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This is the second article in a series of two which report on a matrix approach for ultrasound
imaging in heterogeneous media. This article describes the quantification and correction of aber-
ration, i.e. the distortion of an image caused by spatial variations in the medium speed-of-sound.
Adaptive focusing can compensate for aberration, but is only effective over a restricted area called
the isoplanatic patch. Here, we use an experimentally-recorded matrix of reflected acoustic signals
to synthesize a set of virtual transducers. We then examine wave propagation between these virtual
transducers and an arbitrary correction plane. Such wave-fronts consist of two components: (i)
An ideal geometric wave-front linked to diffraction and the input focusing point, and; (ii) Phase
distortions induced by the speed-of-sound variations. These distortions are stored in a so-called dis-
tortion matrix, the singular value decomposition of which gives access to an optimized focusing law
at any point. We show that, by decoupling the aberrations undergone by the outgoing and incoming
waves and applying an iterative strategy, compensation for even high-order and spatially-distributed
aberrations can be achieved. As a proof-of-concept, ultrasound matrix imaging (UMI) is applied to
the in-vivo imaging of a human calf. A map of isoplanatic patches is retrieved and is shown to be
strongly correlated with the arrangement of tissues constituting the medium. The corresponding
focusing laws yield an ultrasound image with an optimal contrast and a transverse resolution close
to the ideal value predicted by diffraction theory. UMI thus provides a flexible and powerful route
towards computational ultrasound.

In most ultrasound imaging, the human body is insoni-
fied by a series of incident waves. The medium reflectivity
is then estimated by detecting acoustic backscatter from
short-scale variations of the acoustic impedance. An im-
age (spatial map) of reflectivity is commonly constructed
using delay-and-sum beamforming (DAS). In this pro-
cess, echoes coming from a particular point, or image
pixel, are selected by computing the time-of-flight asso-
ciated with the forward and return travel paths of the
ultrasonic wave between the probe and that point. A
sum over all of these echoes is placed at the correspond-
ing spot (pixel) of the image, and the procedure repeated
for each pixel. In clinical ultrasound, real-time imaging
requires a low computational burden; thus, the time-
of-flight between any incident wave and focal point is
calculated with the assumption that the medium is ho-
mogeneous with a constant speed-of-sound. However,
in human tissue, long-scale fluctuations of the acoustic
impedance can invalidate this assumption [1]. The re-
sulting incorrectly calculated times-of-flight (also called
focusing laws) can lead to aberration of the associated
image, meaning that resolution and contrast are strongly
degraded. While adaptive focusing methods have been
developed to deal with this issue, they rely on the hy-
pothesis that aberrations do not change over the entire
field-of-view. However, this assumption is simply incor-
rect in soft tissues [2] such as fat, skin and muscle, in
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which the order of magnitude of acoustic impedance fluc-
tuations is around 5% [3]. This causes higher-order aber-
rations which are only invariant over small regions, often
referred to as isoplanatic patches. To tackle this issue, re-
cent studies [4, 5] extract an aberration law for each im-
age voxel by probing the correlation of the time delayed
echoes coming from adjacent focal spots. The aberra-
tion laws are estimated either in the time domain [4–7]
or in the Fourier domain [8], for different insonification
sequences (focused beams [6, 7], single-transducer insoni-
fication [5] or plane wave illumination [4]). In all of these
techniques, a focusing law is estimated in either the re-
ceive [6, 8] or transmit [5] mode, but this law is then
used to compensate for aberrations in both reflection and
transmission. However, spatial reciprocity between input
and output is only valid if the emission and detection of
waves are performed in the same basis; in other words,
the distortion undergone by a wavefront travelling to and
from a particular point is only the same if the wave has
interacted with the same heterogeneities in both direc-
tions. If this condition is not fulfilled, applying the same
aberration phase law in transmit and receive modes may
improve the image quality to some degree, but will not
be optimal.

To obtain optimized focusing laws both in transmit
and receive modes, these two steps must be considered
separately. Recent studies [9–11] have shown how to de-
couple the location of the transmit and receive focal spots
to build a focused reflection (FR) matrix R. Containing
the medium responses between virtual sources and vir-



2

tual sensors located within the medium, this matrix is the
foundation of ultrasound matrix imaging (UMI). Firstly,
a focusing criterion can be built from the FR matrix,
which allows the mapping of the focusing quality over all
pixels of the ultrasound image [12] in both speckle and
specular regimes [9]. Secondly, the distortion matrix D
can be built from the FR matrix for a local correction of
high-order aberrations; this concept was first presented
in optical imaging [13], then in ultrasound [14], and most
recently in seismology [15]. Whereas R holds the wave-
fronts which are reflected from the medium, D contains
the deviations from an ideal reflected wavefront which
would be obtained in the absence of heterogeneities. It
has been shown that, for specular reflectors [13], in sparse
media [15] and in the speckle regime [14], a time rever-
sal analysis of D yields a one-to-one association between
each isoplanatic patch in the focal plane and the cor-
responding wavefront distortion in the far-field. While
this promising method shows some similarities with other
works [4, 5, 8, 16], the FR matrix here plays a pivotal
role. A set of distortion matrices can be built from R by
projecting the input or output wave-fields towards differ-
ent bases for an optimal aberration correction (far-field,
transducer plane, some intermediate surface, etc.). A
local aberration correction is then obtained by adjust-
ing the field-of-view covered by the virtual transducers
with each isoplanatic patch. In practice, an iterative pro-
cedure is applied by reducing gradually the size of the
isoplanatic patches, thereby compensating for more and
more complex aberrations throughout the iteration pro-
cess. Note that, experimentally, UMI only requires the
recording of a reflection matrix – all subsequent steps are
performed in post-processing.

Here we apply UMI to the complex case of in-vivo
imaging of a human calf. In an previous article, we
presented the basic idea and an experimental proof-of-
concept of the distortion matrix approach [14]. The cur-
rent article describes how to implement UMI in in-vivo
conditions. Each step of the procedure is given in detail,
and the physical mechanism hidden behind the calcula-
tions are discussed. While our previous paper was limited
to an aberration correction from the Fourier plane [14],
the distortion matrix approach is here described in the
transducer basis. The aberration correction process is
then successively performed in the plane wave and trans-
ducer bases, at input and output and by gradually reduc-
ing the size of the addressed isoplanatic patches. A set of
optimized focusing laws is finally obtained for each point
of the medium, enabling (i) a mapping of the isoplanatic
patches in the field-of-view, revealing the arrangement
of the different tissues in the medium, and (ii) the cal-
culation of an ultrasound image with optimal contrast
and close-to-ideal resolution over the whole field-of-view.
The drastic improvement compared to the conventional
ultrasound image is quantified by means of the focusing
F−factor introduced in the first paper of the series [12].
The aberration correction strategy described in this work
is by no means exhaustive, and can be adapted according

to the experimental conditions and the nature of aberra-
tions. In the following, we detail various capabilities of
this approach, demonstrating the flexibility of UMI.

I. THE FOCUSED REFLECTION MATRIX

A. Experimental procedure

The experimental aspect of our matrix approach con-
sists in recording the reflection matrix R using a stan-
dard plane wave sequence[17]. The probe was placed
in direct contact with the calf of a healthy volunteer,
oriented orthogonally with respect to the muscle fibers
(this study is in conformation with the declaration of
Helsinki. The acquisition was performed using a medical
ultrafast ultrasound scanner (Aixplorer Mach-30, Super-
sonic Imagine, Aix-en-Provence, France) driving a 2−10
MHz linear transducer array containing 192 transducers
with a pitch p = 0.2 (SL10-2, Supersonic Imagine). The
ultrasound sequence consisted in transmitting 101 steer-
ing angles spanning from −25o to 25o, calculated assum-
ing a constant speed of sound c0 = 1580 m/s [3] . The
emitted signal was a sinusoidal burst of three half peri-
ods of the central frequency fc = 7.5 MHz, with pulse
repetition frequency 1000 Hz. For each excitation, the
back-scattered signal was recorded by all probe elements
over time ∆t = 80 µs with a sampling frequency fs = 40
MHz. Mathematically, we write this set of acoustic re-
sponses as Ruθ(t) ≡ [R(uout, θin, t)], where uout defines
the coordinate of the receiving transducer, θin the angle
of incidence and t the time-of-flight. Subscripts ‘in’ and
‘out’ denote propagation in the forward and backward
directions, respectively. Note that the coefficients of Ruθ

should be complex, as they contain the amplitude and
phase of the medium response. If the responses Ruθ(t)
are not complex modulated RF signals, then the corre-
sponding analytic signals should be considered.

B. Computing the focused reflection matrix

In conventional ultrasound imaging, the reflectivity of
a medium at a given point is estimated by (i) focusing
a wave on this point, thereby creating a virtual source,
and (ii) coherently summing the echoes coming from that
same point, thus synthesizing a virtual transducer at
that location. In UMI, this focusing operation is per-
formed in post-processing, and the input/output focus-
ing points, rin/rout, are decoupled [Fig. 1(a)]. This is
the principle of the broadband focused reflection matrix
Rrr = R(rin, rout) containing the responses between vir-
tual sources and sensors located throughout the medium.
In the first article of this series [12], the FR matrix
was built using a beamforming process in the temporal
Fourier domain. Here, we show that this matrix can be
directly computed in the time domain via conventional
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DAS beamforming:

R(rout, rin) =
∑

θin,uout

A(uout, θin, rin, rout)

R(uout, θin, t− τin(θin, rin)− τout(uout, rout)), (1)

where τin and τout are the transmit and receive focusing
laws such that

τin(θin, rin) = [xin sin(θin) + zin cos(θin)]/c0, and (2a)

τout(uout, rout) =
√
|xout − uout|2 + z2

out/c0. (2b)

A is an apodization factor that limits the extent of the re-
ceive synthetic aperture, and (xin, zin) and (xout, zout) are
the coordinates of the input and output focusing points
rin and rout, respectively. In this paper, we will restrict
our study to the x−projection of Rrr, written Rxx(z), in
which only the responses between virtual transducers lo-
cated at the same depth are considered (z = zin = zout).

C. Manifestation of aberrations and multiple
scattering

Each row of Rxx(z) corresponds to the situation in
which waves have been focused at rin = (xin, z) in trans-
mission, and virtual detectors at rout = (xout, z) record
the resulting spatial wave spreading across the focal plane
[Fig. 1(a)]. Fig. 1(b) shows Rxx(z) at z = 28 mm. Note
that the coefficients R(xout, xin) associated with a trans-
verse distance |xout − xin| larger than a superior bound
∆xmax ∼ λmax/(2δθ) are not displayed because of spatial
aliasing [12]. The diagonal coefficients of this matrix cor-
respond to a confocal configuration in which the virtual
transducers are exactly at the same position. Thus, the
intensity distribution along the diagonal of Rxx(z) yields

a line of the multi-focus image, I(r) ≡
∣∣R (r, r)

∣∣2, that
would be obtained by plane wave synthetic beamform-
ing [17] [see Fig. 2(a)]. In the single scattering approxi-
mation, the impact of aberration on the FR matrix can
be expressed theoretically as follows [12]:

R(xout, xin) =

∫
dxHout(x, xout, z)γ(x, z)Hin(x, xin, z)

(3)
where γ(x, z) is the medium reflectivity. Hin(x, xin, z)
and Hout(x, xout, z) are the transmit and receive PSFs,
i.e. the spatial amplitude distribution of the input and
output focal spots at depth z.

In the accompanying paper [12], the intensity of the
antidiagonals of Rxx(z), referred to as the common mid-
point (CMP) intensity profile, is shown to give access to

the local input-output incoherent PSF, |Hin|2
∆x
~ |Hout|2

independently from the medium reflectivity (The symbol
~ here stands for a convolution product). Fig. 1(g) shows
the CMP intensity profile at z = 28 mm. A confocal

peak can be observed, originating from single scattering,
which sits on wider incoherent background from multiple
scattering. By comparing the full width at half maximum
(FWHM) w(r) of the CMP intensity profile with the ideal
diffraction-limited value δx0, a focusing factor F (r) can
be defined [12]. Fig. 2(e) shows the F−map associated
with the image of the human calf. Blue areas [F (r) ∼ 1)]
indicate high reliability; the image accurately describes
the medium reflectivity. Yellow areas [F (r) < 0.5] indi-
cate aberrated areas of the image . Gray areas correspond
to the situation where the close diagonal coefficients of
the FR matrix show no intensity enhancement due to
single scattering, preventing the measurement of input-
output resolution. This occurs when the intensity level
of the backscattered signal generated by the region of in-
terest is lower than the multiple scattering and/or elec-
tronic noise contributions. This low intensity level could
be due to a weak reflectivity of the medium in the probed
region and/or strong fluctuations of the speed-of-sound
upstream of the focal plane which decrease the relative
single scattering level close to the diagonal. Thus, prior
to performing aberration correction, it is important to re-
move as much multiple scattering background as possible
from the FR matrix.

D. Filtering multiple scattering and noise

The multiple scattering contribution to Rxx can
be suppressed using an adaptive confocal filter [10,
11]. This process consists in weighting the coefficients
R(xin, xout, z) of the FR matrix as a function of the dis-
tance |xout − xin| between the virtual transducers, such
that:

R′(xout, xin) = R(xout, xin) exp

[
−| xout − xin |2

2l2c(r)

]
. (4)

This filter has a Gaussian shape, with a width lc(r)
that needs to be carefully set. If lc(r) is too large, the
multiply-scattered echoes will prevent a correct estima-
tion of the aberration phase law. If lc(r) is too small,
the filter then acts as an apodization function that will
smooth out the resulting aberration phase law. To be
efficient, lc(r) should thus match the input-output reso-
lution w(r). For areas in which this estimation fails [gray
areas in Fig. 2(e)], lc(r) is set arbitrarily to nδx0(r), with
n an integer whose value is reported in Table. I.

Figs. 1(b,c) show the original and filtered FR matrices,
Rxx and R′xx, respectively, computed at z = 28 mm. It
can be seen that the adaptive confocal filter has removed
part of the multiple scattering contribution. However,
R′xx still contains a residual multiple scattering com-
ponent which exists at matrix coefficients very close to
the diagonal. Note that this filter has no impact on the
raw ultrasound image since the confocal signals are un-
affected. However, it constitutes a necessary step for the
determination of the aberration law as it greatly improves
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FIG. 1. Focused reflection matrix. (a) UMI consists in split-
ting the locations of the transmit (rin) and receive (rout)
focusing points. (b)-(f) Evolution of Rxx(z) at depth z =
28 mm during the aberration correction process. Rxx is
shown (b) prior to correction, (c) after the application of the
adaptive confocal filter (4), (d) after aberration correction
in the (uout, θin) bases, (e) after aberration correction in the
(uin, θout) bases, and (f) after the ultimate correction based

on the normalized correlation matrix Ĉ. (g) Evolution of the
corresponding CMP intensity profiles I(r,∆x) spatially aver-
aged over the area A1 [Fig. 2(a)].
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FIG. 2. Results of the aberration correction process applied to
in-vivo imaging of the human calf. (a) Conventional multi-
focus image. The dashed white square A1 defines the area
used to estimate the average CMP intensity profiles shown in
Fig. 1(g). The four solid, colored rectangles correspond to the
spatial windows W∆r used in the four steps of the correction
process (from the largest to smallest, see Table.I).(b) Cor-
rected multi-focus UMI image. (c,d) Zooms of the initial and
corrected images [white rectangles A0 in (a) and (b)]. (e,f) Fo-
cusing criterion superimposed onto the (e) conventional and
(f) corrected images.

II. MATRIX CORRECTION OF ABERRATIONS

The FR matrix R′xx(z) is now used to implement the
distortion matrix concept [14]. In this section, we will
show how to estimate and correct for aberrations suc-
cessively and independently in the transmit and receive
modes, both from the far-field and the surface of the
transducer array. We describe all of the technical steps
of the aberration correction process: (i) the projection
of the FR matrix at output or input into a correction ba-
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TABLE I. Parameters used for the UMI process.

Correction steps 1 2 3 4

n = lc/δx0 10 10 8 6

∆x (mm) 10 7.5 5 3

∆z (mm) 20 15 10 7.5

Transmit basis kin uin kin uin

Receive basis uout kout uout kout

SVD type D D Ĉ Ĉ

sis (here either the Fourier or transducer basis) in order
to investigate the reflected or incident wave-front associ-
ated with each virtual source or transducer, respectively,
(ii) the realignment of the transmitted or reflected wave-
fronts to form the distortion matrix D, (iii) the trunca-
tion of D into overlapping isoplanatic patches, (iv) the
singular value decomposition of D or of its normalized
correlation matrix to extract an aberration phase law for
each isoplanatic patch, and (v) the application of the fo-
cusing law and back-projection of the reflection matrix
into the focused basis. All of these steps are repeated by
exchanging input and output bases, as well as the cor-
rection basis (See Supplementary Fig. S1). The process
can then be iterated while gradually reducing the size
of isoplanatic patches in order to address higher order
aberrations.

A. Projection of the reflection matrix into a dual
basis

In adaptive focusing, the aberrating layer is often
modeled as a random phase screen. For an optimal cor-
rection, the ultrasonic data should be back-propagated
to the plane containing this aberrating layer; indeed, in
this plane, the aberration is spatially-invariant. By ap-
plying the phase conjugate of the aberration phase law,
aberration can be fully compensated for at any point
of the medium. However, in real life, speed-of-sound
inhomogeneities are distributed over the entire medium
and aberration can take place everywhere. To treat this
case, the strategy here is to back-propagate ultrasound
data into several planes from which the aberration phase
law should be estimated and then compensated. The
optimal correction plane is the one that maximizes the
size of isoplanatic patches. For multi-layered media,
the Fourier plane is the most adequate since plane
waves are the propagation invariants in this geometry.
For aberrations induced by superficial veins or skin
nodules, the probe plane is a good choice. In this paper,
the aberration correction will be performed in these
two planes as they coincide also to the emission and
reception bases used to record the reflection matrix.
However, note that, in practice, other correction planes

can be chosen according to the imaging problem.

1. Projection into the far-field

To project the reflected wave-field into the far-field, a
spatial Fourier transform should be applied to the output
of R′xx(z):

R′kx(z) = T0 ×R′xx(z). (5)

where T0 is the Fourier transform operator

T0(kx, x) = exp (ikxx), (6)

kx the transverse wave number, and
R′kx(z)≡ [R(kout, xin, z)] contains the set of far-field
aberrated wavefronts generated by each virtual source
rin. Fig. 3(a) shows the phase of R′kx(z) at z = 55
mm. Using the central frequency fc as a reference
frequency, the transverse wave number kout can be
associated with a plane wave of angle θout, such that
kout = kc sin(θout), with kc = 2πfc/c0. Expressing
the far-field projection as a plane wave decomposition
is useful to define the boundaries of this basis [white
dashed lines in Fig. 3(a)]; the maximum transverse
wave number is kmax ∼ kc sin[β(r)], where β(r) the
maximum angle of wave illumination (in transmit mode)
or collection (in receive mode) by the array from the
associated focal point [see Fig. 3(l)].

The matrix R′kx(z) will be used to tackle aberrations
in the receive plane wave basis. To do the same in the
transmit basis, a reciprocal projection to that of (5) can
be performed at the input of R′xx(z):

R′xk(z) = R′xx(z)×T0
>. (7)

where the symbol > stands for matrix transpose. The
coefficients R′(xout, kin, z) correspond to the wave-field
probed by the virtual transducer at rout if a plane wave
of transverse wave number kin illuminates the medium.
This matrix will be used to investigate aberrations in
the transmit plane wave basis.

2. Projection into the transducer basis

The strategy to treat aberrations in the transducer
plane is similar to that described above. Free-space trans-
mission matrix Q0 is defined between the focused and
transducer bases at central frequency fc:

Q0 = T−1
0 × (P ◦T0) , (8)

where the symbol ◦ stands for a Hadamard product and
P = [P (kx, z)] is the plane wave propagator at the central

frequency: P (kx, z) = ei
√
k2c−k2xz. The operator Q0 can
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be given a physical interpretation by reading the terms
of (8) from right to left: (i) a spatial Fourier transform
using the operator T0 to project the wave-field in the
plane wave basis; (ii) the plane wave propagation mod-
eled by the propagator P between the focal and trans-
ducer planes over a distance z; (iii) an inverse Fourier
transformation T−1

0 that projects the wave-field into the
transducer basis. To clarify the physical meaning of this
operator, its coefficients can be expressed under the Fres-
nel approximation as follows:

Q0(r, u) ≈ eikczeikcx
2/(2z)eiku(u−x), (9)

where ku = kcu/z can be seen as a transverse wave num-
ber. Using this operator Q, the matrix R′xx can be pro-
jected into the transducer basis either at input,

R′xu(z) = R′xx(z)×Q0
> (10)

or output,

R′ux(z) = Q0 ×R′xx(z). (11)

Each column of R′xu(z)= [R(xout, uin, z)] holds the wave-
field received by the virtual transducer at rout for an
incident wave-field emitted from a transducer at uin. Re-
ciprocally, each row of R′ux(z) = [R(uout, xin, z)] contains
the wave-front recorded by the transducers for a virtual
source in the focal plane at rin. Fig. 3(b) shows the phase
of R′ux(z) obtained at z = 55 mm. At this relatively large
depth, the spatial extension ∆u of the reflected wave-
field in the transducer basis coincides with the physical
aperture A of the array used to collect the echoes com-
ing from a depth z. In contrast, Fig. 3(l) demonstrates
that for shallower depths z < A tan[β(r)]/2, ∆u is lim-
ited by the numerical aperture of the probe such that
∆u ∼ 2z tan[βmax].

3. Discussion

We might expect to observe correlations between the
columns of matrices R′kx(z) and R′ux(z) displayed in
Figs. 3(a)-(b). Because neighboring virtual sources rin

belong a priori to the same isoplanatic patch, the asso-
ciated wave-fronts observed in the transducer plane or in
the far-field should thus be, in principle, strongly corre-
lated since they travel through the same area of the aber-
rating layer. However, such correlations are not obvious
by eye in Figs. 3(a)-(b). In the following, we show how to
reveal these hidden correlations by introducing the dis-
tortion matrix. We will consider mostly the transducer
basis, as the far-field case has already been explored in a
previous work [14].
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FIG. 3. Revealing the spatial correlations between reflected
wave-fields. The first and second columns correspond to the
analysis of the reflected wave-fronts in the plane wave and
transducer bases, respectively. By subtracting the phase of
the dual reflection matrices, R′kx (a) and R′ux (b), from their
geometrical counterpart, the free-space propagation matri-
ces P0 (c) and T0 (d), the distortion matrices, Dkx (e) and
Dkx (f), reveal the long-range spatial correlations which ex-
ist in the reflected wavefield associated with each isoplanatic
patch. (g,h,i) Sketch of the wave-fronts contained the reflec-
tion (a,b), free-space (c,d) and distortion (e,f) matrices, re-
spectively. The matrices shown in panels (a)-(f) correspond
to a depth of z = 55 mm. (j,k) The phase of the distortion
matrices are also displayed for z = 10 mm. (l) The white
dashed lines in panels (a)-(f) and (j)-(k) account for the finite
angular extent β(r) and spatial support ∆u(r) of the reflected
waves in the plane wave and transducer bases, respectively.

B. The distortion matrix

To reveal the isoplanaticity of the reflected wave-field,
each aberrated wave-front contained in the reflection ma-
trix R′ux(z) [Fig. 3(g)] should be decomposed into two
components: (i) a geometric component described by
Q0(z), which contains the ideal wave-front induced by
the virtual source rin that would be obtained in the ho-
mogeneous medium used to model the wave propaga-
tion [Fig. 3(h)]; (ii) a distorted component due to the
mismatch between the propagation model and reality
[Fig. 3(i)]. A key idea is to isolate the latter contribution
by subtracting, from the experimentally measured wave-
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front, its ideal counterpart. Mathematically, this oper-
ation can be done by means of an Hadamard product
between R′ux(z) and Q∗0(z):

Dux(z) = R′ux(z) ◦Q∗0(z). (12)

where the symbol ∗ stands for phase conjugate. We call
Dur = Dux(z) = [D(uout, {xin, z})] the distortion ma-
trix. It connects any input focal point rin to the distorted
component of the reflected wavefield in the transducer
basis. Using (9), the coefficients of the distortion matrix
can be written in the Fraunhoffer approximation as [18]:

D(uout, {xin, z}) =
∑
δx

R′(xin + δx, xin, z)e
i kc
2z uoutδx,

(13)
with δx = xout − xin. Mathematically, each column of
Dur is the Fourier transform of the focused wave-field re-
centered around each focusing point rin. Dur can thus be
seen as a dual reflection matrix for different realizations
of virtual sources, all shifted at the origin of the focal
plane (xin = 0) [14] (See Supplementary Fig. S3) . The
co-location of the virtual sources at the same point is the
reason why the columns of Dux(z) [Fig. 3(f)] are much
more highly correlated than those of R′ux(z) [Fig. 3(b)].

Note that equivalent distortion matrices, Dru, Dkr and
Drk can be built from the other reflection matrices pre-
viously defined: R′xu(z), R′kx(z) and R′xk(z). For Dru,
the same reasoning as above can be used by exchang-
ing input and output. The far-field distortion matrices,
Dkr and Drk have already been investigated in a pre-
vious work [14]. The comparison between the phase of
R′kx(z) [Fig. 3(a)] and Dkx(z) [Fig. 3(e)] highlights the
high degree of correlation of the distorted wave-fields in
the far-field, resulting from the virtual shift of all the
input focal spots to the origin.

C. Local distortion matrices

We have shown that virtual sources which belong to
the same isoplanatic patch should give rise to strongly
correlated distorted wave-fronts, even if the reflectivity of
the medium is random [see Figs. 3(e,f)]. To correct for
multiple isoplanatic patches in the field-of-view, recent
works [13, 14] show that the distortion matrix can be
analyzed over the whole field-of-view. Its effective rank
is then equal to the number of isoplanatic patches con-
tained in this field-of-view, while its singular vectors yield
the corresponding aberration phase laws. The proof-of-
concept of this fundamental result was first demonstrated
in optics for specular reflectors [13], then in ultrasound
speckle for multi-layered media [14] and lately in seismic
imaging for sparse media [15].

Here, we investigate the case of ultrasound in vivo
imaging, in which fluctuations of the speed-of-sound oc-
cur both in the lateral and axial directions. This means
that the spatial distribution of aberration effects can be-

come more complex. In Fig. 2(e), strong fluctuations
of the F -map illustrate the complexity of the speed-of-
sound distribution in the human calf. Such complexity
implies that any point in the medium will be associated
with its own distinct aberration phase law. To construct
an image in these conditions, the transmission matrix
connecting the correction and focused bases should there-
fore be constructed to include all of these phase laws – an
extremely difficult task. Here, this problem will be tack-
led using an analysis of a local distortion matrix. The
idea is to take advantage of the local isoplanicity of the
aberration phase law around each focusing point.

To begin, we divide the field-of-illumination into over-
lapping regions that are defined by their central midpoint
rp and their spatial extension ∆r = {∆x,∆z}. All of the
distorted components associated with focusing points rin

located within each region are extracted and stored in a
local distortion matrix D′ur(rp):

D′(uout, rin, rp) = D(uout, rin) W∆r(rin − rp), (14)

where W∆r(r) = 1 for |x| < ∆x and |z| < ∆z, and zero
otherwise. Ideally, each sub-distortion matrix should
contain a set of focusing points rin belonging to the same
isoplanatic patch. In reality, the isoplanicity condition is
never completely fulfilled. A delicate compromise thus
has to be made on the size ∆r of the window function: it
must be small enough to approach the isoplanatic condi-
tion, but large enough to encompass a sufficient number
of independent realizations of disorder [14]. This last
point is discussed in Sec. II E.

D. Isoplanicity

For sake of analytical tractability, the isoplanatic con-
dition is assumed to be fulfilled over each region of
size ∆r. This hypothesis implies that the PSFs Hin

and Hout are invariant by translation in each region:
Hin/out(x

′, x, z) = Hin/out(x
′−x, z, rp). Injecting (3) into

(13) leads to the following expression for the D-matrix
coefficients:

D′(uout, rin, rp) =

H̃out(uout, rp)

∫
dxγ(x+ xin, z)Hin(x, rp)ei

kc
2z uoutx.

(15)

The physical meaning of this last equation is the fol-
lowing: Around each point rp, the aberrations can be

modelled by a transmittance H̃out(uout, rp). This trans-
mittance is the Fourier transform of the output PSF
Hout(x, rp):

H̃out(uout, rp) =
∑
x

Hout(x, rp)e−i
kc
2z uoutx. (16)
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The aberration matrix H̃out directly provides the true
transmission matrix Q between the transducers and any
point rp of the medium:

Q = H̃out ◦Q0. (17)

This transmission matrix Q, or equivalently the aberra-
tion matrix H̃out, are the holy grail for ultrasound imag-
ing since their phase conjugate directly provides the fo-
cusing laws that need to be applied on each transducer
to optimally focus on each point rp of the medium.

E. Singular value decomposition

To extract the aberration phase law H̃out(uout, rp)
from each local distortion matrix, we can notice from
(15) that each line of D′ur(rp) is the product between

H̃out(uout, rp) and a random term associated with each
virtual source. This explains the strong correlation be-
tween the columns of D′ur(rp) in Fig. 3(f). To unscramble

the deterministic term H̃out(uout, rp) from the random
virtual source term in (15), the singular value decom-
position (SVD) of D′ur(rp) can be applied. The SVD
consists in writing D′ur(rp) as

D′ur(rp) = U(rp)×Σ(rp)×V†(rp), (18)

where the symbol † stands for transpose conjugate. Σ is
a diagonal matrix containing the singular values σi(rp)
in descending order: σ1 > σ2 > .. > σN . U(rp) and
V(rp) are unitary matrices that contain the orthonor-
mal set of output and input eigenvectors, Ui(rp) =
[Ui(uout, rp)] and Vi(rp) = [Vi(rin, rp)]. The physical
meaning of this SVD can be intuitively understood by
considering the asymptotic case of a point-like input fo-
cusing beam [Hin(x) = δ(x)]. In this ideal case, (15)

becomes D(uout, rin, rp) = H̃out(uout, rp)γ(rin). Com-
parison with (18) shows that D′ur(rp) is then of rank
1 – the first output singular vector U1(rp) yields the

aberration transmittance H̃out(rp) while the first in-
put eigenvector V1(rp) directly provides the medium re-
flectivity. In reality, the input PSF Hin is of course
far from being point-like. The spectrum of D′ur(rp)
displays a continuum of singular values (see Supple-
mentary Section S2) and V1(rp) only provides a low-
resolution image of the medium [15]. Nevertheless, the

normalized first output singular vector, Û1(uout, rp) =
U1(uout, rp)/|U1(uout, rp)|, can still constitute a reliable

estimator of H̃out(rp) in this case. The finite spatial ex-

tension δxin of the transmitted focal spot degrades the
quality of this estimator, but this effect can be mitigated
by averaging over a large number of realizations of disor-
der, i.e. independent input focal points Nin. Here, if we
assume that aberrations can be modelled by a Gaussian
process, a correct estimation of the aberration phase law

requires(see Supplementary Section S2):

Nin ∼ exp
[
(δxin/δx0)2

]
. (19)

This condition is quite restrictive and justifies our initial
choice for the area ∆r: Nin = ∆x∆z/(δx0δz0) ∼ 5000
(see Table I). It also explains why the aberration correc-
tion process should then be iterated; at with each itera-
tion, the focal spot size, δxin or δxout, decreases and the
spatial window ∆r can be reduced accordingly. In the
end, the measurement of aberration matrices H̃out and
H̃in will thus have excellent spatial resolution.

F. Transmission matrix estimator

1. Aberration correction in the receive transducer basis

Now that an estimator Û1 of the aberration matrix
H̃out has been derived, its phase conjugate can be used
as a focusing law to compensate for aberrations. We start
by correcting in the transducer basis in receive (output).
This means building an estimator Q1 of the transmis-
sion matrix from the Hadamard product of the free space
transmission matrix Q0 and the phase conjugate of Û1:

Q1 = Q0 ◦ Û∗1. (20)

Q1 is then used to recalculate the broadband FR matrix

Rxx(z) (1), leading to a corrected FR matrix R
(c)
xx (z):

R(c)
xx (z) = Q†1(z)×Q0(z)×Rxx(z). (21)

Note that the correction is applied to the raw FR matrix
Rxx(z), and not to the filtered FR matrix R′xx(z). This
is to make sure that no singly-scattered echo is removed
during the aberration correction process.

2. Aberration correction in the transmit plane wave basis

Next, aberration correction is performed for the trans-
mit mode (input). It is important to note that it is pos-
sible to change the correction basis if need be. Here, cor-
recting in the plane-wave basis in the transmit mode is
optimal since the ultrasound emission sequence was per-
formed in this basis. Indeed, it can also help to compen-
sate for unwanted movements of the medium that may
have occurred during the acquisition. A set of dual reflec-
tion matrices R′xk(z) (7) is built from the updated FR
matrix and an aberration phase law is extracted from
the corresponding distortion matrices D′rk(rp) [14]. The
aberration correction process in the plane wave basis is
similar to that described here for the transducer basis
(20)-(21), replacing the matrix Q0 by T0 (6). The result

is an updated FR matrix R
(c)
xx (z), an example of which

is displayed in Fig. 1(e) at z = 28 mm. The correspond-
ing CMP intensity profile is displayed in Fig. 1(g) for
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TABLE II. Result of the UMI process in the area A1 [Fig.
2(a)].

Correction step 0 1 2 3/4

F 0.34 0.37 0.73 0.90

w (mm) 0.55 0.51 0.26 0.21

Contrast (dB) 2.4 2.5 4.4 5.4

the area A1 shown in Fig. 2(a). Compared to the ini-
tial CMP intensity profile, the result of this first step
of the aberration correction process seems quite modest
(see Table. II). This is explained by the relatively large
size of the spatial window ∆r chosen at the first step of
the UMI process (Table. I). While the central part of
the FR matrix seems thinner in Fig. 1(d) compared to
its initial counterpart in Fig. 1(b), the focusing quality
is not drastically improved on the eccentric parts of the
field-of-view. This means that the isoplanatic patches are
probably smaller than the area ∆r of the spatial window
whose initial value was fixed to meet the convergence
condition of (19).

3. Iteration of the UMI process

The aberration correction process can now be iterated
over smaller areas (see Table. I). Note that the correc-
tion bases are also exchanged between input and output
to minimize any redundancy in the algorithm and opti-
mize the efficiency of this second step. An example of the

resulting FR matrix R
(c)
xx (z) is displayed for z = 28 mm in

Fig. 1(e). Compared to the previous step, the majority of

the back-scattered energy in R
(c)
xx (z) is now concentrated

along the diagonal. The CMP intensity profile displayed
in Fig. 1(g) illustrates the gain both in terms of resolu-
tion and contrast of the input and output PSFs. After
this second step, the transverse resolution is actually en-
hanced by a factor of two in the area A1 [Fig. 2(a)] and
the contrast shows an improvement of 2 dB [see Table. II].
The contrast is here computed as the ratio between the
energy at focus, I(∆x = 0), and the CMP intensity value
at the expected resolution length, I(∆x = δx0), with
δx0 = 0.19 mm in area A1.

4. Convergence of the UMI process

The iteration of the aberration correction process can
then be pursued since the quality of focus is improved at
each step. This results in more highly-resolved virtual
transducers which, in return, provides a better estima-
tion of the aberration phase law (in particular at large
angles in the plane wave basis or near the edge of the
array in the transducer basis). To accelerate the conver-
gence of the UMI process and compensate for the residual
aberrations more efficiently, it can be useful to consider

the normalized correlation matrix δĈ of the residual dis-
tortion matrix [15] (see Supplementary Section S4). As
before, this process can be repeated at input and output
in both correction bases, while again reducing the size
of the isoplanatic patches (Table. I). The final corrected

FR matrix R
(c)
xx (z) is displayed in Fig. 1(f). Comparing

this result with the initial Rxx(z) [Fig. 1(b)] illustrates
the benefit of UMI. Whereas the single scattering contri-
bution originally spread over multiple resolution cells, it
now lies along the diagonal of the FR matrix. The part
of the back-scattered energy that remains off-diagonal
is mainly due to multiple scattering events taking place
ahead of the focal plane [9, 12]. The corresponding CMP
intensity profile is shown in Fig. 1(f). A comparison with
the initial profile illustrates both the gain in terms of con-
trast (3 dB) and resolution (F ∼ 0.9) provided by UMI
(see Table. II).

III. RESULTS

A. Ultrasound matrix image

A corrected ultrasound image IM can be built from

the diagonal of the corrected FR matrices R
(c)
xx : IM (r) =

|R(c)(r, r)|2. Fig. 2 compares the resulting image IM
of the human calf [Fig. 2(b)] with the original one
[Fig. 2(a)]. The two images are normalized by their
mean intensity and are displayed over the same dynamic
range. A significant improvement of the image quality is
observed. Figs. 2(c,d) display close-ups of parts of the
ultrasound image (the white rectangles in Fig. 2(a,b), re-
spectively); UMI reveals some structures that were com-
pletely blurred on the original image. In particular, mus-
cle fibers are more easily seen. Because the probe was
positioned perpendicularly to the muscle fibers, they ap-
pear as strong, point-like scatterers in the ultrasound im-
age. With UMI, resolution is significantly improved such
that fibers which were hidden in the original image are
revealed, and fibers which were already visible are now
significantly brighter (left part of the image, around the
vein located at [x, z] = [−3, 32] mm). The boundaries
between each type of soft tissue also appear more contin-
uous with UMI.

To validate those qualitative observations, the focus-
ing criterion F has been estimated before and after the
UMI process [12]. The corresponding F−maps are shown
in Figs. 2(e,f). Most of the aberrations have been cor-
rected by UMI and the focusing parameter F is now close
to 1 over a large part of the image [Fig. 2(f)]. However,
according to this criterion, the aberration correction pro-
cess failed in the two gray areas of the image. The first
one is located at the bottom left part of the image and
corresponds to the fibula (bone). Echoes coming from
this area are mainly associated with multiple scattering
paths, an effect that is not tackled in this article. On the
top right part of the image, the focusing criterion reveals
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FIG. 4. Singular value distribution of the aberration matri-
ces H̃in and H̃out in the plane wave and transducer bases. (a)
Phase of the first three singular vectors Ap (from top to bot-
tom) in the plane wave basis (blue line: Ain, red line: Aout)
and (b) corresponding isoplanatic patches Ip. (c) Phase of
the first three singular vectors Ap (from top to bottom) in
the transducer basis (blue line: Ain, red line: Aout) and (d)
corresponding isoplanatic patches Ip.

a circular area that is not well reconstructed. Two rea-
sons could explain this result. First, plane wave imaging
supposed that the medium is not moving during the en-
tire acquisition process. Here, the ultrasound sequence is
quite long (101 firings at 1000 Hz) and the existence of a
vein at shallow depth could disrupt this hypothesis. Sec-
ondly, the SNR associated with this area is quite low. It
thus makes the estimation of the aberration law more dif-
ficult. Nevertheless, note that, compared to the original
ultrasound image, the focusing criterion can now be at
least estimated in this area which means that some aber-
rations have been corrected. To be more quantitative, the
gains in resolution and contrast are reported in Table. II
for the area A1 depicted in Fig. 2(a). The resolution
and the F−parameter are improved by almost a factor
of 3, and the contrast (related to the single-to-multiple
scattering ratio) is increased by 3 dB. This excellent per-
formance illustrates the benefit that UMI could provide
for an optimal ultrasound diagnosis.

B. Aberration matrices and isoplanatic patches

Matrix imaging also enables the mapping of aberra-
tion phase laws across the field-of-view (see Supplemen-
tary Fig. S4). Just as before, a SVD is highly useful in
extracting the characteristic spatial variations of aber-

ration. Performing this decomposition on the estimated
aberration matrices [H̃in, H̃out] enables the extraction of
a set of isoplanatic patches for both the plane-wave and
transducer bases. This can be written:[

H̃in, H̃out

]
=
∑
p

spAp × I†p. (22)

A one-to-one association is expected between the eigen-
states of the aberration matrices and the isoplanatic
patches supported by the field-of-view. In fact, the latter
correspond directly to the singular vectors Ip defined in
the focused basis. The corresponding aberration phase
laws, Ain,p and Aout,p, defined either in the plane wave
or transducer bases are stored in the corresponding singu-
lar vector, Ap = [Ain,p,Aout,p]. The associated singular
value sp accounts for the degree of correlation of the ex-
tracted aberration phase laws over the field-of-view. Sim-
ilarly to the distortion matrix for a specular object [13],
an effective number of isoplanatic patches can be esti-
mated from the entropy H(sp) of the normalized singular
values ŝp = sp/

∑
i si: H(ŝp) = −

∑
i ŝi log2 (ŝi). Here,

the entropy is 6.5 and 7.0 in the Fourier and transducer
bases, respectively.

Fig. 4 shows the three first eigenstates of [H̃in, H̃out]
in the plane wave and transducer bases. We first re-
mark that the retrieved aberration phase laws, Ain,p and
Aout,p, are not strictly equal at input and output; this
is despite the fact that the transmit and back-scattered
waves travel through the same heterogeneities, and so the
manifestation of aberrations should be identical in input
and output. The partial non-reciprocity stems from the
different input and output bases used to: (i) originally
record the reflection matrix; (ii) correct aberrations at
each step of the UMI process [see Table. I]. For this lat-
ter reason, some distorted components can emerge more
clearly in one basis rather than the other, as aberrations
in each basis are not fully independent (especially in the
far-field).

Interestingly, the measured features of an isoplanatic
patch differ according to the correction basis. In partic-
ular, the first two eigenstates [Figs. 4(b1,b2,c1,c2)] con-
firm the fact that the plane wave and transducer bases
are more effective at small and large depths, respectively
[Fig. 3]. Moreover, each correction basis addresses aber-
rations of a different nature. Indeed, the spatial exten-
sion of the isoplanatic patches is deeply affected by the
correction basis, thereby impacting the result of the aber-
ration correction process. Depending on the location of
the aberrating layer and/or its spatial dimension, one
basis will therefore be more suitable than another to ex-
tract the aberration law. On one hand, a local pertur-
bation of the medium speed-of-sound located at shallow
depth such as superficial veins will have a strong impact
on the signals that are measured by transducers located
directly above. The transducer basis is then the most
adequate for those local variations of the speed-of-sound.
On the other hand, in most in-vivo applications, the or-
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gans under study are generally separated from the probe
by layers of skin, adipose and/or muscle tissues. In such
layered media, aberrations are invariant by translation
from the plane wave basis. The first eigenstate displayed
at the top of Fig. 4 confirms this statement. In the plane
wave basis, the aberration phase law A1 exhibits a con-
cave parabolic shape characteristic of a layered medium
with an under-estimated integrated speed-of-sound [14]
[Fig. 4(a1)]. In the transducer basis, it exhibits fluctua-
tions of higher spatial frequencies characteristic of those
which would be induced by local speed-of-sound varia-
tions at shallow depths [Fig. 4(d1)].

For higher-order eigenstates, the size of the iso-
planatic patches Ip decreases with eigenstate rank
p [Figs. 4(b2,b3,c2,c3)], while the complexity of
the associated aberration phase laws Ap increases
[Figs. 4(a2,a3,d2,d3)]. Each singular vector Ip maps onto
disjoint isoplanatic areas in the field-of-view. Interest-
ingly, a correlation can be observed between the revealed
isoplanatic patches and the tissue architecture revealed
by UMI [Fig. 2(b)]. For instance, I2 focuses on the su-
perficial layers of skin, fat and muscle in the plane wave
basis [Fig. 4(b2)], while in the transducer basis, it focuses
on the fibula area (bottom left of the ultrasound image)
[Fig. 4(c2)]. The third-order eigenstates focus on smaller
patches [5 mm, see Figs. 4(b3,c3)] associated with more
complex aberration phase laws [Figs. 4(a3,d3)]. The SVD
of the aberration matrices thus provides a segmentation
of ultrasound images that coincides with the actual dis-
tribution of tissues in the field-of-view. This information
can be useful for the quantitative mapping of relevant
bio-markers such as the speed-of-sound [9, 19, 20].

IV. DISCUSSION AND PERSPECTIVES

The results presented in this paper validate the UMI
process for local aberration correction in in vivo ultra-
sound imaging of the human body. Here, UMI is demon-
strated on a human calf – a medium which is represen-
tative of in-vivo ultrasound imaging with various types
of tissues and a strongly heterogeneous distribution of
the speed-of-sound. The medium includes areas of both
strong and weak scattering, which is a challenging prob-
lem for standard adaptive focusing techniques. The back-
scattered echoes are generated either by unresolved scat-
terers (ultrasound speckle), bright point-like scatterers
(muscle fibers) or specular structures that are larger than
the image resolution (for example, the skin-muscle at
around z = 5 mm). Previous works have shown that the
distortion matrix concept can be applied to both specu-
lar objects [13], random scattering media [14], or sparse
media made of a few isolated scatterers [15]. The present
article details a global strategy for aberration correction
that is essential for applying UMI to in-vivo configura-
tions where all of these scattering regimes can be found.

While our method is inspired by previous works in ul-
trasound imaging [6, 8, 21–23], it features several dis-

tinct and important differences. The first one is its pri-
mary building block: The broadband FR matrix that
precisely selects all of the singly-scattered echoes orig-
inating from each focal point. This is a decisive step
since it greatly reduces the detrimental contribution of
out-of-focus and multiply-scattered echoes. Secondly, the
matrix approach provides a generalization of the virtual
transducer interpretation [8]. By decoupling the loca-
tion of the input and output focal spots, this approach
becomes flexible enough to identify and correct for aber-
rations at both input and output and in any correction
basis, in contrast with previous works [4–6, 8]. Matrix
imaging can thus easily be applied to focused excitations,
diverging waves, or to other geometries like curved probes
or phased arrays.

The distortion matrix constitutes a powerful tool for
imaging a heterogeneous medium when little to no pre-
vious knowledge on the spatial variations of the speed-
of-sound is available. An optimized contrast and a close-
to-ideal resolution can be recovered for any pixel of the
ultrasound image. This approach also paves the way to-
wards a mapping of the speed-of-sound distribution in-
side the medium [9, 19, 20] by revealing the different
isoplanatic patches in the ultrasound image. Such an op-
timized focusing process is also critical for accurate char-
acterization measurements such as local measurements of
ultrasound attenuation [24], scattering anisotropy [25] or
the micro-architecture of soft tissues [26].
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Supplementary Information

This document provides further information on the re-
trieval of the aberration matrices H̃ from the distortion
matrices D: (i) a workflow that sums up all the steps
of the UMI procedure; (ii) a theoretical prediction of
the SVD of D by investigating the correlation matrix
C = DD†; (iii) a time reversal picture of the SVD pro-
cess; (iv) a potential linear phase ramp artifact on the
aberration phase law and how to correct for it; (v) a de-
scription of the final steps of UMI that rely on the SVD
of the normalized correlation matrix δĈ; (vi) an analysis
of the extracted aberration phase laws in the transducer
and plane wave bases.

S1. WORKFLOW

Fig. S1 shows a workflow that sums up the first two
steps of the UMI procedure performed in the accompany-
ing paper. The last two steps are equivalent but the SVD
of D is replaced by the SVD of the normalized correla-
tion matrix δĈ to extract the residual aberration phase
law δU1 (see Section. S4).

S2. CORRELATION MATRIX

To study the SVD of the distortion matrix D′ur(rp) in
the transducer basis, the correlation matrix Cuu(rp) is
needed:

Cuu(rp) = N−1
in D′ur(rp)×D′†ur(rp), (S1)

with Nin the number of virtual sources contained in each
spatial window ∆r. The SVD of D′(rp) is indeed equiv-
alent to the eigenvalue decomposition of Cuu(rp):

Cuu(rp) = U(rp)×Σ2(rp)×U†(rp). (S2)

or, in terms of matrix coefficients,

Cuu(rp) =
∑
i

σ2
i (rp)Ui(uout, rp)U∗i (uout, rp). (S3)

The eigenvalues σ2
i of Cuu(rp) are the square of the

singular values of D′ur(rp). The eigenvectors Ui(rp) of
Cuu(rp) are the output singular vectors of D′ur(rp). The
study of Cuu(rp) should thus lead to the prediction of
the singular vectors Ui(rp).

The coefficients of Cuu can be seen as an average over
rin of the spatial correlation of each distorted wave-field:

C(u, u′, rp) =
1

Nin

∑
rin

D′(u, rin, rp) D′∗(u′, rin, rp).

(S4)
Cuu can be decomposed as the sum of a covariance ma-
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rection process. The blue lines refer to the estimation process
of the aberration phase laws while the green lines refer to the
aberration correction procedure. The purple line depicts the
iteration of the UMI process. The gray rectangle symbolizes
a loop over the spatial window centered on rp.

trix 〈Cuu〉 and a perturbation term N:

Cuu = 〈Cuu〉+ N. (S5)

Cuu will converge towards 〈Cuu〉 if the perturbation term
N tends towards zero. In fact, the intensity of N scales as
the inverse of the number Nin of resolution cells in each
sub-region [8, 27]. In the following, we will thus assume a
convergence of C towards its covariance matrix 〈C〉 due
to disorder self-averaging.

The covariance matrix can be derived analytically in
the speckle regime for which the medium reflectivity γ(r)
is assumed to be random, meaning that 〈γ(r)γ∗(r′)〉 =
〈|γ|2〉δ(r−r′). Under this assumption, injecting (13) into
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(S4) leads to:

C(uout, u
′
out, rp) ∝ 〈|γ|2〉H̃out(uout, rp)H̃∗out(u

′
out, rp)[

H̃in∗H̃in

]
(uout − u′out, rp) , (S6)

where the symbol ∗ stands for a correlation product. The
correlation term, H̃in∗H̃in, results from the Fourier trans-
form of the input PSF intensity |Hin|2. Equation (S6) is
reminiscent of the Van Cittert-Zernike theorem for an
aberrating layer [28]. This theorem states that the spa-
tial correlation of a random wavefield generated by an
incoherent source is equal to the Fourier transform of
the intensity distribution of this source (here the input
aberrated focal spots).

By confronting (S6) with (S3), one can show that the
eigenvectors Up of the correlation matrix Cuu will be pro-

portional to the aberration transmittance H̃out(uout, rp).
However, their amplitude is also modulated by the
eigenvectors Wi of the correlation kernel, H̃in∗H̃in =[
H̃in∗H̃in (uout − u′out)

]
, such that

Ui(rp) ∝ H̃out(rp) ◦Wi(rp). (S7)

The eigenvectors Wi can be derived by solving a second
order Fredholm equation with Hermitian kernel [29, 30].
An analytical solution can be found for certain analyt-
ical form of the correlation function H̃in∗H̃in. In ab-
sence of aberration [H̃in(uin) = 1], the correlation func-

tion H̃in∗H̃in should be equal to a triangle function that
spreads over the whole correlation matrix [8]. In pres-
ence of aberrations, a significant drop of the correlation
width δuin of H̃in∗H̃in is expected. δuin is actually in-
versely proportional to the spatial extent δxin of the input
PSF Hin: δuin ∼ λz/δxin [22]. Fig. S2(a) illustrates that
fact by showing the modulus of the correlation matrix
Cuu(rp) computed over the area A2 in Fig. S4(h). If we
assume that the aberrations only induce phase retarda-
tion effects (|H̃out(uout, rp)| = 1), the modulus of Cuu

is actually a direct estimator of H̃in∗H̃in. As shown by
Fig. S2(a), the correlation function H̃in∗H̃in is far from
having a triangular shape and it decreases rapidly with
the distance |uout − u′out|.

For such a bounded correlation function, the effective
rank of Cuu is shown to scale as the number of resolution
cells contained in the input PSF Hin [29]:

Mδ ∼ (∆u/δuin) ∼ (δxin/δx0) (S8)

The shape of the corresponding eigenvectors Wi(rp) de-
pends on the exact form of the correlation function.
For instance, a sinc correlation function imply 3D pro-
late spheroidal eigenfunctions[29]; a Gaussian covariance
function leads to Hermite-Gaussian eigenmodes[31]. As

the correlation function H̃in∗H̃in is, in first approxima-
tion, real and positive, a general trend is that the first
eigenvector W1(rp) shows a nearly constant phase. This
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FIG. S2. Extraction of the aberration phase law from the
correlation matrices in the output transducer basis computed
over the area A2 in Fig. S4(h). (a,b) Modulus of Cuu and
δCuu, respectively. (c) Ten first normalized eigenvalues of the

correlation matrices Cuu (blue dots) and δĈuu (red dots). (d)
The modulus of the two first eigenvectors of Cuu, U1 (blue
line) and U2 (black line), is compared to the modulus of the

first eigenvector δU1 of Ĉuu (red line). (e) The aberration

phase law Û1, before (dashed blue line) and after the linear
phase ramp correction (continuous blue line), is compared to
the final aberration phase law resulting from the combination
between Û1 and δÛ1. (f) Projection in the focal plane of the

aberration phase law Û1 before (dashed blue line) and after
the linear phase ramp correction (continuous blue line).

is a very important property since it means that the phase
of the first eigenvector U1(rp) is a direct estimator of

H̃out(rp) [blue dashed line in Fig. S2(e)]. The modulus
of U1(rp), i.e W1(rp), generally exhibits a single lobe
around uout = 0. Its typical width is the correlation
length δuin. The higher rank eigenvectors Wi(rp) are
more complex and exhibit a number of lobes that scales
with their rank i. The blue and black lines in Fig. S2(d)
show the modulus of the first two eigenvectors of the ma-
trix Cuu displayed in Fig. S2(a). We recognize the typical
signature of the two first eigenmodes with one and two
lobes respectively.
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To sum up, the phase of the first singular vector U1 of
the output distortion matrix D′ur(rp) is an estimator of
the output aberration phase law. However, this estima-
tion is degraded by the aberrations in transmit. The sup-
port of U1 actually scales as the correlation width δuin

of aberrations in the transducer basis. For aberration
correction, it is thus important to consider the normal-
ized vector Û1 = [U1(uout)/|U1(uout)] that only implies
a phase shift and not the full amplitude of U1 as it is,
however, done in Ref. [4]. In the latter case, the bounded
support of U1 would limit the probe aperture to the cor-
relation width δuin. For a strong level of aberrations, it
can deeply degrade the resolution of the corrected image.
Nevertheless, it should kept in mind that the estimation
of the aberration phase law by Û1 is altered on the edges
of the array. The theoretical prediction of (S7) remains
actually valid if the noise variance

〈
|N(uout, u

′
out)|2

〉
in

(S5) is smaller than the signal intensity |〈C(uout, u
′
out)〉|2.

As
〈
|N(uout, u

′
out)|2

〉
=
〈
|C(uout, uout)|2

〉
/Nin, it yields

the following condition:

Nin > ηin(uout − u′out) (S9)

with ηin = [H̃in∗H̃in](uout − u′out)/
∣∣∣H̃in(uout)

∣∣∣2, the nor-

malized autocorrelation of the input aberration transmit-
tance H̃in. For a Gaussian covariance function, such that
ηin(δu) = exp

[
−δu2/(2δu2

in)
]
, the effective aperture δuc

of Û1, i.e the distance range of transducers over which
Û1 is a correct estimator of H̃out(rp), can be deduced

δuc ∼ ∆u

√
ln(Nin)

Mδ
(S10)

In other words, a correct estimation of the aberration
phase law over the whole numerical aperture (δuc ∼ ∆u)
is obtained provided that :

Nin ∼ exp(M2
δ ). (S11)

S3. TIME REVERSAL PICTURE AND
POTENTIAL ARTIFACT

A time reversal picture for the SVD process is provided
to interpret physically the different theoretical elements
described in the previous paragraph. This picture will
also show how a potential artifact may arise in the es-
timated aberration phase law and how to correct for it.

The previous paragraph has shown that the aberra-
tion phase law can be extracted from the SVD of the
distortion matrix D′ur(rp). This operation can be actu-
ally seen as a fictive time reversal experiment. Expressed
in the form of Eq. S6, Cuu is analogous to a reflection
matrix R associated with a single scatterer of reflectivity

|Hin(x)|2 [Fig. S3(c)]. For such an experimental configu-
ration, it has been shown that an iterative time reversal
process converges towards a wavefront that focuses per-
fectly through the heterogeneous medium onto this scat-
terer [32, 33]. Interestingly, this time-reversal invariant
can also be deduced from the eigenvalue decomposition
of the time-reversal operator RR† [32–34]. The same
decomposition could thus be applied to Cuu in order to
retrieve the wavefront that would perfectly compensate
for aberrations and optimally focus on the virtual reflec-
tor. This effect is illustrated in Fig. S3(c). It is important
to emphasize, however, that the coherent reflector is en-
larged compared to the diffraction limit. As seen before
(S7), a set of eigenmodes Ui are thus obtained and focus
on different parts of the virtual reflector [29, 31]. Gen-
erally, the first eigenvector U1 focuses on the center of
the virtual reflector since it maximizes the back-scattered
energy. Its phase thus directly maps onto the aberration
transmittance.

However, it might not be the case if the scattering dis-
tribution |Hin(x)|2 is too complex. U1 then focuses on
the brightest spot exhibited by the input PSF |Hin(x)|2.
The phase of U1 can then exhibit an additional lin-
ear phase ramp compared to the true aberration phase
law [23]:

Û1(uout) = H̃out(uout)e
−i kc

2z uoutx0 (S12)

where x0 corresponds to the lateral shift of the corre-
sponding PSF H1, such that

H1(x) =
∑
uout

Û1(uout)e
i kc
2z uoutx = H1(x− x0). (S13)

If no effort is made to remove this shift, each selected area
defined by the spatial window function (14) could suffer
from arbitrary lateral shifts x0 compared to the original
image. This artifact can be suppressed by removing the
linear phase ramp in (S12). One way to do it consists in
estimating the corresponding shift x0 by considering the
auto-convolution product of the incoherent PSF |H1|2:[
|H1|2

x
~ |H1|2

]
(x) =

[
|Hout|2

x
~ |Hout|2

]
(x− 2x0)

(S14)
If a Gaussian covariance model is assumed for aberra-

tions, the auto-convolution |Hout|2
x
~ |Hout|2 should be

maximum at x = 0. In that case, the maximum posi-

tion of |H1|2
x
~ |H1|2(x) leads to an estimation of 2x0.

Fig. S2(f) displays the function
[
|H1|2

x
~ |H1|2

]
(x) for

the aberration phase law Û1 displayed in Fig. S2(e). Its
shift with respect to the origin yields an estimation of the
lateral shift x0. Once the latter parameter is known, the
undesired linear ramp can be removed from Û1 (S12), as
illustrated in Fig. S2(e).

In the present case, this linear phase ramp compensa-
tion is applied to each estimated aberration phase law.
Nevertheless, it should be noted that an aberrating layer
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FIG. S3. Sketch of the time reversal analysis of the distortion matrix. (a) Each column of the reflection matrix Rur corresponds
to the reflected wavefield induced by the associated virtual source rin. (b) By removing the geometrical curvature of each
reflected wavefront (12), the resulting distortion matrix extracts the aberrated component of those wavefronts. From an other
point of view, all the wavefronts are realigned as if they were generated by input focal spots that are virtually shifted at the
origin (13). (C) The correlation matrix Cuu of Dur mimics the time reversal operator applied to a virtual reflector that results
from a coherent average of all the shifted input focal spots. The phase conjugate of its first eigenvector U1 then yields the
phase law to focus on this coherent reflector. (d) The normalized correlation matrix δĈuu makes the virtual reflector point-like.
The associated eigenvector δU1 yields a more accurate estimator of the aberration phase law, especially on the edges of the
array.

with a particular shape such as wedges can manifest itself
as a linear phase ramp in the aberration phase law. For
such a particular case, the lateral shift observed on the
corresponding PSF is physical and should not be com-
pensated. The removal of the linear phase ramp should
thus be used with caution as it could cancel, in some
specific cases, the benefits of the aberration correction
process.

S4. NORMALIZED CORRELATION MATRIX

To accelerate the convergence process and compensate
for the residual aberrations more efficiently, an alterna-
tive is to normalize the correlation matrix in order to
make the virtual scatterer point-like [14] [see Fig. S3(d)].

It first consists in building a residual distortion matrix

δDur from the updated focused reflection matrix R
(c)
rr ob-

tained after the first two steps of UMI. The corresponding
correlation matrix, δCuu(rp) = δD′ur(rp) × δD′†

ur(rp), is
then investigated. By analogy with (S6), its coefficients
can be expressed as follows:

δC(uout, u
′
out, rp) ∝ 〈|γ|2〉δĤout(uout, rp)δH̃∗out(u

′
out, rp)[

δH̃in∗δH̃in

]
(uout, u

′
out, rp) , (S15)

where δH̃out and δH̃in accounts for the residual aberra-
tion transmittance at output and input. As previously
highlighted in Sec. S2, the correlation kernel, δH̃in∗δH̃in,
is a manifestation of the finite size of the virtual reflector
in (S15) [Fig. S3(c)], which prevents a proper estimation
of the aberration phase transmittance on the edges of the
array.

Experimentally, this correlation kernel can be ex-

tracted from the modulus of δCuu. Fig. S2(b) shows
the corresponding quantity over the area A2 displayed in
Fig. S4(h). The comparison with the initial correlation
matrix [Fig. S2(a)] already shows the drastic flattening of

the correlation function δH̃in ∗ δH̃in. This flattening is a
direct indicator of the gain in input focusing quality pro-
vided by the first two steps of the aberration correction
process. This also means that the phase of the correlation
matrix can be estimated correctly even for coefficients as-
sociated with couple of transducers (uout,u

′
out) far from

each other. The detrimental effect of the correlation ker-
nel can thus be overcome by normalizing the correlation
matrix as follows:

δĈ(uout, u
′
out, rp) =

δC(uout, u
′
out, rp)

|δC(uout, u′out, rp)|
. (S16)

By injecting (S6) into (S16), the normalized correlation

matrix coefficients δĈ(uout, u
′
out, rp) can actually be ex-

pressed as follows:

δĈ(uout, u
′
out, rp) ∝ 〈|γ|2〉δH̃out(uout, rp)δH̃∗out(u

′
out, rp)

(S17)
Expressed in this form, the normalized correlation matrix
δĈuu is analogous to a reflection matrix associated with
a single point-like scatterer. The normalization of δCuu

thus equalizes the Fourier spectrum of the virtual reflec-
tor, which tends to make it point-like [Fig. S3(d)]. As
in an iterative time-reversal experiment with a point-like
target[32], δĈuu is ideally of rank one. In practice, δĈuu

is still polluted by a perturbation term N (S5). Its rank
is thus not finite but its first eigenvalue σ̂1 stands out
clearly from the noise continuum, as shown by Fig. S2(c).
The first eigenstate is thus associated with the virtual
reflector. The associated eigenvector δU1(rp) directly
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yields the residual aberration phase law:

δU1(uout, rp) = δH̃out(uout, rp) (S18)

Fig. S2 illustrates the benefit of the normalization of
δCuu by considering the example of the region A2 in
Fig. S4(h). Fig. S2(d) shows the modulus of δU1. Com-
pared to the initial eigenvector U1 that shows a finite
support along the transducer array, δU1 exhibits a flat
amplitude which is a manifestation of a point-like virtual
reflector. This implies a correct estimation of the resid-
ual aberration phase transmittance for all transducers.
A novel estimator Q2 of the transmission matrix can be
built by combining the initial and additional corrections:

Q2 = Q0 ◦ Û∗1 ◦ δÛ∗1 (S19)

Fig. S2(e) displays the accumulated phase of the aber-

ration transmittance estimator, Û1 ◦ δÛ1. Compared to
Û1, the additional correction δÛ1 introduces a significant
modification of the aberration phase law on the edge of

the ultrasound probe. An updated FR matrix R
(c)
xx (z)

can be finally obtained:

R(c)
xx (z) = Q†2(z)×Q0(z)×Rxx(z). (S20)

As done in the accompaying paper, this aberration cor-
rection process can be repeated at input in the plane
wave basis and then by exchanging the correction bases
at input and output, while reducing again the size of iso-
planatic patches (see Table.1).

Although the normalization operation in (S16) tends
to make the virtual scatterer point-like and improves the
estimation of the aberration phase law, this alternative
time reversal process should be used with caution. In-
deed, correlation coefficients associated with transducers
far from each other exhibit a lower SNR [Fig. S2(b)].
The convergence of the correlation matrix towards the
covariance matrix should thus be priorly ensured before
employing this trick. Here, in the present case, the over-
all imaging process has been divided into fours steps [see
Table. 1]. The time reversal analysis is applied to the dis-
tortion matrix, or equivalently to the correlation matrix
C, in the two first steps of the matrix imaging process

for sake of robustness to multiple scattering noise. The
weak accuracy of the aberration phase law at large an-
gles or on the edges of the array is then addressed in the
two last steps by considering the normalized correlation
matrix δĈ.

S5. ABERRATION PHASE LAWS

Fig. S4 shows the spatial distribution of aberrations
phase laws at the end of the matrix imaging process. The
truncated aspect of some of the aberration laws results
from the maximal angles of illumination or collection im-
posed by the finite size of the ultrasonic array. At small
depths [z < A tan[β(r)]/2, see Fig. 3(l)], the spatial ex-
tension of the reflected wave-field is limited by the numer-
ical aperture of the probe [see e.g Fig. S4(a2)]. A plane
wave basis is thus more adequate since its angular range
is almost invariant over the focal plane [see Fig. S4(a1)].
On the contrary, in the far-field, the angular range of
plane waves reaching each focal point is limited by the
physical aperture of the probe [see Fig. 3(l)]. Hence the
transducer basis should be favoured in that case [see e.g
S4(g)].

Fig. S4 highlights the spatial variations of the aberra-
tion phase across the field-of-view. The spatial resolution
of the aberration map has been made possible by gradu-
ally reducing the size of the spatial window W∆r at each
step of the matrix imaging process (see Table. 1). The
four colored straight rectangles in Fig. 2(a) depict the size
of the spatial windows used at each step. A 75% overlap-
ping is applied between each spatial window in order to
retrieve the aberration matrix H̃in/out at a high resolu-
tion ∆r. Some aberration laws corresponding to adjacent
areas [Fig. S4(b,c,d)] are highly correlated, both in the
plane wave or transducer bases, meaning that their as-
sociated rectangle areas belong to the same isoplanatic
patch. On the contrary, areas separated by more than a
resolution cell ∆r seem to display un-correlated aberra-
tion phase laws. These spatial correlations in the aber-
ration matrices are quantitatively investigated through
the SVD of the aberration matrices in the accompanying
paper (Section III.C).

[1] L. M. Hinkelman, T. L. Szabo, and R. C. Waag, J.
Acoust. Soc. Am. 101, 2365 (1997).

[2] J. J. Dahl, M. S. Soo, and G. E. Trahey, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 52, 1504 (2005).

[3] F. A. Duck, Physical properties of tissue: A comprehen-
sive reference book , 73 (1990).

[4] H. Bendjador, T. Deffieux, and M. Tanter, IEEE Trans.
Med. Imag. 39, 3100 (2020).

[5] G. Chau, M. Jakovljevic, R. Lavarello, and J. Dahl, Ul-
trasonic imaging 41, 3 (2019).

[6] G. Montaldo, M. Tanter, and M. Fink, Phys. Rev. Lett.
106, 054301 (2011).

[7] B.-F. Osmanski, G. Montaldo, M. Tanter, and M. Fink,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59,
1575 (2012).

[8] J.-L. Robert and M. Fink, J. Acoust. Soc. Am. 123, 866
(2008).

[9] W. Lambert, L. A. Cobus, M. Couade, M. Fink, and
A. Aubry, Phys. Rev. X 10, 021048 (2020).

[10] T. Blondel, J. Chaput, A. Derode, M. Campillo, and
A. Aubry, J. Geophys. Res.: Solid Earth 123, 10936
(2018).

[11] A. Badon et al., Sci. Adv. 2, e1600370 (2016).
[12] W. Lambert, L. C. Cobus, M. Fink, and A. Aubry, arXiv:



17

10

z (
m

m
)

-10 0
x (mm)

10

20

30

40

50

h

a1 a2

d1 d2 e1

g1 g2f1 f2

b1 b2 c1 c2

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

e2

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

-20 200 -15 150
-2

2

0

-3

3

0

Ph
as

e 
(r

ad
)

θ (deg) u (mm)

θ (deg) u (mm)

θ (deg) u (mm)

θ (deg) u (mm) θ (deg) u (mm)

θ (deg) u (mm)

θ (deg) u (mm)

FIG. S4. Examples of aberration phase laws resulting from the matrix imaging process, computed in transmit (blue curves)
and in receive (red curves) modes, in the plane wave (1) and transducer (2) bases. The dimension of the selected areas is
defined by the size of the spatial window used at the fourth step of the whole process (see Table.1).

2103.02029 (2021).
[13] A. Badon et al., Sci. Adv. 6, eaay7170 (2020).
[14] W. Lambert, L. A. Cobus, T. Frappart, M. Fink, and

A. Aubry, Proc. Natl. Acad. Sci. USA 117, 14645 (2020).
[15] R. Touma, R. Blondel, A. Derode, M. Campillo, and

A. Aubry, arXiv: 2008.01608 (2020).
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