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We propose a phase-field model to study interfacial flows of nematic liquid crystals that couple
the capillary forces on the interface with the elastic stresses in the nematic phase. The theoretical
model has two key ingredients, a tensor order parameter that provides a consistent description of
the molecular and distortional elasticity, and a phase-field formalism that accurately represents the
interfacial tension and the nematic anchoring stress by approximating a sharp-interface limit. Using
this model, we carry out finite-element simulations of drop retraction in a surrounding fluid, with
either component being nematic. The results are summarized by eight representative steady-state
solutions in planar and axisymmetric geometries, each featuring a distinct configuration for the drop
and the defects. The dynamics is dominated by the competition between the interfacial tension and
the distortional elasticity in the nematic phase, mediated by the anchoring condition on the drop
surface. As consequences of this competition, the steady-state drop deformation and the clearance
between the defects and the drop surface both depend linearly on the elastocapillary number.

I. INTRODUCTION

We consider two-phase flows of a nematic liquid crys-
tal (LC) and an immiscible isotropic fluid under coupled
elastic stresses of the LC and capillary forces of the inter-
face. Understanding such flows is important for a num-
ber of fundamental and applied scenarios, such as drop
dynamics with a nematic drop or host [e.g., 1–5], self-
assembly of soft colloids in a nematic phase [e.g., 6, 7],
elastocapillary interaction of particles on LC interfaces
[e.g., 8–10], and dynamics of biological matter and cells
[e.g., 11–13]. The presence of an interface leads to the
interplay among surface tension, the anchoring of LC
molecules, and the bulk elasticity, and gives rise to novel
dynamics. For instance, Rey developed a general contin-
uum theory for nematic-isotropic interfaces [14–17], and
predicted a Marangoni flow along the surface gradient of
the anchoring energy as well as a normal force on the in-
terface from LC molecular alignment deviating from easy
directions.

To model the behaviour of elastocapillary phenomena
involving a nematic LC, there have been mainly three
types of approaches. First, many existing studies pre-
scribe various strong simplifications, such as a fixed in-
terfacial shape [18], a class of candidate shapes [19] or
the absence of defects in the bulk of the LC [20]. It is
clear, however, that these assumptions rely on decoupling
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elasticity and capillarity and apply only in limiting situ-
ations. Second, some researchers adopt a sharp-interface
description of the moving front, and couple the bulk flow
equations with the constitutive relations characterizing
the nematic-isotropic interface. Care et al. [21] proposed
a lattice Boltzmann method (LBM) based on a contin-
uum theory of the interface similar to that of Rey’s, and
applied it to study the shape of a drop submerged in a
nematic LC [22, 23]. However, because of the complexity
of the formulation needed for a sharp nematic-isotropic
interface coupled with dynamic flow, these models are dif-
ficult to derive and apply in time-dependent phenomena.
In particular, the interfacial stress in [21] lacks a viscous
component, thereby only allowing stationary cases to be
considered.

The third type of approach uses a diffuse-interface de-
scription based on phase-field (PF) models, the energetic
formulations of which constitute a natural advantage in
modeling complex fluids such as the LC whose relaxation
is driven by the minimization of a free energy. The dif-
fuse interface makes it straightforward to incorporate in-
terfacial dynamics such that there is no need for sophis-
ticated interfacial equations. Yue et al. [24] proposed
a PF method coupled with a regularized Leslie-Ericksen
(LE) theory. This model has been used to examine the
drop retraction and deformation with either the drop or
host being nematic [2, 3], the dynamics of a Newtonian
drop rising in a nematic LC [25], and the self-assembly
of drops in a nematic phase [26]. However, the regular-
ization scheme for topological defects employed in those
studies does not admit defects of half-integer winding
numbers in the bulk of LC [27]. As consequences, the
ring defects were predicted to be always attached on the
interface, and drop interaction was mediated by defects
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with integer winding numbers in 2D, which were known
to be energetically unfavourable. Metselaar et al. [28]
formulated a PF model to probe the shape of tactoids in
a lyotropic LC, and recently generalized the model to in-
vestigate the dynamics of microtubules cross-linked and
aligned by active molecular motors residing in the mix-
ing region of two fluids—the so-called “active nematic
shell” [12]. Nevertheless, the details of the surface ten-
sion model in [28] are not explained and it is unclear how
the model approaches a sharp-interface limit and repre-
sents the interfacial forces.

Generally, to account for fully-coupled interfacial flows
of LC, one needs to overcome two challenges: (i) to de-
scribe the LC microstructure with potential topological
defects accurately, and (ii) to describe the moving in-
terface and related interfacial boundary conditions accu-
rately. From the above survey, existing models typically
have employed components which make it challenging to
satisfy one of the two requirements. Hence, it is the ob-
jective of the present paper to construct a model able to
meet both requirements simultaneously.

First, to describe the nematic order and its hydro-
dynamics, we use a tensor order parameter similar to
[21, 28] that stays smooth regardless of topological de-
fects and keeps the elastic energy density bounded. Thus,
artificial regularization is no longer needed. Second, to
represent the moving interface, we choose the PF method
used in [2, 3, 24–26, 29]. This model approximates a
sharp-interface limit and can thus recover macroscopic
surface tension accurately. In the present context, this
property also makes it possible to capture the nematic
anchoring stress. Our model is numerically solved with a
finite element method, making it easier to accommodate
complex geometries compared with earlier LBM-based
methods. The model is presented in Sec. II. To demon-
strate the capability of our method, we study the dy-
namics of drop retraction involving a nematic phase in
Sec. III. We provide a comprehensive map of drop and
defect configurations with various combinations of mate-
rials, anchoring conditions, and spatial dimensions. Our
results show that the competition between the bulk elas-
tic distortion of the LC and surface tension dictates the
process and consequence of drop retraction.

II. THEORETICAL MODEL AND NUMERICAL
METHOD

A. Nematic order and free energies

We use the tensor order parameter Q to describe the
nematic order [30, 31]. It is defined from the second-
order moment of the distribution function for individ-
ual nematic molecule orientations u: Q = 〈uu− I/3〉,
where I is the unit tensor and the operator 〈·〉 denotes
average over an ensemble of molecules. Following lit-
erature [e.g., 32, 33], we define a scalar order parame-

ter: q =
√

3/2‖Q‖F =
(

3
2Q : Qᵀ

)1/2
, where ‖ · ‖F is

the Frobenius norm. When the nematic phase is in a
uniaxial state, we recover, as expected, the relationship
Q = q (nn− I/3), where n is the nematic director. Note
that some researchers adopt a different definition by re-
quiring q to be proportional to the largest-in-magnitude
eigenvalue of Q [e.g., 34–36].

We introduce a phase variable φ to mark the different
fluids. φ = −1 denotes the nematic LC and φ = 1 de-
notes the isotropic phase. These two fluids mix in the
thin diffuse interfacial region in which φ and other vari-
ables transition smoothly. The total free energy of the
fluids includes the mixing energy of the interface, the
bulk elastic energy of the nematic phase, and the anchor-
ing energy on the interface. The mixing energy and the
bulk elastic energy are standard from the PF model [e.g.,
24] and the nematic order theory [e.g., 37], respectively.
The mixing energy is described by the Landau-Ginzburg
density

fm =
λ

2
|∇φ|2 +

λ

4ε2
(
φ2 − 1

)2
, (1)

where λ is the mixing energy strength with the dimension
of force, and ε is the constant capillary width governing
the thickness of the diffuse interface. The bulk elastic en-
ergy in the nematic phase can be described phenomeno-
logically as [37]

fb = fLdG + fe

=
A

2
QijQij +

B

3
QijQjkQki +

C

4
(QijQij)

2

+
L1

2
(∂iQjk)(∂iQjk). (2)

Here A, B, C are material property coefficients (A < 0,
B < 0), and L1 is the bulk elastic constant. The first
three terms constitute the celebrated Landau-de-Gennes
(LdG) free energy expansion fLdG for local molecular re-
laxation (microelasticity). Since we are only concerned
with thermotropic LCs at a fixed temperature in this pa-
per, A, B, C are constants. Minimizing the total LdG
energy FLdG =

∫
fLdG dV under the uniaxial assump-

tion gives the equilibrium scalar order parameter qe . We
consider a nematic phase far away from phase transitions
with strong molecular interaction. In this case,

qe =
3

4

− B

3C
+

√(
B

3C

)2

− 8A

3C

 . (3)

The last term in Eq. (2), fe = (L1/2)(∂iQjk)(∂iQjk), de-
scribes the long-range orientational distortions (distor-
tional elasticity). For simplicity, we have applied the
common one-elastic-constant approximation [31] and fur-
ther omitted all mixed derivatives of the Q components.

The anchoring energy enforces a finite-strength anchor-
ing condition on the interface by penalizing LC molecules
deviating from the easy direction. We propose the fol-
lowing diffuse-interface form of the Rapini-Papoular an-
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choring energy density [38, 39]

fa =
W

2
|∇φ|4

∥∥∥∥Q− qe(ee− 1

3
I

)∥∥∥∥2

F

, (4)

where W is the constant anchoring strength, and e is
a unit vector along the easy direction on the interface.
More will be discussed on the value of W in Sec. II C.
The factor |∇φ|4 avoids singularities in the expression of
ee (see Eq. (5) and Eq. (6)). Note that one may consider
alternative forms of anchoring energy, such as a LdG style
energy expansion truncated at low orders of |∇φ|, which
warrant future investigations.

We consider two common choices for the easy direction:

(i) Homeotropic anchoring. The easy direction is the
same as the unit normal vector m = ∇φ/|∇φ| of
the interface. Hence

fha =
W

2

∥∥∥∥|∇φ|2Q− qe(∇φ∇φ− 1

3
|∇φ|2I

)∥∥∥∥2

F

. (5)

(ii) Planar anchoring in 2D planar and axisymmetric
geometries. The easy direction is along a tangential
direction to the interface. In 2D planar geometry,
e can be written as e = (m2,−m1, 0), where m1

and m2 are components of m. It follows that

fpa =
W

2

∥∥∥∥|∇φ|2Q + qe

(
∇φ∇φ− 1

3
|∇φ|2J

)∥∥∥∥2

F

, (6)

where the tensor J can be written as

J =

 2 0 0
0 2 0
0 0 −1

 , (7)

which is rotationally symmetric in the 1-2 coordi-
nate plane. Therefore, as expected, the above ex-
pression of J does not rely on a specific coordinate
frame. In the 2D axisymmetric geometry, we only
consider the case where e stays in the r-z plane in
a cylindrical frame, i.e., a “monostable” planar an-
choring [40]. Then, one needs to swap the second
and third components in the diagonal of Eq. (7).

Hence, the total free energy of the two-phase mixture
in a domain Ω is

F =

∫
Ω

f(φ,Q,∇φ,∇Q) dV

=

∫
Ω

(
fm +

1− φ
2

fb + fa

)
dV. (8)

The factor (1 − φ)/2 gives the concentration of the ne-
matic phase.

B. Governing equations

The governing equations include an evolution equation
for the phase field φ (Cahn-Hilliard), an evolution equa-
tion for the tensor Q, and the equations of motion for
the fluid flow.

The Cahn-Hilliard equation. The classical Cahn-
Hilliard (CH) equation describes the evolution of φ [24]

∂φ

∂t
+ v · ∇φ = γ∇2µ, (9)

where v is the velocity vector, and the constant γ is the
mobility parameter (unit: m2/(Pa·s)). The chemical po-
tential µ is

µ =
δFm
δφ

= λ

(
−∇2φ+

φ(φ2 − 1)

ε2

)
, (10)

where Fm =
∫

Ω
fm dV is the total mixing energy. Thus

µ only includes the relaxation of the mixing energy, with-
out the contribution from the bulk elastic and anchoring
energies. The same simplification has been adopted in
previous works [e.g., 24, 29]. It allows for convenient re-
covery of interfacial forces, which will be elaborated in
Sec. II C.

The evolution equation for nematic order. There have
been a number of tensor-based theories for nematic hy-
drodynamics [e.g., 41–45], including kinetic theories that
do not start from the same elastic energy fb as in this
paper [e.g., 46]. Each gives a slightly different evolution
equation for Q. Yet, all of them predict qualitatively
similar results [e.g., 33, 37, 47, 48]. So far, experimen-
tal evidence has been inadequate to discriminate among
these models. Therefore, we choose the Beris-Edwards
(BE) theory [42, 43, 49] based on its wide usage. In our
PF formulation, the evolution equation for Q has the
same general expression as in the BE theory in the bulk
of LC [49]

∂Q

∂t
+ v · ∇Q = S + ΓH, (11)

where Γ is the collective rotational diffusion coefficient
and is assumed to be a constant in this paper. The
molecular field H is still given by H = −δF/δQ +
tr (δF/δQ) I/3. Considering Eq. (8), we write H as

H =
1− φ

2
M−G +∇ ·

(
1− φ

2
L1∇Q

)
, (12)

where the first and third terms are the same as in the BE
theory except for the LC concentration as an additional
coefficient. M is a polynomial in Q that stems from the
LdG energy: M(Q) = −AQ−BQ·Q−(B/3)(Q : Qᵀ)I−
C(Q : Qᵀ)Q. The tensor G is due to the anchoring
energy. In cases of homeotropic anchoring (Eq. (5)) and
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planar anchoring (Eq. (6)), respectively,

Gh = W |∇φ|2
(
|∇φ|2Q− qe

(
∇φ∇φ− 1

3
|∇φ|2I

))
,

(13)

Gp = W |∇φ|2
(
|∇φ|2Q + qe

(
∇φ∇φ− 1

3
|∇φ|2J

))
.

(14)

The PF version of the corotation tensor S is defined as

S(∇v,Q) =

(
(1− φ)ξ

2
D + Ω

)
·
(

Q +
1

3
I

)
+

(
Q +

1

3
I

)
·
(

(1− φ)ξ

2
D−Ω

)
− (1− φ)ξ (Q : (∇v)ᵀ)

(
Q +

1

3
I

)
, (15)

where D = ((∇v)ᵀ +∇v) /2 is the rate of deformation
tensor, and Ω = ((∇v)ᵀ −∇v) /2 is the vorticity ten-
sor. ξ is a material parameter that determines, together
with A,B,C, if the LC material is a flow-aligning or tum-
bling nematic [31, 49]. Note that in arriving at Eq. (15)
from the original S in the BE theory, we have postulated
the phenomenology of interpolating ξ with the nematic
concentration (1 − φ)/2. It ensures that this equation
vanishes in the isotropic phase when φ = 1. It avoids the
complexity of designing Poisson brackets, similar to what
was done in the original BE theory [44], with the addi-
tion of the phase field. Provided that Q vanishes in the
isotropic fluid and the interface is thin, this phenomenol-
ogy does not alter the dynamics of Q in the nematic
phase. The modified H and S in the PF formulation
preserve the symmetry of the tensors in the original BE
theory, as expected.

The equations of motion for the fluids and the LC
stress tensor. The continuity and Navier-Stokes (NS)
equations for an incompressible fluid govern the velocity
and pressure fields:

∇ · v = 0,

ρ
∂v

∂t
+ ρv · ∇v = ρg +∇ · τ + µ∇φ. (16)

Here ρ is the interpolated density of the two-fluid mixture

ρ =
1 + φ

2
ρi +

1− φ
2

ρn, (17)

where ρi and ρn are the densities of the isotropic and
nematic phases. g is the gravitational acceleration. The
last term is a body-force form of surface tension from the
PF formulation [29]. The stress tensor τ can be written
in the following form:

τ = −pI + (1 + φ)ηiD + (1− φ)ηnD + τn, (18)

where p is pressure, and the second term is the viscous
stress from the isotropic phase. The third term is a vis-
cous stress of the nematic phase with a constant viscosity

ηn, independent of the molecular configuration Q [42–44].
The last term is the nematic stress tensor τn, which will
be modified from the BE theory to take into account the
anchoring condition on the moving interface. Instead of
re-deriving this stress tensor using Poisson brackets, we
take a simple but equivalent shortcut. Following [31], we
decompose the effect of anchoring into two parts, each
of which can be determined from a distinct virtual op-
eration. (i) From a virtual rotation and deformation of
the molecular distribution without motion of the fluid.
This part is already accounted for in the molecular field
(Eq. (12)). (ii) From a virtual strain of the fluid with
the Q configuration frozen in each fluid particle. This
variational procedure gives rise to an additional stress
tensor associated with ∇φ, termed the anchoring Erick-
sen stress τae. τae can be derived by applying the virtual
work principle to the total free energy (Eq. (8)) [24]. For
homeotropic (Eq. (5)) and planar (Eq. (6)) anchoring,
respectively, we have

(
τhae
)
ij

= − ∂fha
∂(∂iφ)

(∂jφ)

= −W
[
|∇φ|2Qkl − qe

(
(∂kφ)(∂lφ)− 1

3
|∇φ|2δkl

)]
·
[
2Qkl(∂iφ)− qe

(
δik(∂lφ) + (∂kφ)δli −

2

3
(∂iφ)δkl

)]
(∂jφ),

(19)

(τpae)ij = − ∂fpa
∂(∂iφ)

(∂jφ)

= −W
[
|∇φ|2Qkl + qe

(
(∂kφ)(∂lφ)− 1

3
|∇φ|2Jkl

)]
·
[
2Qkl(∂iφ) + qe

(
Jik(∂lφ) + (∂kφ)Jli −

2

3
(∂iφ)Jkl

)]
(∂jφ).

(20)

As expected, τae is not symmetric in general. Overall,
the PF version of the nematic stress tensor is

(τn)ij = −1− φ
2

[
ξHik

(
Qkj +

1

3
δkj

)
+ ξ

(
Qik +

1

3
δik

)
Hkj − 2ξ

(
Qij +

1

3
δij

)
(QklHkl)

+ L1 (∂iQkl) (∂jQkl)

]
+HikQkj −QikHkj + (τae)ij . (21)

Boundary conditions. For the evolution of the order
parameter Q, there are four types of BCs. (i) On bound-
aries ΓQN where the gradient of Q vanishes, the homo-
geneous Neumann BC m · ∇Q|ΓQN

= 0 applies. (ii) On

boundaries ΓQD with infinite-strength anchoring, we use
the Dirichlet BC Q|ΓQD

= QD where QD is the ne-

matic configuration prescribed by the anchoring condi-
tion. (iii) On boundaries ΓQR with finite-strength an-
choring, we assume a Rapini-Papoular anchoring energy
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and equilibrium on ΓQR. This leads to the Robin con-

dition (W̃ (Q− Q̃) + L1m · ∇Q)
∣∣∣
ΓQR

= 0, where W̃ and

Q̃ are the anchoring strength (surface energy density)
and the easy nematic configuration on ΓQR, respectively.
(iv) On a symmetry boundary ΓS , one of the three sym-
metry planes of the ellipsoid described by Q + I/3 needs
to be tangential to ΓS . Assuming that ΓS is parallel to
a coordinate plane, we can thus impose the mixed BC:
m · ∇ (Qii)|ΓS

= 0, Qij |ΓS
= 0 (i 6= j), where ii does

not imply the Einstein summation.
For the continuity and NS equations for the fluid flow,

standard BCs can be used. For example, on boundaries
that mimic infinity or on ΓS , we can use no penetration
and free slip conditions. The fourth-order CH equation
needs two BCs. First, one often requires that there be no
diffusive flux across all boundaries: m · ∇µ|∂Ω = 0. The
second BC typically deals with φ or the gradient of φ. For
instance, on a boundary in contact with a single phase or
with a pinned contact line, we impose fixed values of the
phase variable φ. The current paper does not consider
dynamic contact lines or contact angles, which require
different types of BCs and will be the subject for future
investigation.

C. Interfacial forces

Since our computations involve a nematic-isotropic in-
terface, the interfacial forces include both surface tension
and the anchoring stress. These quantities are clearly
defined in a sharp-interface model, but need to be trans-
formed into our diffuse-interface framework.

For this purpose, we consider a flat diffuse interface
at local equilibrium, i.e. µ = 0. Let x̂ be the local
coordinate normal to the interface, with x̂ = 0 at φ = 0.
Using Eq. (10) one obtains

φe(x̂) = tanh

(
x̂√
2ε

)
. (22)

This equation also holds asymptotically (ε → 0) for
curved interfaces in general. Requiring that the mix-
ing energy of the diffuse interface be equal to the surface
energy of a sharp interface, one arrives at the matching
condition [24]

σ =
2
√

2

3

λ

ε
, (23)

where σ is the surface tension coefficient. The same local
interfacial profile also allows us to specify the PF expres-
sion of the anchoring strength W (Eq. (4)). Consider a
sharp interface SW that is represented in our PF model
by an interfacial region ΩW . In the sharp-interface for-
mulation, the Rapini-Papoular anchoring energy is writ-
ten as the following surface energy density

fs =
Ws

2

∥∥∥∥Q− qe(ee− 1

3
I

)∥∥∥∥2

F

, (24)

where Ws is the anchoring strength with the dimension
of force/length. Equating the anchoring energies in the
sharp-interface and diffuse-interface models yields,∫

SW

Ws

2

∥∥∥∥Q− qe(ee− I

3

)∥∥∥∥
F

dS

=

∫
ΩW

W

2
|∇φ|4

∥∥∥∥Q− qe(ee− I

3

)∥∥∥∥
F

dx̂. (25)

We are free to make SW and ΩW arbitrarily small, and
can thus assume that ‖Q− qe (ee− I/3)‖F is a constant.
Using the equilibrium φ profile in Eq. (22), we obtain

W =
Ws∫∞

−∞ (φ′e)
4
dx̂

=
35

8
√

2
Wsε

3, (26)

where the prime denotes differentiation with respect to x̂,
and W bears the expected dimension of energy×length
(see Eq. (4)).

We include only the mixing energy in µ (Eq. (10)) in
order to derive the local interfacial profile in Eq. (22),
which in turn allows us to establish the correspondence of
interfacial forces between the sharp and diffuse interface
descriptions (Eq. (23) and Eq. (26)). The values of λ and
W would have depended on Q otherwise, resulting in a
more complicated surface tension model. Compared to
the PF method used in [28], our model is a simplification
in the sense that the former specifies a more complete
chemical potential including all free energies.

With the simpler CH dynamics of Eq. (10), free
from coupling with Q, we are able to exploit the well-
established separation of time scales in the nonlinear CH
diffusion [50]. As ε→ 0, on the time scale of O(ε4/(γλ)),
the interface stabilizes locally and develops the hyper-
bolic tangent profile (Eq. (22)). On the longer time scale
of O(εr3/(γλ)), where r is a characteristic length of inter-
facial shape such as the radius of curvature, CH diffusion
drives an evolution of φ in addition to flow advection,
known as Mullins-Sekerka flow in material science [51].
Therefore, we require ε to be small and γ to be judi-
ciously chosen such that the flow time scale of interest
falls between the two time scales of the CH dynamics
mentioned above. In this way, the interface motion is
governed by flow advection under the correct interfacial
forcing. Practical guidelines on mitigating nonphysical
long-time effects have been documented in [24, 29, 52].

D. Numerical approximation

We employ a Galerkin finite element method to solve
the governing equations. We use a mixed formulation
for the CH equation as is done in [29, 53], as well as
for the NS equation by keeping τn as an auxiliary vari-
able. The weak form of the governing equations with
applicable BCs is discretized on an unstructured mesh of
triangles, using piecewise quadratic Lagrange elements
(P2) for v, φ, µ, Q, τn, and piecewise linear Lagrange
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elements (P1) for p. We employ non-uniform meshes to
balance resolving defects and the thin interface and sav-
ing computational cost. (See Sec. III and Fig. 1 for an
example.)

The model is implemented using the software pack-
age COMSOL Multiphysics® [54] to make use of a se-
lection of well-developed numerical solvers. For time-
stepping, we use a backward-difference-formula (BDF)
scheme with adaptive time step sizes and adaptive orders
of accuracy between first and second [55]. LC hydrody-
namics displays a range of physical time scales including
relaxations of microelasticity, distortional elasticity and
the flow field, in addition to the time scale at which the
φ field establishes local equilibrium. Thus the adaptive
time step size is crucial for the performance of our compu-
tation. In each time step, all equations are coupled and
solved simultaneously. The nonlinear system is solved
by a damped Newton’s method. To solve each Newton
iteration, we choose the multifrontal massively parallel
sparse direct solver (MUMPS) [56, 57], an efficient direct
linear solver. Since we only deal with 2D problems in this
paper, a direct solver is advantageous in its robustness
and accuracy without incurring excessive computational
cost.

We note two practical considerations in the numer-
ical scheme. First, on symmetry boundaries ΓS , τn
satisfies the same conditions as Q: m · ∇ ((τn)ii)|ΓS

=

0, (τn)ij

∣∣∣
ΓS

= 0 (i 6= j) (also see Sec. II B). This con-

dition needs to be taken into account when choosing the
approximation spaces for τn in the weak form. Second,
due to the relaxation of the total mixing energy in a fi-
nite domain, after the interfacial profile is stabilized, φ
will not be exactly 1 or -1 in the bulk of the two fluids
[52]. In the current calculation, anti-diffusion could arise

from the term ∇ ·
(

1−φ
2 L1∇Q

)
(Eq. (12)) when φ shifts

slightly above 1, producing spurious oscillations in the
Q field. To mitigate this issue, we introduce a thresh-
olding scheme. Let hs(x̂) denote a regularized Heaviside
function that transitions smoothly from 0 to 1 within
x̂ ∈ [−d, d]. The advection term in Eq. (11) and the
concentration factor (1 − φ)/2 in all the equations are
multiplied by hs(−φ+φc). This ensures that the LC dy-
namics vanishes where φ > φc + d. We choose the cutoff
φc = 0.9 and d = 0.05. Provided that we are close to the
sharp-interface limit, specific φc values have little impact
on the flow field. We have tested smaller φc values and
the overall dynamics is hardly changed.

To validate our numerical model, we have performed
extensive tests on single-phase nematic flows, including
formation of Saturn ring and polar ring defects near a
spherical solid particle, a flow-aligning nematic in sim-
ple shear flow in both infinite space or bounded by walls,
and annihilation of defects of opposite winding numbers
with and without flow coupling. We have also simulated
a deformed Newtonian drop retracting in a Newtonian
medium to validate our PF calculation. Quantitative
agreement with literature has been achieved. The details

are omitted here, but can be found in [58].

III. DROP RETRACTION WITH A
NEMATIC-ISOTROPIC INTERFACE

We consider the problem of a freely suspended micro-
sized liquid drop retracting in a quiescent medium, with
one of the fluids being a nematic LC. Besides being rele-
vant for a number of applications [1, 4, 59], drop retrac-
tion provides a relatively simple ground for understand-
ing the interplay among surface tension, the bulk elastic
energy and the anchoring energy, under the constraint of
geometry and topology. The notion of a dynamic surface
tension, dependent on transient factors such as interfacial
molecular alignment, has been demonstrated experimen-
tally [60, 61] and computationally [2, 3] in drop retrac-
tion with a nematic-isotropic interface. The results in
[2, 3], however, suffered from limitations due to the regu-
larization scheme in the modified LE model, as aforesaid
(Sec. I). Previous modeling work also only covered a few
scattered cases. Different combinations of drop-matrix
materials, anchoring conditions and spatial dimensions
remain to be explored. Here, using our new model, we
perform a systematic numerical study of the drop retrac-
tion problem with a nematic-isotropic interface. On one
hand, it validates our model by reproducing known fea-
tures. On the other hand, we obtain new insight on elas-
tocapillary flows.

The problem is set up in either 2D planar or axisym-
metric geometries, as shown in Fig. 1(a). In all cases
considered here, the geometry and nematic alignment
have quadrupolar symmetry, so we only need to simulate
one quarter of the domain. On the outer boundaries, we
use non-penetrating, free-slip walls and specify the phase
to be nematic or isotropic. For all cases where the ne-
matic phase is outside the drop, we require the far-field
LC molecules to be oriented in the vertical direction (y-
direction in 2D planar geometry, and z-direction in 2D
axisymmetric geometry) at equilibrium order (Eq. (3)).
Initially the drop is always elongated in the vertical di-
rection. In most cases, whether the nematic is outside or
inside the drop, the LC molecules are initially oriented
along the vertical direction at equilibrium order. Excep-
tions will be explained in specific cases.

We prescribe a sub-domain with highly refined, near-
uniform mesh, covering the area through which the in-
terface and topological defects move. Outside this sub-
domain, the mesh gradually coarsens. Fig. 1(b) shows
the mesh structure in a typical simulation. The inter-
facial region and the defect core are both well resolved
during the entire simulation.

Unless explicitly stated otherwise, the results have
been obtained with the base parameters listed in the
Appendix. The nematic and isotropic phases have a
matched density and we set ηi = ηn as we are focused on
the interaction of elasticity and capillarity. In presenting
the results, we use dimensionless variables marked by an
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ϕ = - 0.9 ~ 0.9

defect

(a)

(b)

L

L

x or r

y or z

b
a

FIG. 1. (a) Setup of the drop retraction problem. In 2D pla-
nar geometry it is in the x-y plane, while in 2D axisymmetric
geometry it is in the r-z plane. (b) Mesh used in a typi-
cal simulation where a nematic drop retracts in an isotropic
medium in a 2D planar geometry. In the inset, the solid black
lines show levelsets of φ = 0.9, φ = 0 (nominal interface) and
φ = −0.9, and the shaded area (bottom left) represents the
defect core (q ≤ 0.5).

asterisk. We scale length by the nominal drop radius
R, time by ηiR/σ, energy by L1R and energy (volume)
density by L1/R

2. Among the numerous dimensionless
groups, the following three dimensionless lengths are im-
portant in governing the defect configuration and drop
shape:

l∗c =
1

R

√
L1

−A
, l∗e =

L1

WsR
, l∗ec =

L1

σR
. (27)

The nematic coherence length l∗c reflects the competi-
tion between distortional elasticity and microelasticity,
and governs the defect core size. The anchoring extrap-
olation length l∗e describes the competition between the
bulk distortion of molecular order and the anchoring of
LC molecules on the fluid-fluid interface. The elastocapil-
lary length l∗ec denotes the competition between the bulk
elastic distortion and surface tension. Note that with
our base parameters l∗e = 0.01 � 1. Hence, we are in
a regime where the anchoring is strong and topological
defects are expected.

In the following sections, we first provide an overview
of the different cases considered in this study, includ-
ing the defect structures and drop deformation, in com-
parison with previous literature. Next, we explain how
the drop deformation originates from the competition
between bulk elasticity and surface tension. Lastly, we
show the retraction speed of the drops and the interfacial

Marangoni flow induced by anchoring energy gradients,
in agreement with existing results.

A. Overview of different cases

With isotropic fluids, the drop retraction is solely
driven by surface tension, or equivalently, by the reduc-
tion of the mixing energy. In the presence of an LC,
however, depending on the initial bulk orientation of LC
molecules and the prescribed anchoring conditions at the
interface, various topological defects may appear and in-
fluence the retraction process. Distortions in the nematic
alignment during retraction are likely to increase the elas-
tic energies.

We first consider an illustrative case exemplifying the
retraction process and energy tradeoff. Fig. 2 shows
snapshots of a nematic drop retracting in an isotropic
fluid with planar anchoring in the 2D planar geome-
try. The grey scale indicates the concentration-weighted
scalar order parameter 1−φ

2 q. With our parameters, the
equilibrium order is at qe = 0.81 (Eq. (3)). Consistent
with the initial alignment, Fig. 2(a) shows a uniform
molecular configuration without any defect at the begin-
ning. While the drop retracts, the LC molecules near the
interface reorient to reduce anchoring energy, and a de-
fect nucleates near the pole (Fig. 2b,c), at the expense of
both molecular and distortional elastic energies. Later,
due to strong anchoring, the defect detaches from the in-
terface and moves inside the drop, transitioning from a
surface defect to a point defect of winding number +1/2
in the bulk (Fig. 2c,d). Eventually the drop settles into
a steady state and attains an elongated shape in the y-
direction.

We summarize the steady-state defect and drop config-
urations observed in our study into eight different cases
(Fig. 3). Case 1 corresponds to the scenario described
above. Cases 2 – 4 are drop retractions in 2D planar ge-
ometry as well, with different material combinations and
anchoring conditions. For convenience of comparison, in
Case 3, we set the initial molecular alignment to be along
the x-direction, which leads to a final drop elongation in
the y-direction. The same cases are calculated for 3D
drops with axisymmetry in Cases 5 – 8. Note that for
Cases 1 – 4 and 8, the defects are detached from the
interface (as shown in the diagrams) when the surface
tension or anchoring strength is high, otherwise it would
be energetically favourable for the defects to stay bound
to the interface. See Sec. III B for more details.

To our knowledge, the defect structures computed in
Cases 1 – 2 have not been reported before. Even though
Yue et al. [2] and Liu et al. [3] considered the same setups
as in Cases 1 – 3 here, they obtained different configura-
tions because the formation of defects with half-integer
winding numbers in the bulk of LC, like those in Cases
1 – 3, were not permitted in their model (see Sec. I).
In particular, for Cases 1 – 2, the defects could detach
from the interface in our model, while those in [2, 3] were
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FIG. 2. Snapshots of a nematic drop retracting in an isotropic
host with planar anchoring in 2D planar geometry (Case 1
in Fig. 3). The grey scale shows the concentration-weighted
scalar order parameter, 1−φ

2
q, with qe = 0.81. The nominal

interface φ = 0 is marked with a solid black curve. The dark
region inside the drop signals the defect. (a) Well-aligned
state at initial condition. (b) As the drop retracts, a defect
starts to nucleate at the pole of the drop. (c) The defect
core is completely established. (d) The defect detaches from
the interface and moves inside the drop. The drop shape and
defect location come to a steady state.

bound to the drop surface. In Case 3, [2, 3] predicted a
point defect at the centre of a circular drop, while our
calculation shows a pair of defects of half-integer wind-
ing number, deforming the drop. Notice the similarity
in the defect structure in our Cases 3 – 4 with those in
Fig. 4 of Mackay and Denniston [62], who computed
the configuration of an elastic vesicle shell suspended in
a continuous phase of nematic LC in 2D. In [62], the
homeotropic anchoring induced defects both inside and
outside the shell, which have been reproduced separately
in our Cases 3 – 4. It also reflected well image charge
arguments in the strong anchoring limit. For Case 4, our
computed defect agrees with earlier studies on 2D par-
ticles or drops submerged in the bulk of a nematic LC
[21, 63].

In the axisymmetric geometry, Cases 5 – 6 feature
surface-bound defects, the so-called “boojums”, a conse-
quence of the topological constraint of the spherical sur-
face in 3D [64–66]. This is in contrast with the detached
defects in Cases 1 – 2. In a 3D drop with homeotropic an-
choring in Case 7, a central point defect opens up sponta-
neously into a small ring. This is a known feature of the
LdG free energy with the one-elastic-constant approxi-
mation [37, 67]. In Case 8 with an isotropic drop in a ne-
matic host with homeotropic anchoring, we have found a
Saturn ring in the bulk of LC or a surface ring attached

FIG. 3. Illustrated final defect and drop configurations af-
ter drop retraction. Defects are marked by green points or
curves. The thin solid lines illustrate streamlines of the direc-
tor n. The drop deformation may be exaggerated for clarity.
P = planar anchoring. H = homeotropic anchoring. These
anchoring conditions are illustrated in the boxes for Cases 1
and 3. For all cases with a nematic host (2, 4, 6, 8), in the
far field the molecular alignment is along the vertical (y- or
z-) direction at equilibrium order. For Cases 1 – 4 and 8, the
defects may be attached on the interface or not depending on
parameters.

on the drop, depending on the parameters. Consistent
with experimental observations [68], our result is more
physically realistic than that in [25], where the ring de-
fect was confined to the drop surface. Again it is because
of the regularized LE theory used in the latter study.
In addition, in Case 8, it is well known that a dipolar
configuration, which consists of a companion hyperbolic
point defect located in the close vicinity of the parti-
cle, may arise as well [37]. Actually, because of our as-
sumption of isotropic elasticity in the LdG free energy,
the point defect will spontaneously open up into a small
ring, as in Case 7. However, with our material parame-
ters A,B,C,L1 (see the Appendix), the dipolar pattern
is not stable with respect to the Saturn ring [69, 70].

The non-spherical shapes attained at the end of the re-
traction in 2D planar geometry (Cases 1 – 4) agree with
results reported in various earlier studies [2, 3, 20, 23, 28].
The shapes of axisymmetric drops (Cases 5 – 8), although
reported less frequently, are not surprising considering
their 2D planar counterparts. Here we suggest a heuris-
tic argument that can rationalize intuitively the equilib-
rium drop shapes in all cases by considering the inter-
action between the director field (thin lines in Fig. 3)
and the interface. In Case 3, for instance, we first con-
sider a circular drop with a director field consistent with
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the homeotropic anchoring on the interface, illustrated
in Fig. 4(a). Because of the anchoring, bend and splay
distortions arise in the director field, which exert torques
on the drop interface, as shown by the semi-circles with
arrows in Fig. 4(a). These torques will tend to rotate
the interface and elongate the drop in the y-direction, as
shown in Fig. 4(b). This argument is consistent with the
well-known fact that defects of equal winding numbers
repel each other elastically. In Case 7, the defect is far
from the interface so that the alignment is approximately
radial at the interface, thereby producing a nearly spher-
ical drop. In Case 8, by a similar argument to that in
Case 3, nematic distortions near the interface tend to
“flatten” the drop, resulting in an oblate shape. Our ex-
planation agrees with the argument put forward in [62],
although in the latter study, the deformation is addition-
ally resisted by the bending rigidity of the vesicle shell.
We have not attempted a more quantitative comparison
on drop shapes with prior literature. Such a comparison
is hampered by strong assumptions on drop shape classes
or defect locations required in analytical solutions [e.g.,
19, 20], or difficulties in mapping parameters among dif-
ferent models for nematic order and interfacial stresses
used in computational studies [2, 3, 23, 28].

(a) (b)

FIG. 4. Conceptual director patterns in Case 3. The thin
solid curves represent streamlines of the directors, and the
solid dots represent defects. In (a), the torques exerted on
the drop interface by the nematic distortions are represented
by semi-circles with arrows. These torques tend to rotate the
interface to relieve the elastic distortion resulting in a drop
elongated in the y-direction (b). Deformation is exaggerated
for clarity.

B. Drop deformation and competition of free
energies

Now we examine the steady-state drop configurations
in more detail. The qualitative analysis in the last para-
graph of the above section suggests that the reduction
in the bulk distortional elastic energy at the expense of
the mixing energy (surface tension) is the dominant fac-
tor determining the drop deformation at steady state.
This motivates a scaling argument for the final drop
deformation, which has not been reported before. Let
as, bs denote the steady-state lengths of a and b, the
semi-axes of the drop (Fig. 1a). The competition be-
tween the distortional elastic energy and the mixing en-

ergy gives rise to the (dimensional) elastocapillary length
lec = l∗ecR = L1/σ. Dimensional analysis suggests that
the drop deformation, measured by bs − as , be propor-
tional to lec . This scaling relation may be developed in
more detail in the limit of small deformations. Consider
a circular drop in the 2D planar geometry (Cases 1 –
4) and a fully relaxed Q-field with a pair of defects. In
the nematic phase, the distortional elastic energy density
fe ≈ L1/ζ

2, where ζ is a characteristic length of long-
range Q distortions. For all 2D planar cases (and also
Cases 5 and 6), one can choose ζ to be the distance be-
tween the point defects. Typically, for all cases reported
in Fig. 3, ζ is on the order ofR. We examine the change of
free energies when the drop elongates by δl � R in one
direction. Without loss of generality, we assume that
bs > as, i.e., bs = R + δl. To conserve the drop area,
to leading order, as = R − δl. The distortional elastic
energy density becomes approximately L1/(ζ + 2δl)2 as
the defects move apart by about 2δl. We further assume
that the characteristic area of elastic distortion is Ae,
which stays constant under small deformations. Thus
the change in total distortional elastic energy δFe ≈
(−4AeL1/ζ

3)δl. Meanwhile, the change in the mixing
energy δFs ≈ (3πσ/R)δl2. Equating their magnitudes
gives an equilibrium δl corresponding to the lowest total
of the two energies: bs − as = 2δl ≈ (8AeRL1)/(3πζ3σ).
Scaling all lengths by R, we obtain

b∗s − a∗s = 2δl∗ ≈ 8A∗e
3πζ∗3

L1

σR
=

8A∗e
3πζ∗3

l∗ec. (28)

In 3D with axisymmetry, similar arguments give b∗s−a∗s ≈
(24V ∗e /πζ

∗3)l∗ec, where V ∗e is the dimensionless character-
istic volume of long-range distortion, scaled by R3.

Numerical data confirms this proportional relation. In
Fig. 5 we show the dimensionless drop elongation |b∗s−a∗s|
as a function of the dimensionless elastocapillary length
l∗ec with constant l∗e and l∗c , for Cases 1 – 4 in 2D planar
geometry (Fig. 5a) and for Cases 5 – 8 in 2D axisym-
metric geometry (Fig. 5b). In all cases, the deformation
|b∗s − a∗s| is indeed approximately proportional to l∗ec. In
Case 7 the relation is degenerate with negligible drop de-
formation regardless of l∗ec. This proportionality persists
to moderately large magnitudes of |b∗s − a∗s|, around 0.2
in many cases and over 0.3 in Case 6.

In certain scenarios, the trade-off between the bulk
elastic energy and the mixing energy can be demon-
strated directly from the evolution of free energies in
time. In Case 8, for instance, we calculate different com-
ponents of the free energy with our PF model, in dimen-
sionless forms:

F ∗m =
1

L1R

∫
fm dV, F ∗LdG =

1

L1R

∫
1− φ

2
fLdG dV,

F ∗e =
1

L1R

∫
1− φ

2
fe dV, F

∗
a =

1

L1R

∫
fa dV, (29)

where F ∗m is the mixing energy, F ∗LdG the microelastic
(LdG) energy, F ∗e the distortional elastic energy, and F ∗a
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FIG. 5. Steady-state drop deformation |b∗s −a∗s | as a function
of the elastocapillary length l∗ec for all the cases reported in
Fig. 3. (a) 2D planar (Cases 1 – 4), and (b) 2D axisymmetric
(Cases 5 – 8). The lines are least-square fitted to the data
points.

the anchoring energy. Let F ∗ be the total energy, i.e.,
F ∗ = F ∗m + F ∗LdG + F ∗e + F ∗a . Fig. 6 shows the evolution
of these energies of a simulation in Case 8. The initial
transients are dominated by the retraction of the drop
and establishment of the defects. As we are most inter-
ested in the later stage of drop deformation, we have cho-
sen matching ranges for the various energies to facilitate
their comparison in the later stage. The mixing energy
decreases during the initial contraction in the axial (z-
) direction, and rises again, although very moderately,
in the subsequent expansion in the radial (r-) direction
(Fig. 6a, also see Case 8 in Fig. 3). The decreasing distor-
tional elastic energy (Fig. 6c) drives the decay in the total
free energy (Fig. 6e), while being resisted to an apprecia-
ble extent only by the mixing energy. Their antagonism
indeed dominates the changes in the micro-elastic (LdG)
(Fig. 6b) and the anchoring (Fig. 6d) energies.

In addition, as the drop shape is dictated by the com-
petition between the bulk distortion and the mixing en-
ergy, the defect position relative to the interface also de-
pends on l∗ec whereas the anchoring strength is kept con-
stant relative to distortional elasticity (constant l∗e). We
use d∗s to denote the dimensionless steady-state distance
from the defect core to the nominal interface (φ = 0
contour) in the drop elongation direction. Fig. 7 shows
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FIG. 6. Temporal evolution of various free energies in a rep-
resentative simulation of Case 8. (a) The mixing energy. (b)
The LdG energy. (c) The distortional elastic energy. (d)
The anchoring energy. (e) The total energy. We have used a
smaller surface tension in this run (l∗ec = 0.033) than the base
value, so as to magnify the drop deformation for ease of visu-
alization and analysis. Steady state is reached near t∗ ≈ 200.
For clarity here we only show the range up to t∗ = 100.

d∗s as a function of l∗ec for all 2D planar cases as exam-
ples. When surface tension decreases (increasing l∗ec), the
defect gradually approaches the drop interface and d∗s
decreases roughly linearly, again consistent with sugges-
tions by dimensional analysis. In this process, although
the anchoring energy may increase due to the disordered
defect core being closer to the interface and disturbing
molecular order, the total energy decreases thanks to re-
laxed bulk distortions. In Cases 1 and 3, the dependence
of d∗s on l∗ec is weak, and the data points overlap, similar
to those in Fig. 5(a). This is because of the confine-
ment of the defects inside the drop. The dependence is
stronger in Cases 2 and 4, with the nematic outside the
drop. Note that at high values of l∗ec with the nematic
outside, the defects become attached to the interface, as
shown by the insets (Fig. 7).

In the limit of vanishing anchoring (l∗e →∞), the bulk
distortion and the mixing energy will be decoupled as
there will be no nematic distortions, defects or drop de-
formation at steady state. Thus the anchoring energy
mediates the exchange between the bulk distortion and
the mixing energy by providing a topological constraint
on the directors in the interfacial region. As examples, we
show the effect of anchoring strength in Fig. 8 for Cases
1 and 2, with l∗ec = 0.05. There are three features that
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FIG. 7. The dimensionless distance d∗s between the defect
and the interface as a function of l∗ec for 2D planar cases. The
insets show the distribution of 1−φ

2
q at steady state for two

scenarios in Case 2. The grey scale is the same as in Fig. 2.
The dark region outside the drop marks the defect.

warrant attention. First, when the anchoring strength
decreases (increasing l∗e), the defects shift closer to the
interface (Fig. 8a), as expected intuitively and in agree-
ment with literature [e.g., 71]. The defects then undergo
an abrupt transition and become attached to the inter-
face (Fig. 8a and the insets therein). This transition is
also observed by Lishchuk et al. [23] in their LBM calcu-
lation of a static drop shape similar to our Case 2. Sec-
ond, as the defect becomes attached, the drop elongation
jumps to a higher value, reducing the bulk distortion but
increasing the mixing energy (Fig. 8b). This is another
manifestation that the drop deformation is mainly driven
by the reduction of the distortional elastic energy. Third,
as anchoring further weakens, the coupling between the
bulk distortion and the mixing energy is gradually lost,
and the drop deformation decays, in agreement with our
reasoning about l∗e →∞. Note that the first two features
have counterparts in Fig. 7 when the surface tension is
lowered. In the latter case, though, the transition is much
smoother.

To summarize the analysis in this section, we see that
the trade-off between the bulk elastic distortion and the
mixing energy determines the drop deformation. The an-
choring energy plays the role of a mediator and moderates
this coupling.
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FIG. 8. (a) Defect location d∗s and (b) drop deformation |b∗s−
a∗s | as functions of l∗e for Cases 1 and 2. The insets show the
distribution of 1−φ

2
q at steady state for two scenarios in Case

2. The grey scale is the same as in Fig. 2. The dark region
outside the drop signals the defect.

C. Retraction dynamics

In Fig. 9, we analyze the retraction speed by monitor-
ing the time evolution of the drop deformation parameter
D = (b−a)/(b+a) (see Fig. 1 for definition of a, b) for all
the cases considered in Fig. 3, in semi-logarithmic scale.
Additionally, we perform two simulations of a Newto-
nian drop retracting in a Newtonian medium in 2D pla-
nar and axisymmetric geometries, respectively, with the
viscosity and density matched to the isotropic fluid in
our nematic-isotropic cases (Appendix). Designated by
“N/N”, these results serve as baselines for comparison.
As known from previous studies [72], the N/N retraction
features an exponential decay of D toward 0. Yet with a
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nematic-isotropic interface, the decay of D deviates grad-
ually from exponential, particularly in the late stage. In
general, compared with N/N, the acceleration or deceler-
ation depends on whether retraction facilitates or hinders
the reduction of the bulk distortion. The drops in Cases
1, 2, 3, 5 and 6 retract slower than in their corresponding
Newtonian cases, because a more spherical drop causes
more bending and splay of the directors, which resists fur-
ther retraction (also see the last paragraph in Sec. III A).
Note that the trend in Cases 1 and 2 agrees well with
the findings in [2, 3]. In contrast, those in Cases 4 and
8 retract faster than in N/N as the bulk distortions keep
on decreasing while the drop first retracts in the y- or z-
direction and then expands in the x- or r-direction. The
drop in Case 7 retracts slightly slower than in N/N. In
this configuration, the nematic distortions do not play a
strong role in the drop retraction. The retraction speed
can be faster or slower than in the N/N case, depending
on initial conditions and parameter values.

FIG. 9. Time evolution of the drop deformation factor D
compared with a Newtonian drop retracting in a Newtonian
host (N/N). (a) 2D planar (Cases 1 – 4). (b) 2D axisymmetric
(Cases 5 – 8). We only show dimensionless time up to t∗ = 10
to highlight the interfacial motion. The late-time evolution is
dominated by defect movement while the drop shape changes
little.

Finally, the gradient in the anchoring energy drives a
Marangoni flow along the interface from locations of low
anchoring energy to those of high anchoring energy, as
predicted by Rey [14]. It has been captured in our sim-

ulations, as demonstrated in Fig. 10 by a snapshot near
the end of the retraction in Case 8. The grey scale indi-
cates the dimensionless anchoring energy density f∗a and
the arrows represent the velocity field. The anchoring en-
ergy increases gradually from the north pole toward the
equator of the drop, peaking at a short distance above the
equator. This drives a Marangoni flow along the inter-
face, producing a pair of vortices on either side. Similar
flows have been identified for other cases as well. Note
that in the early stage of retraction, this Marangoni flow
is dominated by global eddies created by the fast defor-
mation of the drop. Only toward the end of the retrac-
tion, when the main flow field has more or less died down,
can we observe the Marangoni flow clearly. By this time,
though, the anchoring energy gradient has declined much
and the Marangoni flow has also become weaker. In [2, 3]
similar numerical results were observed.

r
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FIG. 10. Anchoring energy density and velocity field for Case
8 near the end of the retraction (t∗ = 183). The grey scale
shows the dimensionless anchoring energy density f∗a . The
interface and the defect core (q ≤ 0.5) are marked with solid
curves. The arrows show the velocity field, displaying the
Marangoni flow driven by the anchoring energy gradient.

IV. CONCLUSION

This paper reports direct numerical simulations of elas-
tocapillary flows with liquid crystals (LCs). We have
developed a computational framework that integrates a
tensorial description of molecular order in nematic LCs
with a phase-field (PF) formalism that approximates a
sharp-interface limit of two-phase flows. This method al-
lows for a physically consistent description of topological
defect structures in the LC, while capturing interfacial
forces including surface tension and the LC anchoring
stress.

We demonstrate the capability of our method by ap-
plying it to the drop retraction problem with a moving
nematic-isotropic interface. We have provided a compre-
hensive map of drop-defect configurations in a variety of
cases, including a nematic drop in an isotropic medium
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and the inverse, with planar and homeotropic anchoring
conditions at the interface, in 2D planar and 2D axisym-
metric geometries.

One of our key findings is the interplay between the
bulk elastic distortions and surface tension in dictating
the drop shape. In particular, the dimensionless steady-
state drop deformation is proportional to the elastocap-
illary length l∗ec = L1/(σR), which controls the relative
importance of bulk distortional elasticity and surface ten-
sion. This coupling is mediated by the anchoring energy,
and gradually diminishes as anchoring becomes weaker.
Our examination of this model problem highlights the in-
terplay between the elastic energies of the LC and surface
tension.

In addition, we have reproduced many features ob-
served in prior studies, including defect configura-
tions, elongated drop shapes, retraction speed, and the
Marangoni flow induced by anchoring energy gradients.
Compared to certain earlier computational studies on
the same problem, our predicted defect structures are
more physically realistic, admitting defects of half-integer
winding numbers in the bulk of LC.

Even though our model offers several advantages over
previous descriptions in [2, 3, 24–26], it still has the limi-
tation of high computational cost associated with the fine
mesh for the thin interfacial region, and the need to solve
the fourth-order CH equation. New schemes proposed for
general gradient dynamics problems, including CH diffu-
sion, have provided promising prospects for acceleration
of our calculation [e.g., 73, 74].

Lastly, our model can be extended to treat moving
contact lines thanks to the energetic nature of the PF
method (see Sec. II B). The finite-element approximation
allows for complex geometries and one can further equip
the model with adaptive mesh refinement or moving mesh
capabilities. Our model is well-suited for further develop-
ment to tackle more complex problems such as particle
interactions under coupled elastocapillary forces at the
interface of an LC [e.g., 9, 18, 75].
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Appendix: Parameters for drop retraction

The base parameters used for drop retraction are close
to those for 5CB [36, 37, 76, 77]. The numerical param-
eters for the CH dynamics (capillary width ε, mobility
γ) are chosen based on considerations in Sec. II C and
[24, 29, 52]. They are, in dimensional form, as follows.
Bulk elastic constant L1 = 100 pN. LdG energy coeffi-
cients A = −105 Pa, B = −6 × 105 Pa, C = 6 × 105

Pa. Nematic shape factor ξ = 0.6. Collective rota-
tional diffusion coefficient Γ = 25 Pa−1s−1. Density
ρn = ρi = 103 kg/m3 (“n” for the nematic phase and “i”
for the isotropic phase, same below). Viscosity ηn = ηi
= 0.01 Pa·s. Surface anchoring strength Ws = 0.01 N/m.
Surface tension coefficient σ = 0.01 N/m. Domain half
edge length L = 5 µm. Nominal drop radius R = 1 µm.
Initial drop size a0 = 0.8 µm, b0 = 1.25 µm (2D planar);
a0 = 0.8944 µm, b0 = 1.25 µm (2D axisymmetric). Cap-
illary width ε = 20 nm. Mobility γ = 4×10−14 m2/(Pa·s)
(2D planar); γ = 4×10−15 m2/(Pa·s) (2D axisymmetric).
The base parameters give the following values for the di-
mensionless lengths: l∗c = 0.0316, l∗e = 0.01, l∗ec = 0.01.
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