
after which they terminate. Proving that such an algorithm terminates under synchrony does not show that the
algorithm would also terminate if processes reached GST at different points of their execution. Instead, one would
also need to show that correct processes can catch up in the same round. This would, in turn, require proving the
correctness of a synchronizer algorithm [29].

The problem of verifying consensus is even more subtle when processes are byzantine as they can execute
arbitrary steps, changing their state and the values they share. Hence, verifying that an algorithm tolerates
byzantine faults requires to reason about the combination of asynchronous executions with all the possible
scenarios resulting from arbitrary behaviors, hence adding up to the already large number of reachable states. The
verification of such algorithms is thus often restricted to showing safety properties, like agreement and validity,
and ignoring liveness [45]. This is not surprising, especially given that such coordinator-based protocols, need a
non-trivial byzantine fault tolerant synchronizer algorithm [15].

1.1 Our results

In this paper, we leverage the automatic parameterized model checking to prove both the safety and liveness of a
byzantine consensus algorithm. Our contributions are as follows:

1. We focus on a safe but not live variant of the binary byzantine consensus of DBFT [23] that is particularly
simple: It does not need a coordinator, relies neither on randomization nor on signature and solves consensus
deterministically. The novelty here lies in making it live by assuming a stronger notion of fairness (compared
to typical reliable channels) to ensure termination, hence bypassing the need for partial synchrony. It builds
upon ideas common to randomized and partially synchronous algorithms by featuring: (i) a binary value
broadcast [50], a variant of the reliable broadcast for binary values that guarantees that correct processes
deliver exclusively values broadcast by correct processes and (ii) a round-based execution that broadcasts
and delivers values at multiple times before comparing the finally delivered message content to the parity
of the round [23]. If the content matches the parity, then the algorithm decides, otherwise the algorithm
updates its estimate for the next round. Interestingly, our fairness assumption only requires the existence
of a specific ordering of message receptions in every infinite sequence of invocations of the binary value
broadcast, without constraining the rest of the consensus algorithm.

2. We design a compositional proof methodology as a first step towards exploiting modularity of distributed
algorithms in parameterized model checking. We provide threshold automata (TAs) models for two dis-
tributed algorithms that have strong interactions, namely an inner broadcast TA and an outer decision TA
that invokes the inner one for some of its communications. To deal with the state space explosion, we express
the guarantees of the inner broadcast primitive as temporal logic properties that we automatically verify
with model checking and we replace the inner TA in the global TA by a gadget TA that captures the proven
temporal specification. Hence, the compositional approach comprises a simple TA interface proved by hand
and the combinatorial hard part that deals with asynchrony and faults proved automatically with the model
checker.

3. We formally verify our consensus algorithm using the parameterized model checker (ByMC) [41] for any
number n of processes and t of faulty processes. With ByMC, we check the temporal specifications (safety
and liveness) of the inner TA encoding the broadcast algorithm, that we then exploit in the outermost TA.
We demonstrate the efficiency gain of our compositional approach by running ByMC on (i) the naive TA
encoding of our consensus algorithm as well as (ii) the composite TA resulting from our compositional
approach. It turns out that ByMC could not prove the safety of the naive TA within days (after which we
decided to forcefully stop it). In contrast, ByMC successfully checks the liveness and safety of the composite
TA in slightly more than a minute.

Building upon recent progress in automated verification, our compositional proof is a typical example of new
ways that can help addressing the error-prone task of proving distributed systems correct. While encoding partial
synchrony in model checkers remains an open research challenge, our work shows that fairness, which appears as
a more natural assumption that can be formalized for curent model checkers, can be strengthened to alleviate the
need in distributed algorithms for additional assumptions, like partial synchrony.
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1.2 Related Work

Interactive theorem provers [61, 59, 66] were used to prove consensus algorithms. In particular, Coq helped prove
two-phase commit [61], Raft [67] and the Algorand consensus algorithm [4] while Dafny [35] proved MultiPaxos.
Isabelle/HOL [54] was used to prove byzantine fault tolerant algorithms [21] and was combined with Ivy to prove
the Stellar consensus protocol [48]. Theorem provers check proofs, not the algorithms. Hence, one has to invest
efforts into writing detailed mechanical proofs.

Specialized decision procedures are a way of proving consensus algorithms. They were used to prove Paxos [44].
Crash fault tolerant consensus algorithms were manually encoded with their invariants and properties to prove
formulae using the Z3 SMT solver [27]. Decision procedures also proved the safety of byzantine fault tolerant
consensus algorithms when f = t [10] but not their termination. Similarly, a proof by refinement of the safety of a
byzantine variant of Paxos was proposed [45] but its liveness is not proven. These decision procedures require the
user to fit the specification into the suitable logical fragment.

Explicit-state model checking fully automates verification of distributed algorithms [36, 68]. It allows to check
the reliable broadcast algorithm [37]. TLC [68] checked a reduction of fault tolerant distributed algorithms in
the Heard-Of model that exploits their communication-closed property [20]. And the agreement of consensus
algorithms was proved in the asynchronous setting [55]. These explicit-state tools enumerate all reachable states
and thus suffer from state explosion.

Symbolic model checkers [16] cope with this explosion by representing state transitions efficiently. NuSMV and
SAT helped check consensus algorithms for up to 10 processes [64, 65]. Apalache [38] uses satisfiability modulo
theories (SMT) to check inductive invariants and verify symbolic executions of TLA+ specifications of the reliable
broadcast and crash fault tolerant consensus algorithms but requires parameters to be fixed. These tools cannot be
used to prove (or disprove) correctness for an arbitrary number of processes.

Parameterized model checking [26] works for an arbitrary number n of processes [12]. Although the problem
is undecidable [6] in general, one can verify specific classes of algorithms [31]. Indeed, distributed algorithms
with a ring-based topology were checked with automata-theoretic method [3] and with Presburger arithmetics
formulae verified by an SMT solver [60]. Bosco [62] has been the focus of various parameterized verification
techniques [46, 7], however, it acts as a fast path wrapper around a separate correct consensus algorithm. The
condition-based consensus algorithm [53, 52] was verified [7] with the byzantine model checker ByMC [41, 43, 39],
only under the condition that the difference between the numbers of processes initialized with 0 and 1 differ by
at least t. Recently, the crash fault tolerant Ben-Or consensus algorithm was proved correct with a probabilistic
reasoning extension of ByMC [11]. In this paper, we also exploit ByMC but prove a byzantine consensus algorithm.

Some efforts were devoted to verify consensus algorithms in the partially synchronous setting [29] where
after an unknown global stabilization time (GST) all links deliver messages in a bounded amount of time. Such
algorithms were verified using parameterized model checking [49], however, these are only crash fault tolerant
and cannot tolerate byzantine failures. PSync [28] views asynchronous executions in lock-steps and proves the
LastVoting variant [22] of Paxos but requires semi-decision procedures of a fragment of first-order logic. Partial
synchrony is often tied to some complexity in byzantine consensus algorithms. To terminate, partially synchronous
algorithms typically distinguish the execution of a coordinator from the execution of other processes [19, 22, 45]
and rely on a monotonically increasing timer to catch up with the unknown bound on the message delay. Our
byzantine consensus algorithm does not inherit such intricacies.

Instead of assuming partial synchrony, we assume some notion of fairness. There exist related notions, like fair
schedulers [14] and limited link synchrony [2]. Fair schedulers consider that the events of two processes receiving
from two other processes are independent and that the probability for a process to receive from any other process
is ε > 0 in any round [14]. By contrast, our fairness is not probabilistic allowing us to model check safety and
(deterministic) liveness. A key difference between our fairness assumption and partial synchrony is that our
fairness does not impose restrictions on all links, which is similar to the notion of minimal synchrony needed
to solve consensus [2]. This minimal synchrony was later named �[x + 1]-bi-source and helped solve byzantine
consensus without all n2 point-to-point links being eventually synchronous [1]. More precisely, �[x + 1]-bi-source
states that there is a correct process that has x + 1 bi-directional links with itself and other correct processes and
these links eventually behave synchronously. It was shown in [8], that (t + 1)-bi-source is necessary and sufficient
to implement authenticated byzantine consensus. Later, the same result was generalized to unauthenticated
byzantine consensus with m ≤ b(n− (t + 1))/tc distinct values [13].

Finally, an interesting novelty of our algorithm is that it neither needs a coordinator (or leader) nor that any link
be eventually synchronous. By contrast, all the consensus algorithms we know of that do not require all links to be
timely rely on a coordinator [2, 1, 34, 13]. They use a rotating coordinator whose particular messages can influence
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the estimate of other processes, to help them converge. If the coordinator does not manage to lead processes to a
consensus, then another coordinator takes its role in what is called a new view. Before GST, processes may proceed
at different rates. After GST, a synchronizer [15] is typically required to ensure that sufficiently many processes
take part in the same view in order to guarantee termination. This is probably to circumvent this difficulty that the
verification of the liveness of partially synchronous algorithms is often simplified by assuming synchrony [35].

The only work we know that assumes fairness for verification of asynchronous consensus is the one of finitary
fairness [5]. Unfortunately, it is demonstrated in the shared memory context and without byzantine failures. One
can see our contribution as a step forward in the message passing context and with byzantine failures, and in
order to achieve this result we introduce a novel composition technique.

In Section 2 we introduce our preliminary definitions, in Section 3 we model our fair binary value broadcast, in
Section 4 we present our composition, in Section 5 we verify the consensus algorithm and in Section 6 we present
the results of the model checker and conclude. In the optional appendix we explain the multiple-round TA to
one-round TA reduction (A), provide examples related to fairness (B), missing proofs (C and E) and detailed
specifications (D, F).

2 Preliminaries

The system is composed of n asynchronous sequential processes from the set Π = {p1, . . . , pn}, and i is called the
“index” of pi. The processes communicate by exchanging messages through an asynchronous reliable point-to-point
network, hence there is no bound on the delay to transfer a message but this delay is finite.

Failure model and fairness. Up to t < n/3 processes can exhibit a byzantine behavior [56], and behave arbitrarily.
We refer to f ≤ t as the actual number of byzantine processes. A byzantine process is referred to as faulty, a
non-faulty process is correct. As stated above, point-to-point reliable channels implicitly assume fairness, however,
we will strengthen this fairness property by assuming that in an infinite sequence of binary value broadcast
executions of our algorithm, there is one execution where some binary value is delivered by correct processes
before the other value. The definition of this fairness is not needed for safety and is deferred to Section 3.3 to verify
liveness.

Algorithm semantics. To define the asynchronous semantics of a distributed algorithm executed by these
processes, we consider discrete time such that at each point in time, exactly one process takes a step. Hence the
distributed execution is an interleaving of the individual steps taken by the processes. In particular, we assume that
two messages cannot be received at the same time by the same process. Process pi sends a message to pj by invoking
the primitive “send HEADER(m) to pj”, where HEADER indicates the type of message and m its content. Process
pi receives a message by executing the primitive “receive()”. We refer to broadcast(HEADER(m), ·, messages) →
messages as “for each pj ∈ Π do send HEADER(m) to pj” and “upon reception of HEADER(m) from process p′j do
messages[p′j]← messages[p′j] ∪ {m}”. We will use the process id i as a subscript to denote by vari that a variable var
is local to process i but we omit it when it is clear from the context.

The verification method considered in this paper exploits the fact that the algorithms are communication-
closed [30], i.e. only messages from the current round of a process may influence its steps. This can be implemented
by tagging every message by its round number r; during round r all received messages with tag r′ < r are discarded
and all received messages with tag r′ > r are stored for later. We also assume that computation takes no time.

The consensus problem. Assuming that each correct process proposes a binary value, the binary byzantine
consensus problem is for each of them to decide on a binary value in such a way that the following properties are
satisfied:

1. Termination. Every correct process eventually decides on a value.

2. Agreement. No two correct processes decide on different values.

3. Validity. If all correct processes propose the same value, no other value can be decided.
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Threshold automaton (TA) A threshold automaton [42] describes the behaviour of a process in a distributed
algorithm. Its nodes are locations representing local states, and labeled edges are guarded rules. Formally, it is a
tuple 〈L, I , Γ, Π,R, RC〉 where L is the set of locations, I ⊂ L is the set of initial locations, Γ is the set of shared
variables, Π is the finite set of parameter variables,R is the set of rules, and RC is the resilience condition over
N
|Π|
0 . Rules are defined as tuples 〈from, to, φ,~u〉, where from (resp. to) describes the source (resp. destination)

locations, and the rule label is φ 7→ ~u. Formula φ is called a threshold guard or simply a guard.

Example 1. Fig. 1 in Section 3.1 presents the pseudocode of the binary value broadcast and its threshold automaton. There
are 10 locations, namely L = {V0, V1, B0, B1, B01, C0, C1, CB0, CB1, C01}, and two of them are initial, I = {V0, V1}.
Shared variables are b0 and b1, while parameter variables are n, t and f . The set of rulesR consists of {ri | 1 ≤ i ≤ 12} and 7
self-loops. For instance, rule r3 is defined as 〈B0, C0, b0≥2t+1− f ,~0〉. Finally, the resilience condition is n > 3t∧ t ≥ f ≥ 0.

A multi-round threshold automaton is intuitively defined such that one round is represented by a threshold
automaton, and additionally we have so-called round-switch rules that connect final locations with initial ones, and
therefore allow processes to move from one round to the following one. We typically depict those round-switch
rules as dotted arrows. Examples of multi-round TA are depicted in Figures 2 and 3. When it is clear from the
context that automata have multiple rounds, we just call them threshold automata. When we want to stress that a
TA does not have multiple rounds, we may call it a one-round TA.

Counter systems The semantics of a (one-round) threshold automaton TA are given by a counter system
Sys(TA) = 〈Σ, I, T〉 where Σ is the set of all configurations among which I are the initial ones, and T is the
transition relation. A configuration σ ∈ Σ of a one-round TA captures the values of location counters (counting the
number of processes at each location, therefore non-negative integers), values of global variables, and parameter
values. A transition t ∈ T is unlocked in σ if there exists a rule r = 〈from, to, φ,~u〉 ∈ R such that φ evaluates to true
in σ, and location counter of from is at least 1, denoted κ[from] ≥ 1, showing that at least one process is currently
in from. In this case we can execute transition t on σ by moving a process along the rule r from location from to
location to, which is modeled by decrementing counter κ[from], incrementing κ[to], and updating global variables
according to the update vector ~u.

A counter system Sys(TA) of a multi-round TA is defined analogously. A configuration captures the values of
location counters and global variables in each round, and parameter values (that do not change over rounds). Then
we define that a transition t is unlocked in a round R by evaluating the guard φ and the counter of location from in
the round R. The execution of t in σ accordingly updates κ[from, R], κ[to, R] and global variables of that round,
while the values of these variables in other rounds stay unchanged.

Linear temporal logic notations Following a standard model checking approach, we use formulas in linear
temporal logic (LTL) [57] to formalize the desired properties of distributed algorithms. The basic elements of
these formulas, called atomic propositions, are predicates over configurations related (i) to the emptiness of each
location at each round and (ii) to the evaluation of threshold guards in each round. They have the following form:
(i) κ[L, R] 6= 0 expresses that at least one correct process is in location L in round R, while κ[L, R] = 0 expresses the
opposite (in one-round systems we just write κ[L] 6= 0 or κ[L] = 0); (ii) [b0, R]≥2t+1− f is evaluated depending
on the values of the shared variable b0 in round R and parameters t and f (in one-round systems we just write
b0≥2t+1− f ). LTL builds on propositional logic with⇒ for ‘implication’, ∨ for ‘or’ and ∧ for ‘and’, and has extra
temporal operators ♦ that stands for ‘eventually’, � for ‘always’. LTL formulas are evaluated over infinite runs of
Sys(TA). Examples of LTL properties in a one-round system are (BV-Justv), (BV-Oblv) and (BV-Unifv) (see page 7).
LTL properties in multi-round systems often have quantifiers over round variables, as for example in (Agreev) and
(Validv) (see page 11).

The tool ByMC is used to automatically verify a specific fragment of LTL on one-round systems [40, 41]. This
fragment is sufficient to express safety and liveness properties of consensus [11]. Moreover, using communication-
closure, the verification for this fragment of temporal logic on multi-round systems reduces to one-round sys-
tems [11, Theorem 6]. We explain in more details this reduction in Appendix A.

The assumption of reliable communication is modeled as follows at the TA level: if the guard of a rule is true
infinitely often, then the origin location of that rule will eventually be empty. This reflects that an if branch of the
pseudo-code is taken if the condition is true. This progress assumption2 is in particular crucial to prove liveness
properties: in the sequel, we prepend it to the liveness properties in the TA specification.

2The progress assumption is in the literature sometimes referred as fairness, but here we want to avoid confusion with the fairness from
Section 3.
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3 Fairness of binary value broadcast

To overcome the limited scalability of model checking tools, our compositional verification approach consists
of decomposing a distributed algorithm in several blocks that can be verified in isolation to obtain a simplified
threshold automaton that can be model checked.

In this section we focus on a binary value broadcast, or bv-broadcast for short, that will serve as the main building
block of the byzantine consensus algorithm of Section 4. In Section 3.1 we formally model the bv-broadcast as
a threshold automaton that tolerates a number f of byzantine failures upper-bounded by t among n processes.
In Section 3.2 we model the specification of bv-broadcast in LTL to verify it within 10 seconds. In Section 3.3 we
introduce the fairness of an infinite sequence of executions of bv-broadcast that will play a crucial role in verifying
in Section 5 that we indeed solve the byzantine consensus problem.

3.1 Modeling the binary value broadcast

The binary value broadcast [50], or bv-broadcast for short, is a communication primitive guaranteeing that all binary
values “bv-delivered” were “bv-broadcast” by a correct process. It is particularly useful to solve the byzantine
consensus problem with randomization [51, 18] or partial synchrony [23, 17]. Consider Fig. 1 (left) that depicts its
pseudocode and Fig. 1 (right) that depicts the corresponding threshold automaton (TA).

1: bv-broadcast(BV, val, i):
2: broadcast(BV, 〈val, i〉)
3: repeat:
4: if (BV, 〈v, ∗〉) received from (t + 1) distinct processes but

5: not yet re-broadcast then
6: broadcast(BV, v, i)
7: if (BV, 〈v, ∗〉) received from (2t + 1) distinct processes

then
8: contestants← contestants∪ {v}

V0

V1

B0

B1

CB0

CB1

B01

C0

C1

C01

r1 : b0++

r2 : b1++

b0 ≥ 2t+1− f

r3b1≥t+1− f 7→ b1 ++r4

b0≥t+1− f 7→ b0++

r5b1≥2t+1− fr6

b1≥t+1− f 7→ b1 ++r7

b0 ≥ 2t+1− f

r8b1≥2t+1− fr9

b0≥t+1− f 7→ b0++

r10

b1≥2t+1− fr11

b0 ≥ 2t+1− f

r12

Figure 1: The pseudocode of the binary value broadcast (left) and its threshold automaton (right)

Pseudocode of the binary value broadcast

The bv-broadcast (see Fig. 1, left) aims at having at least 2t+1 processes broadcasting the same binary value. Once a
correct process receives a value from t+1 distinct processes, it broadcasts it (line 4) if it did not broadcast it already
(line 5). Once a correct process receives a value from 2t+1 distinct processes, it delivers it. Here the delivery
at process pi is modeled by adding the value to the set contestantsi, which will simplify the pseudocode of the
byzantine consensus algorithm in Section 4.1.

Threshold automaton of the binary value broadcast

The corresponding TA of Fig. 1 (right) has two initial locations V0 or V1, indicating whether the (correct) process
initially has value 0 or 1, respectively. We can see that a correct process pi sends only two types of messages,
(BV, 〈0, i〉) and (BV, 〈1, i〉), these trigger the corresponding receptions at other processes. Global variables b0 and
b1, respectively, capture the number of the two types of messages sent by correct processes. Thus, for example, b0++

models a process broadcasting message (BV, 〈0, i〉).

From local to global variables for model checking

While producing a formal model, extra care is needed to avoid introducing redundancies. For example, line 4
indicates that the process broadcasts value v if it received v from t+1 distinct processes. One may thus be tempted
to evaluate a guard based on a local receive variable but, as the formal model needs to count sent values to not
“re-broadcast” (line 5), it would be sufficient to simply enable a guard based on global send variables instead of
also maintaining local receive variables. Note, however, that the point-to-point reliable channels ensures that pj
sends message m to pi implies that eventually pi receives message m from pj. To remove redundant local receive
variables, one can use the quantifier elimination for Presburger arithmetic [58] and obtain quantifier-free guard
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expressions over the shared variables that are valid inputs to ByMC [43, 39]. For more details, note that Stoilkovska
et al. [63] eliminated the quantifier over the similar receive variables in Ben-Or’s consensus algorithm [9] with
the SMT solver Z3 [25]. Hence shared variables b0 and b1 of the TA denote, respectively, the number of messages
(BV, 〈0, i〉) and (BV, 〈1, i〉) sent by correct processes in the pseudocode.

Modeling arbitrary (byzantine) behaviors in the TA

In order to model that, among the received messages, f messages could have been sent by byzantine processes,
we need to map the ‘if’ statement of the pseudocode, comparing the number of receptions from distinct processes
to t+1, to the TA guards, comparing the number b1+ f of messages sent to t + 1. As b1 counts the messages sent by
correct processes and f is the number of faulty processes that can send arbitrary values, a correct process can move
from B0 to B01 as soon as t+1− f correct processes have sent 1, provided that f faulty processes have also sent 1.
As a result, the guard of rule r4 only evaluates over global send variables as: if more than t+1 messages of type b1
have been sent by correct processes (hence the guard b1 ≥ t+1− f ), then the shared variable b1 is incremented,
mimicking the broadcast of a new message of type b1. Rule r3 corresponds to lines 7–8 and delivers value v = 0
by storing it into variable contestants upon reception of this value from 2t + 1 distinct processes. Hence, reaching
location C0 in the TA indicates that the value 0 has been delivered. As a process might stay in this location forever,
we add a self-loop with guard condition set to true.

Other locations and rules

locations V0 V1 B0 B1 B01 C0 CB0 C1 CB1 C01

values broadcast / / 0 1 0,1 0 0,1 1 0,1 0,1
values delivered / / / / / 0 0 1 1 0,1

Table 1: The locations of correct processes

The locations of the automaton correspond to the exclu-
sive situations for a correct process depicted in Table 1.
After location C0, a process is still able to broadcast
1 and eventually deliver 1 after that. After location
B01, a process is able to deliver 0 and then deliver 1,
or deliver 1 first and then deliver 0, depending on the
order in which the guards are satisfied. Apart from the
self-loops, note that the automaton is a directed acyclic graph. Also, on every path in the graph, a shared variable
is incremented only once. This reflects that in the pseudocode, a value may only be broadcast if it has not been
broadcast before.

3.2 Properties of the binary value broadcast

As was previously proved by hand [50, 51], the bv-broadcast primitive satisfies four properties: BV-Justification,
BV-Obligation, BV-Uniformity and BV-Termination. Here, we formalize these properties in linear temporal logic
(LTL) to formally prove them correct. As we will discuss in Section 6, we verify the four properties automatically
with model checking for any parameters n and t < n/3 in less then 10 seconds.

The BV-Justification property states: “If pi is correct and v ∈ contestantsi, then v has been bv-broadcast by some
correct process” where v ∈ {0, 1}. Alternatively, “if v is not bv-broadcast by some correct process and pi is correct,
then v /∈ contestantsi”. In the TA from Fig. 1, v ∈ contestantsi corresponds to process i being in one of the locations
Cv, CBv or C01. Thus, justification can be expressed in LTL as the conjunction BV-Just0 ∧ BV-Just1 where, BV-Justv
is the following formula:

κ[Vv] = 0 ⇒ �
(
κ[Cv] = 0∧ κ[CBv] = 0∧ κ[C01] = 0

)
. (BV-Justv)

BV-Obligation requires that if at least (t+1) correct processes bv-broadcast the same value v, then v is eventually
added to the set contestantsi of each correct process pi. This can again be formalized as BV-Obl0 ∧ BV-Obl1 where
BV-Oblv is the following formula:

�
(

bv ≥ t+1 ⇒ ♦
( ∧

L∈Locsv

κ[L] = 0
))

, (BV-Oblv)

where Locsv = {V0, V1, B0, B1, B01, C1−v, CB1−v} are all the possible locations of a process i if v 6∈ contestantsi.
BV-Uniformity requires that if a value v is added to the set contestantsi of a correct process pi, then eventually

v ∈ contestantsj at every correct process pj. We formalize this as BV-Unif0 ∧ BV-Unif1 where BV-Unifv is the
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following:
♦ (κ[Cv] 6=0 ∨ κ[CBv] 6=0 ∨ κ[C01] 6=0) ⇒ ♦

∧
L∈Locsv

κ[L]=0 , (BV-Unifv)

where Locsv is defined as in (BV-Oblv).
Finally, the BV-Termination property claims that eventually the set contestantsi of each correct process pi is non

empty. This can be phrased as the following LTL formula BV-Term:

♦
(
κ[V0]=0 ∧ κ[V1]=0 ∧ κ[B0]=0 ∧ κ[B1]=0 ∧ κ[B01]=0

)
, (BV-Term)

forcing each correct process to be in one of the “final” locations C0, C1, C01, CB0, CB1.

3.3 A fairness assumption to solve asynchronous consensus

We now introduce a fairness assumption that will be crucial in the rest of this paper. In order to define it, we first
define a good execution of the bv-broadcast with respect to binary value v as an execution where all correct processes
(invoke bv-broadcast and) bv-deliver v before bv-delivering any other value. Second, we consider an infinite
sequence of bv-broadcast executions, tagged with r ∈N. It is important to stress that the setting is asynchronous,
that is, processes invoke bv-broadcast infinitely many times, but at their own relative speed. Thus, they do not
all invoke the bv-broadcast tagged with the same number r at the same time. Nonetheless, every process invokes
bv-broadcast infinitely many times and in the rth invocation its behavior depends on the messages sent in the rth

invocation of other processes. Therefore, we refer to the rth execution of bv-broadcast even though the processes
invoke it at different times. We say that such an infinite sequence of bv-broadcast executions is fair if it contains an
execution tagged with r that results in a good execution with respect to value r mod 2.

Definition 1 (v-good bv-broadcast). A bv-broadcast execution is v-good if all its correct processes bv-deliver v first.

We express this property in LTL. A bv-broadcast execution is v-good if no process ever visits locations C1−v
and CB1−v:

�
(

κ[C1−v] = 0 ∧ κ[CB1−v] = 0
)

.

Definition 2 (fair infinite sequence of bv-broadcast executions). An infinite sequence of bv-broadcast executions is fair
if there exists an r such that the rth execution is (r mod 2)-good.

We simply refer to a fair bv-broadcast as if the infinite sequence of bv-broadcast executions is fair. For simplicity,
we sometimes say that bv-broadcast is fair, when we actually mean that the infinite sequence of its executions is
fair. We illustrate in Appendix B a possible execution of bv-broadcast whose existence implies fairness.

4 Composite Automaton for Byzantine Consensus

In this section we exploit the results of the first verification phase of Section 3 to simplify the threshold automaton
of the byzantine consensus algorithm. In Section 4.1 we introduce the pseudocode of the byzantine consensus
algorithm and its threshold automaton obtained with the naive (non-compositional) modeling described in
Section 3.1. In Section 4.2 we replace, in this threshold automaton, the inner bv-broadcast automaton by a smaller
automaton simplified with the bv-broadcast properties that are now verified. The verification of the resulting
composite automaton is deferred to Section 5.

4.1 The byzantine consensus algorithm

Algorithm 1 is a byzantine consensus algorithm that relies on the fair binary value broadcast of Section 3 and
derives from a safe (but not live) variant of the binary consensus algorithm of DBFT [23] used in blockchains [24].
It invokes bv-broadcast(·) at line 6 and uses a set contestants of binary values, whose scope is global, updated by
the bv-broadcast (Fig. 1(left), line 8) and accessed by the procedure propose(·) (Alg. 1, line 7).
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Figure 2: The naive threshold automaton of the byzantine consensus of Algorithm 1 where the embedded
bv-broadcast automaton is depicted with dashed arrows. Precise formulations of all rules are in Appendix D. Note
that the rules r20, r21 and r22 represent transitions from the end of an odd round to the beginning of the following
(even) round of Algorithm 1, while the dotted edges represent transitions from the end of an even round to the
beginning of the following (odd) one.

Algorithm 1 The byzantine consensus algorithm at pi
1: Global scope variable:
2: contestants ⊆ {0, 1} a set of binary values, initially ∅.

3: propose(est):
4: r ← 0
5: repeat:
6: bv-broadcast(EST, est, i)
7: wait until (contestants 6= ∅)
8: broadcast(AUX, contestants, i)→ favorites
9: wait until ∃c1, . . . , cn−t : ∀1 ≤ j ≤ n− t favorites[cj] 6= ∅∧

10: (qualifiers← ∪∀1≤j≤n−t favorites[cj]) ⊆ contestants

11: if qualifiers = {v} then
12: est← v
13: if v = (r mod 2) then decide(v)
14: else est← (r mod 2)
15: r ← r + 1

As mentioned in Section 2, recall that the algorithm
is communication-closed, so that for simplicity in the
presentation we omit the current round number r as
the subscript of the variables and the parameter of
the function calls. Variable favorites is an array of n
indices whose jth slot records, upon delivery, the mes-
sage broadcast by process j in the current round. Each
process pi manages the following local variables: the
current estimate est, initially the input value of pi; and a
set of binary values qualifiers. This algorithm maintains
a round number r, initially 0 (line 4), and incremented
at the end of each iteration of the loop at line 15. Process
pi exchanges EST and AUX messages (lines 6–8), until
it received AUX messages from n− t distinct processes
whose values were bv-delivered by pi (lines 9–10). Pro-
cess pi then tries at line 13 to decide a value v that
depends on the content of qualifiers and the parity of the round. If qualifiers is a singleton there are two possible
cases: if the value is the parity of the round then pi decides this value (line 13), otherwise it sets its estimate to
this value (line 12). If favorites contains both binary values, then pi sets its estimate to the parity of the round
(line 14). Although pi does not exit the infinite loop to help other processes decide, it can safely exit the loop after
two rounds at the end of the second round that follows the first decision because all processes will be guaranteed
to have decided. Note that even though a process may invoke decide(·) multiple times at line 13, only the first
decision matters as the decided value does not change (see Section 5).

The effect of fairness

Note that the fairness notion from Section 3.3 ensures there is a round r in which all correct processes bv-deliver
(r mod 2) first. The following lemma states that under the fairness assumption there is a round of Algorithm 1 in
which all correct processes start with the same estimate. The proof is deferred to Appendix C.

Lemma 1. If the infinite sequence of bv-broadcast executions of Algorithm 1 is fair, with the rth execution being (r mod 2)-
good, then all correct processes start round r+1 of Algorithm 1 with estimate r mod 2.

Modeling deterministic consensus

Figure 2 depicts the threshold automaton (TA) obtained by modeling Algorithm 1 with the method of Section 3.1.
The TA depicts two iterations of the repeat loop (line 5), since Algorithm 1 favors different values depending
on the parity of the round number. For simplicity, we refer to the concatenation of two consecutive rounds of
the algorithm as a superround of the TA. As one can expect, this TA embeds the TA of the bv-broadcast which
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Figure 3: The composite threshold automaton of the byzantine consensus of Algorithm 1. Rules s′j, 1 ≤ i ≤ 11, are
obtained from sj by replacing each variable c ∈ {a0, a1, bvb0, bvb1} with its corresponding one c′.

is depicted by the dashed arrows, just as Algorithm 1 invokes the bv-broadcast algorithm of Fig. 1 (left). We
thus distinguish the outer TA modeling the consensus algorithm from the inner TA modeling the bv-broadcast
algorithm. Although Algorithm 1 is relatively simple, the global TA happens to be too large to be verified through
model checking, as we explain in Section 6; the main limiting factor is its 14 unique guards that constrain the
variables to enable rules in the TA. The detail of each rule of the TA is deferred to Appendix D.

4.2 Simplified threshold automaton

Our objective is to formally prove that Algorithm 1 is unconditionally safe, and that it is live under the assumption
of fairness at the bv-broadcast level. Since the threshold automaton of Figure 2 is too large to be handled automati-
cally, we build on the properties proved for the bv-broadcast to simplify in the threshold automaton from Figure 2
the part representing the bv-broadcast. On the resulting simpler threshold automaton, assuming fairness of the
bv-broadcast, we prove the termination of Algorithm 1 with the byzantine model checker ByMC in Section 6.

High-level idea. Ideally, the simplified threshold automaton could be obtained from the one of Fig. 2 by merging
all internal states of the bv-broadcast into a single state with two possible outcomes. However, such a merge is not
trivial because the bv-broadcast procedure “leaks” into the consensus algorithm. First of all, line 7 of Algorithm 1
refers to contestants, a global variable that is modified by the bv-broadcast algorithm (Fig. 1, left). Second, a process
can execute line 8 of Algorithm 1 even if the bv-broadcast has not terminated. To capture this porosity, we introduce
a new shared variable, some additional states and a transition rule that exploits a correctness property of the
bv-broadcast.

Step by step construction. Figure 3 depicts the simplified composite threshold automaton of Algorithm 1 as a
repeated superround. The left part of its superround corresponds to a round (or loop iteration) ri of Algorithm 1
for a given correct process pi such that ri mod 2 = 1 whereas its right half corresponds to a round ri where
ri mod 2 = 0. Below we describe the construction of the left half of Figure 3 by explaining its locations and rules:

• V0, V1. Initially, pi holds an estimate binary value.

• V0, V1 → M. Then, pi invokes bv-broadcast with the value of its estimate (line 6). This transition has no guard.
We count the number of correct processes that broadcast each value with shared variables bvb0 and bvb1.

• M. When pi has called bv-broadcast but has not broadcast any AUX message yet, it is in location M. This
corresponds to line 6. Note that a process that stays in M is not idle in practice: it actually keeps running the
bv-broadcast primitive that was triggered earlier. However, we do not keep track of the messages exchanged
in the underlying bv-broadcast primitive: bvb0 and bvb1 only count the initial value sent by bv-broadcast.

• M→ M0, M1. When contestantsi becomes non-empty (line 7), pi broadcasts an AUX message and proceeds
to the next location. This AUX message contains the first value delivered to pi by bv-broadcast. We can thus
define two shared variables, a0 and a1, representing the number of 0s and 1s broadcast by correct processes
with an AUX tag.
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What is the guard on this condition? The earliest moment at which a correct process can have a non-empty
contestants set is when another correct process has actually called bv-broadcast with such a value. Indeed,
by BV-Justification, “If pi is correct and v ∈ contestantsi, v has been bv-broadcast by a correct process”. The
condition that v has been bv-broadcast by a correct process is bvbv ≥ 1. Note that this condition relies only
on the past behavior of correct processes, thanks to the byzantine fault tolerance of bv-broadcast. We do not
have to take into account the possible messages sent by faulty processes here.

Such a transition may happen, but not necessarily immediately: even if another correct process has
bv-broadcast 1 somewhere, pi might not have delivered it yet and can stay longer in location M, thanks to
the self-loop. The correctness properties will be checked on all these possible executions. To prove the
termination of the consensus algorithm, we need the BV-Termination as a precondition.

• M0, M1 → M01. After having broadcast its AUX value, pi might deliver the other value in contestantsi thanks
to the bv-broadcast primitive, and move to location M01. The guard is the same as before. This transition
does not trigger another AUX broadcast though. Recall that we assumed in Section 2 that no two receptions
can occur at the same time at the same process.

• M0, M1, M01 → D1, E1, E0. Process pi can pass the guard of line 10 when it has received enough AUX
messages with the same value. Some messages might come from faulty processes because AUX messages are
sent with a regular broadcast (not bv-broadcast). Hence, it might be possible for a correct process to move to
the next step even if it has received only n− t− f messages from correct processes.

A superround R of the composite automaton from Fig. 3 captures round 2R−1 followed by round 2R of
Algorithm 1. One can thus restate Lemma 1 as the following corollary in the TA terminology. The proof is deferred
to Appendix E.

Corollary 1. Let r ∈N be such that the rth execution of bv-broadcast in Algorithm 1 is (r mod 2)-good. Then:
• If there exists R ∈N with r = 2R−1, then �

(
κ[M0, R] = 0) holds.

• If there exists R ∈N with r = 2R, then � (κ[M′1, R] = 0
)

holds.

5 Verification of Byzantine consensus

In this section we formally prove that Algorithm 1 solves the byzantine consensus problem with the fair
bv-broadcast and without partial synchrony. (Appendix B provides a counter-example illustrating why the
algorithm does not terminate without the fair broadcast.) In particular, we apply a strategy used for crash fault
tolerant randomized consensus [11] to our context to prove both the safety (Section 5.1) and liveness (Section 5.2)
of the determinstic byzantine consensus algorithm.

5.1 Safety

Under no fairness assumption, one can prove the safety properties—agreement and validity—of the byzantine
consensus based on bv-broadcast. Precisely, we formulate these properties in LTL and want to establish that they
hold on the threshold automaton of Fig. 3.

Agreement requires that no two correct processes disagree, that is, if one process decides v then no process
should decide 1−v for all binary values v ∈ {0, 1}. Thus, we want to prove that the following formula holds for
both values of v:

∀R ∈N, ∀R′ ∈N
(
♦ κ[Dv, R] 6= 0 ⇒ � κ[D1−v, R′] = 0

)
, (Agreev)

stating that for any two superrounds R and R′, if eventually a process decides v, then globally (in any superround)
no process will decide 1− v. In terms of the TA from Fig. 3, if a process enters location Dv no process should enter
location D1−v (not only in that superround, but in any other).

Validity requires that if no process proposes a value v ∈ {0, 1}, no process should ever decide that value.
Hence, we want to prove the following formula for both values of v:

∀R ∈N
(

κ[Vv, 1] = 0 ⇒ � κ[Dv, R] = 0
)

, (Validv)
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stating that if initially no process has value v, then globally (in any superround) no process decides v. In terms
of the TA, if location Vv is initially empty (in superround 1), then no process should enter location Dv in any
superround.

ByMC can only check formulas of the form ∀R ∈ N ϕ[R] (see Appendix A). Thus, automatically checking
(Agreev) and (Validv) is non-trivial, as they both involve two superround numbers: R and R′ in (Agreev), and 1 and
R in (Validv). We instead check well-chosen one-superround invariants (Inv1v) and (Inv2v):

∀R ∈N
(
♦ κ[Dv, R] 6= 0 ⇒ �

(
κ[D1−v, R] = 0∧ κ[E′1−v, R] = 0

))
, (Inv1v)

∀R ∈N
(
� κ[Vv, R] = 0 ⇒ �

(
κ[Dv, R] = 0∧ κ[E′v, R] = 0

))
. (Inv2v)

The choice of these invariants follows a previous approach used for the crash fault tolerant consensus [11]
where Proposition 2 claims that correctness of these invariants implies correctness of (Agreev) and (Validv). This
easily follows from the fact that (i) emptiness of D0 and E′0 in one superround leads to the emptiness of V0 in the
next superround, and (ii) emptiness of E′1 (and D1) in one superround leads to the emptiness of V1 in the next
superround. Therefore, in order to prove agreement and validity, we only need to prove (Inv1v) and (Inv2v) for
both values v ∈ {0, 1}. We successfully do this automatically with ByMC (see Section 6).

5.2 Liveness

We now aim at proving termination of Algorithm 1. First, we need to prove that every superround eventually
terminates, in the sense that for every round eventually there are no processes in any location to the exception of
the final ones (D0, E′0 and E′1). Formally, using ByMC we prove the following:

∀R ∈N ♦
( ∧

L∈L\{D0,E′0,E′1}
κ[L, R] = 0

)
. (SRoundTerm)

From this property and the shape of the TA from Fig. 3, it easily follows that if no process ever enters E′0 and E′1 of
some superround, then all processes visit D0 in that superround. Similarly, if no process ever enters E0 and E1
of some superround, then all processes visit D1 in that superround. This allows us to express termination as the
following LTL property on the threshold automaton of Fig. 3:

∃R ∈N
(
�
(
κ[E0, R] = 0∧ κ[E1, R] = 0

)
∨ �

(
κ[E′0, R] = 0∧ κ[E′1, R] = 0

))
. (Term)

In words, there is a superround R in which either (i) all processes visit D1, or (ii) all processes visit D0. Here again
formula (Term) is non-trivial to check since it contains an existential quantifier over supperrounds, that cannot be
handled by the model checker ByMC. Adapting the technique from [11, Section 7] to a non-randomized context,
it is sufficient to prove a couple of properties on the threshold automaton of Fig. 3, that we detail below. The
first property expresses that if no process starts a superround R with value v, then all processes decide 1−v in
superround R:

∀R ∈N
(
�
(
κ[V0, R] = 0

)
⇒ �

(
κ[E0, R] = 0∧ κ[E1, R] = 0

))
∧
(
�
(
κ[V1, R] = 0

)
⇒ �

(
κ[E′0, R] = 0∧ κ[E′1, R] = 0

))
.

(Dec)

The second property claims that (i) emptiness of M0 in superround R implies (emptiness of E0 and therefore also)
emptiness of D0 and E′0 in R and (ii) emptiness of M′1 in superround R implies emptiness of E′1 in R:

∀R ∈N
((

� κ[M0, R] = 0) ⇒ � (κ[D0, R] ∧ κ[E′0, R] = 0)
)
∧
(
� κ[M′1, R] = 0) ⇒ � κ[E′1, R] = 0

))
. (Good)

The main idea is to exploit the fairness of bv-broadcast, which ensures the existence of a round r which is
(r mod 2)-good. Intuitively, the next superround R = dr/2e is the desired witness for (Term), namely the one in
which all processes decide (not necessarily for the first time). We formalize this in our main result:

Theorem 1. Assuming fairness of the bv-broadcast, the byzantine consensus algorithm (Algorithm 1) terminates.
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Proof. First we prove formulas (SRoundTerm) and (Dec) and (Good) automatically using the model checker ByMC.
Formula (SRoundTerm) guarantees that formula (Term) indeed expresses termination. Next, we show that formulas
(Dec) and (Good) together imply (Term). Indeed, since we assume fairness of the bv-broadcast, from Corollary 1 we
know that there is a superround R in which one of the following two scenarios happen:

• � κ[M′1, R] = 0. In this case formula (Good) implies � κ[E′1, R] = 0. Note that the form of the (dotted) round-
switch rules yield that no process starts the superround R+1 with value 1, that is, we have � κ[V1, R+1] = 0.
Then formula (Dec) implies �

(
κ[E′0, R+1] = 0∧ κ[E′1, R+1] = 0

)
, which makes formula (Term) true, that is,

all processes visit D0 in superround R+1.
• � κ[M0, R] = 0. In this case formula (Good) implies � (κ[D0, R] ∧ κ[E′0, R] = 0)

)
. Now the round-switch

rules yield that no process starts the superround R+1 with value 0, that is, we have � κ[V0, R+1] = 0.
Then formula (Dec) implies �

(
κ[E0, R+1] = 0∧ κ[E1, R+1] = 0

)
, which satisfies formula (Term), that is, all

processes visit D1 in R+1.
As a consequence, our automated proofs of properties (SRoundTerm) and (Dec) and (Good) guarantee termination
of Algorithm 1 under fairness of bv-broadcast.

Threshold automaton Size Property # schemas Avg. schema length Time

bv-broadcast (Fig. 1)

4 unique
guards
10 locations
19 rules

BV-Just0 90 54 5.61s
BV-Obl0 90 79 6.87s
BV-Unif0 760 97 27.64s
BV-Term 90 79 6.75s

Naive consensus (Fig. 2)

14 unique
guards
24 locations
45 rules

Inv10 >100 000 - >24h
Inv20 >100 000 - >24h
SRound-Term >100 000 - >24h

Composite consensus (Fig. 3)

10 unique
guards
16 locations
37 rules

Inv10 6 102 4.68s
Inv20 2 73 4.56s
SRound-Term 2 109 4.13s
Good0 2 67 4.55s
Dec0 2 73 4.62s

Table 2: Experiments. We used the parallelized version of ByMC 2.4.4 with MPI. The bv-broadcast and the
composite automaton were verified on a laptop with Intel® Core™ i7-1065G7 CPU @ 1.30GHz × 8 and 32 GB of
memory. The naive automaton timed-out even on a 4 AMD Opteron 6276 16-core CPU with 64 cores at 2300MHz
with 64 GB of memory. Good and Dec are only relevant for the composite automaton. Although not indicated here,
we also generated a counter-example of Inv10 for n > 3t on the composite automaton in ~4s. The specification of
the termination for ByMC is deferred to Appendix F.

6 Experiments and Conclusions

Through composition, we model checked the safety but also the liveness of byzantine consensus for any parameters
t and n > 3t. Table 2 demonstrates the relevance of our approach as it allows to verify the byzantine consensus
automatically in less than 70 seconds whereas a non-compositional approach could not make it in less than a day.

Our results imply that our notion of fairness is a sufficient assumption to cope with the impossibility of solving
consensus in asynchronous setting. In this sense, this work is a step towards addressing “the need for more refined
models of distributed computing that better reflect realistic assumptions” that was raised as an open question
in [32].
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A Reducing multi-round TA to one-round TA

Let us first formally define a (finite or infinite) run in a (one-round or multi-round) counter system Sys(TA). It is
an alternating sequence of configurations and transitions σ0, t1, σ1, t2, . . . such that σ0 ∈ I is an initial configuration
and for every i ≥ 1 we have that ti is unlocked in σi−1, and executing it leads to σi, denoted ti(σi−1) = σi.

Here we briefly describe the reasoning behind the reduction of multi-round TAs to one-round TAs [11,
Theorem 6]. Note that the behavior of a process in one round only depends on the variables (the number of
messages) of that round. Namely, we check if a transition is unlocked in a round by evaluating a guard and a
location counter in that round. This allows us to modify a run by swapping two transitions from different rounds,
as they do not affect each other, and preserve LTL-X properties, which are properties expressed in LTL without the
next operator X . The type of swapping we are interested in is the one where a transition of round R is followed
by a transition of round R′ < R. Starting from any (fully asynchronous) run, if we keep swapping all such pairs of
transitions, we will obtain a run in which processes synchronize at the end of each round and which has the same
LTL-X properties as the initial one. This, so-called round-rigid structure, allows us to isolate a single round and
analyze it. Still, different rounds might behave differently as they have different initial configurations. If we have
a formula ∀R ∈N. ϕ[R], where ϕ[R] is in the above mentioned fragment of (multi-round) LTL, then Theorem 6
of [11] shows exactly that it is equivalent to check that (i) this formula holds (or ϕ[R] holds on all rounds R) on a
multi-round TA, and (ii) formula ϕ[1] (or just ϕ) holds on the one-round TA′ (naturally obtained from the TA by
removing dotted round-switch rules) with respect to all possible initial configurations of all rounds. Thus, we can
verify properties of the form ∀R ∈N. ϕ[R] on multi-round threshold automata, by using ByMC to check ϕ on a
one-round threshold automaton with an enlarged set of initial configurations.

B Examples of fairness and of non-termination without fairness

First, we explain that the fairness is satisfied as soon as one execution of bv-broadcast has correct processes
delivering all values broadcast by correct processes first. Then, we explain that the byzantine consensus algorithm
cannot terminate without an additional assumption, like fairness.

Relevance of the fairness assumption. It is interesting to note that our fairness assumption is satisfied by the
existence of an execution with a particular reception order of some messages of the two broadcasts within the
bv-broadcast. Consider that t = dn/3e − 1 and that at the beginning of a round r, the two following properties hold:
(i) estimate r mod 2 is more represented than estimate (1− r) mod 2 among correct processes and (ii) all correct
processes deliver the values broadcast by correct processes before any value broadcast during the bv-broadcast by
byzantine processes are delivered. Indeed, the existence of such a round r in any infinite sequence of executions of
bv-broadcast implies that this sequence is fair (Def. 2): as r mod 2 is the only value that can be broadcast by t+1
correct processes, this is the first value that is received from t+1 distinct processes and rebroadcast by the rest of
the correct processes. This is thus also the first value that is bv-delivered by all correct processes.

Non-termination without fairness. It is interesting to note why Algorithm 1 does not solve consensus when
t < n/3 and without our fairness assumption. We exhibit an example of execution of the algorithm with n = 4
and f = 1, starting at round r and for which the estimates of the correct processes are kept as (1− r) mod 2, (1−
r) mod 2, r mod 2 in rounds r and r+2. Repeating this while incrementing r yields an infinite execution, so that the
algorithm never terminates.

Lemma 2. Algorithm 1 does not terminate without fairness.

Proof. Consider, for example, processes p1, p2, p3 and p4 where p4 is byzantine and where 0, 0, 1 are the input
values of the correct processes p1, p2, p3, respectively, at round 1. We show that at the beginning of round 2,
p1, p2, p3 have estimates 0, 1, 1. First, as a result of the broadcast (line 2), consider that p1 and p2 receive 0 from p1,
p2 and p4 so that p1, p2 bv-deliver 0. Second, p2 and p3 receive 1 from p3, p4 and finally p2 so that p2, p3 bv-deliver
1. Third, p3 receives 0 from p0, p2 and finally from p3 itself, hence p3 bv-delivers 0. Now we have: (a) p1, p2, p3
bv-deliver 0, 0, 1 and (b) p2, p3 later bv-deliver 1 and 0, respectively. As a result of (a), we have p1, p2 broadcast,
and say p4 sends, 〈AUX, 0, ·〉 so that p0 receives these three messages, p1, p2 broadcast 〈AUX, 0, ·〉, and say p4
sends, 〈AUX, 1, ·〉 to p2 so that p2 receives these messages, p1 broadcasts 〈AUX, 0, ·〉 while p3 broadcasts, and say p4
sends, 〈AUX, 1, ·〉 so that p3 receives these messages. Finally, by (b) we have contestants2 = contestants3 = {0, 1}.
This implies that the n − t first values inserted in favorites1, favorites2 and favorites3 in round r are values {0},
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{0, 1}, {0, 1}, respectively. Finally, qualifiers1, qualifiers2 and qualifiers3 are {0}, {0, 1} and {0, 1}, respectively. And
p1, p2, p3 set their estimate to 0, 1, 1.

It is easy to see that a symmetric execution in round r′ = r + 1 leads processes to change their estimate from
0, 1, 1 to 0, 0, 1 looping back to the state where r mod 2 = 1 and estimate are (1− r) mod 2, (1− r) mod 2, r mod 2.

C Starting a round with identical estimate

Lemma 3 (Lemma 1). If the infinite sequence of bv-broadcast invocations of Algorithm 1 is fair, with the rth invocation (in
round r) being (r mod 2)-good, then all correct processes start round r+1 of Algorithm 1 with estimate r mod 2.

Proof. The argument is that all correct processes wait until a growing prefix of the bv-delivered values that are
re-broadcast implies that there is a subset of favorites, called qualifiers, containing messages from n− t distinct
processes such that ∀v ∈ qualifiers. v ∈ contestants. As we assume that the infinite sequence of bv-broadcast
invocations of Algorithm 1 is fair, with the rth invocation being (r mod 2)-good, then we know that in round r
for every pair of correct processes pi and pj we have pi.qualifiers ⊆ pj.qualifiers or pj.qualifiers ⊆ pi.qualifiers. If
pi.qualifiers = pj.qualifiers for all pairs, then by examination of the code, we know that they will set their estimate
est to the same value depending on the parity of the current round.

Consider instead, with no loss of generality, that pi.qualifiers is a strict subset of pj.qualifiers in round r. As their
values can only be binaries, in {0, 1}, this means that pi.qualifiers is a singleton, say {w}. As all correct processes
bv-deliver r mod 2 first, which is then broadcast into pi.favorites, we have w = r mod 2 and pi’s estimate becomes
r mod 2 at line 12. As pj.qualifiers is {0, 1}, the estimate of pj is also set to r mod 2 but at line 14.

D Large TA

Table 3 details the rules for the first half of the threshold automaton from Fig. 2.

Rules Guard Update
r1 true b0++

r2 true b1++

r3 b0 ≥ 2t+1− f a0++

r4 b1 ≥ t+1− f b1++

r5 b0 ≥ t+1− f b0++

r6 b1 ≥ 2t+1− f a1++

r14, r15, r16 a0 ≥ n−t− f —
r8 b1 ≥ t+1− f b1++

r9 b1 ≥ 2t+1− f a1++

r10 b0 ≥ 2t+1− f a0++

r11 b0 ≥ t+1− f b0++

r12 b1 ≥ 2t+1− f —
r13 b0 ≥ 2t+1− f —
r7, r18, r19 a1 ≥ n−t− f —
r16 a0 ≥ n−t− f —
r17 a0+a1 ≥ n−t− f —
r20, r21, r22 true —

Table 3: The rules of the threshold automaton from Fig. 2. We omit self loops that have trivial guard true and no
update.

E Missing proof of Corollary 1

We restate here Corollary 1 and give its proof.

Corollary 1. Let r ∈N be such that the rth execution of bv-broadcast in Algorithm 1 is (r mod 2)-good. Then:
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• If there exists R ∈N with r = 2R−1, then �
(
κ[M0, R] = 0) holds.

• If there exists R ∈N with r = 2R, then � (κ[M′1, R] = 0
)

holds.

Proof. By definition of an (r mod 2)-good execution, we know that in this particular invocation of bv-broadcast, all
correct processes bv-deliver r mod 2 first. It follows from Lemma 1, that all correct processes start the next round
with estimate set to r mod 2. There are two cases to consider depending on the parity of the round: If r mod 2 = 1,
then this is the first round of superround R, i.e., r = 2R− 1. As a result, �

(
κ[M0, R] = 0

)
. If r mod 2 = 0, then this

is the second round of superround R, i.e., r = 2R. As a result, �
(
κ[M′1, R] = 0

)
.

F Specification of the termination property in the simplified threshold au-
tomaton for consensus algorithm

The reliable communication assumption and the properties guaranteed by the bv-broadcast are expressed as
preconditions for s_round_termination. The progress conditions work exactly the same as in [11]. However, since
the shared counters representing the bv-broadcast execution do not represent regular messages, we cannot directly
use the reliable communication assumption. Instead, we use the properties of the bv-broadcast that we proved in a
separate automaton.

In practice, instead of using progress preconditions on the bv-broadcast counters in s_round_termination, such
as:

(locM == 0 || bvb1 < 1) && (locM == 0 || bvb0 < 1) &&
(locM1 == 0 || bvb0 < 1) && (locM0 == 0 || bvb1 < 1)

we use the following:

/* BV-Termination */
(locM == 0) &&
/* BV-Obligation */
(locM1 == 0 || bvb0 < T + 1) && (locM0 == 0 || bvb1 < T + 1) &&
/* BV-Uniformity */
(locM1 == 0 || aux0 == 0) && (locM0 == 0 || aux1 == 0) &&

One can note that we do not use BV-Justification as a precondition in this specification. Instead, the BV-
Justification property is baked in the structure of the simplified threshold automaton (in the guard of the transition
M→ M0, M1).

The complete specification of the termination property follows:
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s_round_termination:
<>[](

(locV0 == 0) &&
(locV1 == 0) &&

/* BV-Termination */
(locM == 0) &&
/* BV-Obligation */
(locM1 == 0 || bvb0 < T + 1) &&
(locM0 == 0 || bvb1 < T + 1) &&
/* BV-Uniformity */
(locM1 == 0 || aux0 == 0) &&
(locM0 == 0 || aux1 == 0) &&

/* Business as usual */
(locM1 == 0 || aux1 < N - T) &&
(locM0 == 0 || aux0 < N - T) &&
(locM01 == 0 || aux0 + aux1 < N - T) &&

(locD1 == 0) &&
(locE0 == 0) &&
(locE1 == 0) &&

/* BV-Termination */
(locMx == 0 ) &&
/* BV-Obligation */
(locM1x == 0 || bvb0x < T + 1) &&
(locM0x == 0 || bvb1x < T + 1) &&
/* BV-Uniformity */
(locM1x == 0 || aux0x == 0) &&
(locM0x == 0 || aux1x == 0) &&

(locM1x == 0 || aux1x < N - T) &&
(locM0x == 0 || aux0x < N - T) &&
(locM01x == 0 || aux1x < N - T) &&
(locM01x == 0 || aux0x < N - T) &&

(locM01x == 0 || aux0x + aux1x < N - T)
)

->
<>(

locV0 == 0 &&
locV1 == 0 &&
locM == 0 &&
locM0 == 0 &&
locM1 == 0 &&
locM01 == 0 &&
locE0 == 0 &&
locE1 == 0 &&
locD1 == 0 &&
locMx == 0 &&
locM0x == 0 &&
locM1x == 0 &&
locM01x == 0

);

inv1_0: <>(locD0 != 0) -> [](locD1 == 0 && locE1x == 0);

inv2_0: [](locV0 == 0) -> [](locD0 == 0 && locE0x == 0);

inv1_1: <>(locD1 != 0) -> [](locD0 == 0 && locE0x == 0);

inv2_1: [](locV1 == 0) -> [](locD1 == 0 && locE1x == 0);

dec_0: [](locV0 == 0) -> [](locE0 == 0 && locE1 == 0);

dec_1: [](locV1 == 0) -> [](locE0x == 0 && locE1x == 0);

good_0: [](locM0 == 0) -> [](locD0 == 0 && locE0x == 0);

good_1: [](locM1x == 0) -> [](locE1x == 0);
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