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ABSTRACT

The velocity distribution of stars is a sensitive probe of the gravitational potential of the Galaxy, and hence of its dark matter dis-
tribution. In particular, the shape of the dark halo (e.g. spherical, oblate, or prolate) determines velocity correlations, and different
halo geometries are expected to result in measurable differences. Here we explore and interpret the correlations in the (vR, vz)-velocity
distribution as a function of position in the Milky Way. We selected a high-quality sample of stars from the Gaia DR2 catalogue
and characterised the orientation of the velocity distribution or tilt angle over a radial distance range of [4−13] kpc and up to 3.5 kpc
away from the Galactic plane while taking into account the effects of the measurement errors. We find that the tilt angles change from
spherical alignment in the inner Galaxy (R ∼ 4 kpc) towards more cylindrical alignments in the outer Galaxy (R ∼ 11 kpc) when using
distances that take a global zero-point offset in the parallax of −29 µas. However, if the amplitude of this offset is underestimated, then
the inferred tilt angles in the outer Galaxy only appear shallower and are intrinsically more consistent with spherical alignment for
an offset as large as −54 µas. We further find that the tilt angles do not seem to strongly vary with Galactic azimuth and that different
stellar populations depict similar tilt angles. Therefore we introduce a simple analytic function that describes the trends found over
the full radial range. Since the systematic parallax errors in Gaia DR2 depend on celestial position, magnitude, and colour in complex
ways, it is not possible to fully correct for them. Therefore it will be particularly important for dynamical modelling of the Milky Way
to thoroughly characterise the systematics in astrometry in future Gaia data releases.

Key words. Galaxy: kinematics and dynamics – Galaxy: disk

1. Introduction

The second data release of the Gaia space mission (Gaia
Collaboration 2018a) contains more than 1.3 billion stars
with measured proper motions and positions and a subset of over
7 million stars with full six-dimensional (6D) phase-space infor-
mation. The availability of the motions and positions of stars in
the Milky Way and its satellite galaxies has already led to new
insights about the Galaxy (e.g. Antoja et al. 2018; Belokurov
et al. 2018; Helmi et al. 2018; Poggio et al. 2018; Price-Whelan
& Bonaca 2018), and many more discoveries will likely follow
before Gaia’s next data release.

Studies of the Galaxy provide insight about the formation
and evolution of galaxies in general, and hence about elements
of the cosmological paradigm. For example, detailed dynami-
cal modelling of the Milky Way and its satellites, and in partic-
ular their mass distribution, provide critical constraints on the
nature of dark matter (e.g. Bonaca et al. 2019). Mass models of
the Galaxy, such as those by McMillan (2011, 2017), and Piffl
et al. (2014) have been developed to fit many different obser-
vational constraints simultaneously, although this is very chal-
lenging. Therefore many works often focus on a specific aspect
such as the characterisation of the velocity distribution across the
Galaxy.

The in-plane velocity distribution f (vR, vφ) in the Solar vicin-
ity has long been known to be complex, and many moving
groups are known to exist (e.g. Proctor 1869; Eggen 1965;

Dehnen 1998; Antoja et al. 2008). With Gaia DR2 the level of
detail visible in the velocity distribution of stars has increased
immensely (see e.g. Gaia Collaboration 2018c; Antoja et al.
2018), and a plethora of substructures have become apparent. On
the other hand, the 2D velocity distribution describing the radial
and vertical velocity components, f (vR, vz), shows significantly
less substructure and the traditional velocity moments can still
describe the data well to first order.

Such velocity moments and thus the axial ratios of the veloc-
ity ellipsoid, however, depend on the stellar distribution function
and are different for different populations of stars. In contrast,
its orientation (or better known as alignment or tilt) is directly
related to (the shape of) the underlying gravitational potential
in which the stars move (e.g. van de Ven et al. 2003; Binney &
Tremaine 2008; Binney & McMillan 2011; An & Evans 2016)
and is the focus of this paper.

Nearly spherically aligned velocity ellipsoids were found for
the halo (Smith et al. 2009; Bond et al. 2010; King et al. 2015;
Evans et al. 2016) by mainly using data from the Sloan Digital
Sky Survey (York et al. 2000). Similar findings were obtained
by Posti et al. (2018) for dynamically selected nearby halo stars.
These authors obtained full 6D phase-space information by com-
bining radial velocity measurements from the RAdial Velocity
Experiment (RAVE DR5, Kunder et al. 2017) to the 5D sub-
set of the Gaia DR1 catalogue (Gaia Collaboration 2016). Most
recently, Wegg et al. (2019) used 15 651 RR Lyrae halo stars
with accurate proper motions from Gaia DR2 and also inferred
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a nearly spherically aligned velocity ellipsoid over a large range
of distances between 1.5 kpc and 20 kpc from the Galactic cen-
tre. When fed into the Jeans equations, this result seems to imply
a spherical dark matter distribution.

Studies focusing on the orientation of the velocity ellipsoid in
local samples of the Milky Way disk have also been consistently
reporting (close to) spherical alignment. Siebert et al. (2008)
have used RAVE DR2 and found a tilt angle γ equal to 7.3◦±1.8◦
for red clump stars at R = R� and z = 1 kpc, where γsph =
7.1◦ would be expected for spherical alignment at this location.
Casetti-Dinescu et al. (2011) found 8.6◦ ± 1.8◦ for a sample of
stars with heights between 0.7 kpc and 2.0 kpc and representative
of the metal-rich thick disk, which can be compared to γsph =
8.0◦ given the mean location of the sample. Subsequently, Smith
et al. (2012) reinforced these findings using data from the Sloan
Digital Sky Survey DR7 (SDSS; Abazajian et al. 2009). Binney
et al. (2014) using RAVE data, and Büdenbender et al. (2015),
using Sloan Extension for Galactic Understanding and Explo-
ration (SEGUE; Yanny et al. 2009), characterised the tilt angle
around the Galactic radius of the Sun up to z ∼ 2.0 kpc by γ(z) ≈
a0 arctan(z/R�). They found a0 ∼ 0.8 and a0 = 0.9±0.04 respec-
tively, values close to, but significantly different from, spherical
alignment for which a0 = 1.0. Recently, Mackereth et al. (2019)
have analysed the kinematics of mono-age, mono-[Fe/H] popu-
lations for both low and high [α/Fe] samples. They have cross
matched the Apache Point Observatory Galactic Evolution Exper-
iment (APOGEE DR14; Majewski et al. 2017) with Gaia DR2 to
obtain a sample of 65 719 red giant stars located between 4 kpc
and 13 kpc in Galactic radius and up to 2 kpc from the Galactic
plane. Mackereth et al. (2019) report that the tilt angles found are
consistent with spherical alignment for all populations, although
they note that the uncertainties are very large.

In this work we characterise the orientation of the veloc-
ity ellipsoid over a larger section of the Milky Way by using a
dataset of more than 5 million stars from Gaia DR2. The paper is
organised as follows. In Sect. 2 the dataset is introduced as well
as the selection criteria applied. In Sect. 3 we characterise the
velocity distribution and the measurement errors. The results are
presented in Sect. 4. In that section we also explore differences
with azimuth, investigate trends with stellar populations, and put
forward a fit that reproduces the variation of the tilt angle with
position in the Galaxy. In Sect. 5 we explore the effect of sys-
tematic errors on our measurements and show that the systematic
parallax errors present in Gaia DR2 have a significant impact on
the tilt angles found. In that section we therefore also discuss
our findings in the context of Galactic models. We summarise in
Sect. 6.

2. Data

We used the subset of Gaia DR2 with full 6D information (Gaia
Collaboration 2018c). We use the Bayesian distance estimates d̂
provided by McMillan (2018) who uses the Gaia DR2 parallaxes
$ and GRVS magnitudes as input. McMillan (2018) takes into
account Gaia DR2’s overall parallax offset of −29 µas with a
rms error of 43 µas (Lindegren et al. 2018).

To construct a high-quality sample we select stars with at
most 20% relative distance errors, that is d̂/ε̂(d̂) > 5, and d̂ <
5 kpc. The sample contains 5 796 226 stars. Stars with d̂ < 1 kpc,
typically have distances better than 5% (median 2.8%) and for
stars at 4 < d̂ < 5 kpc the relative distance errors are in between
12% and 20% (median 17.1%).

In Fig. 1 we show the extent of our sample in a number
density map. To compute the Galactocentric cylindrical coordi-
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Fig. 1. Star counts from our high-quality Gaia DR2 6D sample in bins
of width 1.0 kpc in R and z, as indicated by the box in the upper right
corner. The central coordinates of the bins are separated by 0.5 kpc in
R and z, thus the bins are not fully independent. The white contours
indicate the location of bins with 2000 (inner contour) or 100 (outer
contour) stars. The position of the Sun is indicated by the white symbol.
Only stars with d̂/ε̂(d̂) > 5 are considered in our sample.

nates (R, z, φ), we assume1 R� = 8.3 kpc (Schönrich 2012) and
z� = 0.014 kpc (Binney et al. 1997, and φ� = 180◦) for the posi-
tion of the Sun. Because of the imposed maximum distances to
the stars, the sample extends from R ∼ 4 kpc up to R ∼ 13 kpc
and reaches up to z = ±4 kpc. The white contours in Fig. 1 indi-
cate the location of bins containing 2000 and 100 stars respec-
tively. This shows that Galactic heights up to ∼3.5 kpc are still
covered with a statistically significant number of stars.

We derive the velocities of the stars in our sample in a
Galactocentric cylindrical coordinate system (vR, vz, vφ). For
the motion of the Local Standard of Rest (LSR), that is the
velocity of a circular orbit at R = R�, we assume vc(R�) =
240 km s−1 (Piffl et al. 2014; Reid et al. 2014). The peculiar
motion of the Sun with respect to the LSR is taken to be
(U,V,W)� = (11.1, 12.24, 7.25) km s−1 (Schönrich et al. 2010),
where U denotes motion radially inwards and V in the direction
of Galactic rotation (both in the Galactic plane), and W perpen-
dicular to the Galactic plane and in the direction of the Galac-
tic north pole. We propagate the errors and correlations in the
observables to determine the errors on the velocities (and their
correlations). Here we assume that the Bayesian distances are
not correlated with the remaining astrometric parameters. The
velocity errors for the stars in our sample at d̂ < 1 kpc are typi-
cally smaller than 2 km s−1 with a median value of ∼1 km s−1 for
the vR-, vz-, and vφ-components. At 4 < d̂ < 5 kpc the median
errors are in the range from ∼3 km s−1 to ∼8 km s−1 and generally
smaller than 15 km s−1.

The characterisation of the kinematics, in terms of the mean
motions and velocity dispersions, of a large part of the Milky
Way disk have been presented in Gaia Collaboration (2018c)
using the 6D dataset from Gaia DR2. This characterisation has
put on firm ground the evidence of the presence of stream-
ing motions in all velocity components (Siebert et al. 2008);

1 Use of the value of R� = 8178 ± 13stat. ± 22sys. pc, as determined by
Gravity Collaboration (2019), does not affect the main conclusions of
this paper.
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(Williams et al. 2013; Tian et al. 2017; Carrillo et al. 2018) and
revealed a large amount of substructure in the velocity distri-
butions. In this paper we proceed to focus on the correlation
between the radial and vertical velocity components across a
large fraction of the Milky Way galaxy.

3. Methods

The 3D velocity distribution of stars f (vφ, vR, vz) at a given point
in the Galaxy may be characterised by its various moments. As
described in the Introduction, the tilt of the velocity ellipsoid
refers to the orientation of the 2D velocity distribution f (vR, vz),
which would be obtained by integrating over vφ. As shown in
Smith et al. (2009) and Büdenbender et al. (2015), this is equiv-
alent to taking the moments of the 3D velocity distribution and
neglecting the cross terms with vφ. These cross-terms are inter-
esting in their own right, as they reveal also other physical
mechanisms at work, such as for example the presence of
substructures associated to resonances induced by the rotating
Galactic bar (Dehnen 1998), but are not the focus of this work.

3.1. The tilt angle: the orientation of the velocity ellipse

In the Galactocentric cylindrical coordinate system we define the
tilt angle γ, following for instance Smith et al. (2009), as:

tan(2γ) =
2cov(vR, vz)

var(vR) − var(vz)
, (1)

which therefore takes values from −45◦ to +45◦, and is measured
counterclockwise (i.e. from the vR-axis towards the positive
vz-axis). For exact cylindrical alignment γcyl = 0◦ and the major
and minor axis align with the Galactocentric cylindrical coordi-
nates.

It is also possible to define a tilt angle α with respect to the
spherical coordinate system (r, θ, φ), where tan(θ) ≡ R/z, that is:

tan(2α) ≡
2cov(vr, vθ)

var(vr) − var(vθ)
· (2)

The tilt angle α thus measures directly the deviation from spher-
ical alignment, which corresponds to α = 0◦. In such a case one
of the principal axes of the ellipse points to the Galactic centre.
The relation between α and γ at every (R, z) is

tan(2γ) = − tan(2θ + 2α). (3)

From now on, we always refer to the tilt angle γ, thus as
defined in the cylindrical coordinate system, unless stated other-
wise. To explore the spatial variation of the tilt angle we mea-
sure the intrinsic moments of Eq. (1) after projecting all stars
onto the (R, z)-plane, thus ignoring in the first stage the Galac-
tic azimuthal angle of the stars (although this is considered in
Sect. 4.2). We bin the meridional plane as in Fig. 1 and always
require at least 100 stars per bin.

3.2. Accounting for measurement errors

Measurement errors affect the observed velocity moments and
can therefore have a significant effect on the inferred tilt angles
(Siebert et al. 2008). To establish their effect we here explore
two “methods” to account for the errors and for recovering the
(intrinsic) velocity moments.

Method 1. We assume that the stars in a given spatial bin
have similar measurement errors. This assumption is reasonable

because the measurement errors in a particular bin are usually
much smaller than the intrinsic velocity dispersion. If the mea-
surement errors were exactly the same for all stars in a bin, the
intrinsic velocity covariance matrix can be recovered by sub-
tracting the error covariance matrix from the observed velocity
covariance matrix. This follows from the fact that convolving
a Gaussian distribution with Gaussian distributed measurement
errors again results in a Gaussian with covariance matrix Σobs =
Σintr +Σerror, where Σobs and Σintr are the observed and intrinsic
covariance matrix of the velocity distribution respectively. In our
approximation Σerror ≈ median

(
Σerror,i

)
for

Σerror,i =

[
var(vR,i) cov(vR,i, vz,i)

cov(vR,i, vz,i) var(vz,i)

]
, (4)

in which the diagonal terms denote the variance error of the cor-
responding velocity component of star i. Similarly cov(vR,i, vz,i)
denotes the error covariance for the (vR, vz) measurements of
star i. For the required typical errors we take the relevant median
errors of the stars in the bin. The recovered intrinsic velocity
moments are then used to characterise the velocity distribution.
The errors on these moments are analytically estimated and then
propagated into uncertainties on the recovered tilt angles. More
details can be found in Appendix A.

Method 2. We perform Markov chain Monte Carlo (MCMC)
modelling (Foreman-Mackey et al. 2013) for bins with a smaller
number of stars (with 100 < N < 2000). This aims to solve for
the intrinsic velocity dispersions σ(vR)intr and σ(vz)intr, the mean
velocities 〈vR〉 and 〈vz〉, and the covariance term cov(vR, vz)intr
in each bin. This is done by maximizing the bivariate Gaussian
likelihood function L =

∏N
i=1 Li, where

Li = Li[〈vR〉, σ(vR)intr, 〈vz〉, σ(vz)intr, cov(vR, vz)intr]

=
1

√
det(2πΣi)

exp
[
−

1
2

(xi − µ)ᵀΣi
−1(xi − µ)

]
, (5)

in which xi = [vR,i, vz,i], µ = [〈vR〉, 〈vz〉] and Σi = Σintr + Σerror,i.
Whereas in Method 1 Σerror,i was assumed to be the same for
each star, we here use Σerror,i for each star separately. We add pri-
ors to the model that only allow for positive velocity dispersions
in vR and vz and that restrict the correlation coefficient between
vR and vz always to be within [−1,1]. For a given bin, the sam-
ples drawn by the MCMC run translate into a distribution of tilt
angles. We take the median as the best estimate of the tilt angle.
For its error we take half the difference between the tilt angles
corresponding to the 16th and 84th percentile.

In general we find that the effect of the measurement errors
on the recovered moments is small. Moreover, for most bins the
velocity measurement errors are sufficiently similar and small
that we may use the computationally much faster Method 1
instead of the MCMC-based deconvolution. We have also com-
pared the results to the case in which we simply compute the
variances of the observed stellar velocities in the bins of inter-
est, and take these at face value, meaning that we do not take
into account the measurement errors. The results are again rather
similar, see for example, Fig. A.1 which shows the distributions
of the measurement errors for the bin located at R = 11.5 kpc and
z = 1.5 kpc. In what follows, we use the results from Method 1
unless stated otherwise.

4. Results
We present our measurement of the tilt angles by showing veloc-
ity ellipses in the meridional plane. At each position (R, z), we
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Fig. 2. Velocity ellipses in the merid-
ional plane. The ellipses are colour-
coded by their misalignment with respect
to spherical alignment. The orientation
that corresponds to spherical alignment
is indicated by the dotted grey line
through each ellipse. The inset in the
top right of the figure shows the veloc-
ity ellipse for a non-tilted distribution
with dispersions σ(vR) = 100 km s−1 and
σ(vz) = 50 km s−1 (see Sect. 4 for more
information). The contours show the (rel-
atively small) formal statistical errors on
the recovered tilt angles and are drawn
for error levels of [0.5, 1.0, 2.0, 4.0]
degrees. See Sect. 5 for a discussion on
the effect of systematic errors.

define a set of axes with vR into the R-direction and vz in the
z-direction. The centre of each velocity ellipse is always placed
at its position (R, z). The size of the major and minor axis of
each ellipse scale with the intrinsic velocity dispersions along
these directions. The R- and z-axis are both scaled by the same
constant cx. Similarly, all vR- and vz-axes are scaled by a con-
stant cv, thus both sets of axes have an aspect ratio of 1. As
a consequence, the velocity ellipses drawn will actually point
to the Galactic centre when there is spherical alignment. As a
reference, the inset in the figures shows a velocity distribution
aligned in cylindrical coordinates and with σ(vR) = 100 km s−1

and σ(vz) = 50 km s−1 (unless stated otherwise).

4.1. Tilt angles projected onto the (R, z)-plane

Figure 2 shows the velocity ellipses colour-coded by their
angular misalignment with respect to spherical alignment. For
z ≥ 0 kpc we define this misalignment as γ − γsph, whereas for
z < 0 kpc the misalignment is γsph − γ. Steeper tilt angles result
in positive misalignment (from light to dark red), shallower
tilt angles in negative misalignment (from light to dark blue).
Ellipses that are consistent with spherical alignment are greyish.
At the midplane it is however not possible to distinguish between
spherical and cylindrical alignment, since both γsph = γcyl = 0◦
at z = 0 kpc, thus here consistency with spherical alignment also
implies consistency with cylindrical alignment. Only away from
the midplane it is possible to differentiate between these types of
alignment.

We further add contours of constant formal statistical error
values on the recovered tilt angles in Fig. 2. We have drawn con-
tours for errors reaching 0.5, 1.0, 2.0, and 4.0 degrees. These
contours show the great quality of our dataset over the distance
range explored.

From this figure it is evident that there are just a few bins
that have tilt angles much steeper than spherical alignment (i.e.
there are just two dark red ellipses). These are however located
in the inner regions of the Galaxy and at those positions where
the error on the tilt angle is also large.

In general, however, the following trend is apparent: for
Galactocentric spherical radius r ∼ 4 kpc, the orientations of
the velocity ellipses seem to be slightly steeper than spherical
alignment. For r∼ 7 kpc they seem fully consistent with spheri-
cal alignment. For larger radii, that is R > 8 kpc and |z| & 1 kpc,
the ellipses have a negative misalignment, meaning that the ori-
entations of the ellipses become shallower compared to predic-
tion for spherical alignment. Here the orientation thus changes
into the direction of cylindrical alignment and is no longer con-
sistent with spherical alignment.

To be able to assess whether the tilt angles found are more
consistent with spherical or cylindrical alignment we show them
with error bars in Fig. 3 as a function of height for four Galac-
tic radii, namely R = [5, 7, 9, 11] kpc. The red squares (with-
out error bars; labelled “Raw data”) follow from computing the
moments directly from the data, and the green diamonds (“Ana-
lytic”) and blue crosses (“MCMC”) are derived using Method 1
and Method 2 respectively, thus accounting for the measurement
errors (see Sect. 3.2). They give consistent results given the error
bars, although the MCMC-method seems to result in slightly
steeper tilt angles.

The black curve in Fig. 3 shows the expectation in the case of
spherical alignment. At R = 5 kpc (left panel) the recovered tilt
angles are in agreement with spherical alignment for the heights
explored. At R = 7 kpc (left centre panel) the data is consistent
with spherical alignment up to |z| ∼ 2 kpc. For larger heights
the tilt angles are only mildly shallower. For R = 9 kpc and
R = 11 kpc, however, the tilt angles are becoming increasingly
shallower with respect to spherical alignment. In fact, for R =
12 kpc (see Fig. 2) the orientation of the ellipses become more
consistent with cylindrical alignment for the heights probed.

4.2. Tilt angles for different azimuthal angles

Since the Galaxy is not axisymmetric we now investigate
whether the tilt angles vary with azimuth by taking into account
the 3D location of the individual stars in our dataset. We bin
the data into Cartesian bins (x, y, z) whose volume is fixed to
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Fig. 3. Tilt angles as a function of Galactic height for different positions across the Galaxy. We show the trends with z for R = [5, 7, 9, 11] kpc. The
red squares, green diamonds, and blue crosses are based on the methods described in Sect. 3.2 (see text). The solid black line shows the trend that
would correspond to spherical alignment. The tilt angle is changing from spherical alignment in the inner Galaxy (R ∼ 5 kpc) towards shallower
tilt angles at R ∼ 11 kpc. The cyan line shows the analytic description of the data as proposed in Sect. 4.4.

3
2
1
0
1
2
3

z [
kp

c]

= 165

0.5
1.0

2.0
4.0

0.5
1.0

2.04.0

3
2
1
0
1
2
3

z [
kp

c]

= 180

0.5
1.0

2.0
4.0

0.51.0
2.0

4.0

4 5 6 7 8 9 10 11 12 13
R [kpc]

3
2
1
0
1
2
3

z [
kp

c]

= 195

0.5
1.0

2.04.0

0.5
1.0

2.0
4.0

15

10

5

0

5

10

15

M
isa

lig
nm

en
t [

de
g]

-100
100

vR [km/s]

-100
100

v z
 [k

m
/s

]

Fig. 4. Velocity ellipses in the meridional plane, now for different posi-
tions in azimuth (φ = [165◦, 180◦, 195◦] from top to bottom, respec-
tively). The spatial bins are cubes in (x, y, z), of 1 kpc on a side. The
colours of the ellipses represent the misalignment with respect to spher-
ical alignment (as in Fig. 2).

1× 1× 1 kpc3, which implies that the different azimuthal cones
we explore contain independent data for R > 4 kpc. These cones
are centred on three different angles φ = [165◦, 180◦, 195◦].

The resulting maps are shown in Fig. 4. Since the data is
effectively sliced in φ, the number of stars at a given (R, z) is
lower and as a consequence the spatial bins cover a smaller spa-
tial extent in comparison to Sect. 4.1. A coarse comparison of
the different panels in this figure suggests that the variations with
azimuth are relatively small compared to the global trend that is
still apparent in each panel: the misalignment changes from pos-
itive to negative when moving outwards in Galactic radius.

The most prominent differences are seen for the bins at
R ∼ 4 kpc and z∼ 1 kpc. The φ = 180◦-slice indicates much
steeper tilt angles than the φ = 195◦-slice. The statistical errors
on these tilt angles are however large. In fact, most of these bins
have consistent tilt angles given their error bars.

For a more direct comparison we show in Fig. 5, for specific
radii R = [6, 8, 10] kpc, the tilt angles for the different Galac-
tic azimuths as a function of Galactic height. Here the different
symbols, namely red squares, green diamonds, and blue crosses
correspond to the measurements for φ = [165◦, 180◦, 195◦],
respectively. The black starred symbols show the measurements
from all stars at the given R and z and irrespective of azimuth
(as in Sect. 4.1). At R = 10 kpc the tilt angles for the different
azimuths are less consistent with spherical alignment than those
at R = 6 kpc, especially at positive Galactic heights.

Even though some bins reveal slight differences in the tilt
angles when varying Galactic azimuth, the overall qualitative
trends are similar to the case in which we projected all stars onto
the (R, z)-plane, thus justifying the approach used in Sect. 4.1.
These results also suggest that the degree of non-axisymmetry,
in terms of the tilt angles, is modest over the azimuthal range
explored.

4.3. Variations with stellar populations

In this section we explore whether different populations of stars
follow similar trends in tilt angle. To this end we have cross
matched the full Gaia DR2 catalogue with three spectroscopic
datasets: the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST DR4; Cui et al. 2012), RAVE DR5, and
APOGEE DR14. If a star has radial velocity measurements from
more than one survey, we take the measurement with the small-
est quoted error. As for the spectroscopic sample delivered as
part of Gaia DR2 (Arenou et al. 2018), we only consider stars
whose radial velocity errors have been estimated to be smaller
than 20 km s−1. By adding radial velocities from these other sur-
veys the number of stars with full phase-space information is
increased by over 30%.
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Fig. 6. Velocity ellipses in the meridional plane, as in Fig. 2, but now for the subsamples representing halo (left), thick disk (middle) and thin
disk (right) populations. We note that the scaling of the velocity ellipses, indicated by the insets in the bottom right of each panel, are different.
The colour coding of the ellipses represents the misalignment with respect to spherical alignment and is the same as in Fig. 2. There is no strong
evidence that the tilt angles of the different populations behave differently.

To explore dependences on populations, we only use metal-
licities from LAMOST DR4 since this survey probes a much
larger region than either RAVE or APOGEE. We refrain from
merging the metallicity information from the different surveys
to avoid possible offsets between metallicity scales. Finally, only
stars with metallicity uncertainties up to 0.2 dex are considered
in our analysis.

A downside of extending our sample is that Bayesian dis-
tances are missing for the newly added stars to our sample. Since
the purpose of this section is to inspect variations between differ-
ent populations, we here approximate the distances to the stars
by d̂ = 1/$̂, where

$̂ = $ + 0.029mas, and ε̂$ =

√
ε2
$ + 0.0432. (6)

For the following analysis, we select those stars with at most
20% relative distance errors, that is $̂/ε̂$ > 5, and d̂ < 5 kpc.
We proceed to classify the stars according to a halo popula-
tion as those with [M/H] < −1.0 dex, a thick disk population
for −1.0 < [M/H] < −0.5 dex, and a thin disk population for
[M/H] > −0.4 dex. With these criteria, our sample contains
∼23 000 halo stars, ∼260 000 thick disk stars, and ∼2 million
thin disk stars.

Figure 6 shows the velocity ellipsoids and tilt angles as
a function of position in the meridional plane for the halo
(left), thick disk (middle), and thin disk (right) subsamples. The

different spatial coverage of the subsets reflect differences in the
number of stars (recall that to reliably measure a tilt angle we
require at least 100 stars in a spatial bin). In addition the ellipses
for the halo population are much larger compared to those of the
thick and thin disks. In fact, we have had to use different scales
for the panels: the insets in the bottom right of each panel show
ellipses whose semi-major and semi-minor axes correspond to
dispersions of σ(vR) = 200 km s−1 and σ(vz) = 100 km s−1 for
the halo and thick disk populations, and to σ(vR) = 100 km s−1

and σ(vz) = 50 km s−1 for the thin disk.
As in previous sections, the colours in Fig. 6 represent the mis-

alignment of the tilt angles with respect to spherical alignment.
The same trends as found earlier are visible for the populations
independently: at R . 7 kpc the alignment is closer to spherical,
while outwards from R ∼ 9 kpc the misalignment becomes nega-
tive, which means that the tilt angles become shallower. This can
be seen more easily when comparing the tilt angles derived for
each population at specific radii, as shown in Fig. 7.

There are also some differences seen. For example, at R =
8.5 kpc, the halo sample seems to be more consistent with spher-
ical alignment than both disk samples. For R = 9.5 kpc, however,
the differences between the populations are minor, except for the
flatter thin disk tilt angles at z ∼ 2.5 kpc. Therefore we may con-
clude that the results shown in Sect. 4.1 are not strongly depen-
dent on the different populations present throughout the volume
probed by our dataset.
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Fig. 7. Tilt angles as a function of Galactic height for different pop-
ulations of stars. We show the trends with z for R = 7.5 kpc (top),
R = 8.5 kpc (middle) and R = 9.5 kpc (bottom). The red squares, green
diamonds, and blue crosses show the results for the halo, thick, and thin
disk population described in Sect. 4.3, respectively. The light blue tri-
angles correspond to all LAMOST stars with metallicity information
with uncertainties smaller than 0.2 dex, while the black stars are for
all stars in the extended sample regardless of whether or not they have
metallicity information. The solid black line shows the trend that would
correspond to spherical alignment.

4.4. Quantifying the degree of spherical alignment

Because the trends seen in the tilt angles are not strongly depen-
dent on Galactic azimuth nor on stellar population, we here aim
to provide a simple description of their variation with radius
R and height z as found in Sect. 4.1. Since we infer near

spherical alignment for R∼ 6 kpc, we consider expanding α
around a point (R0, z0):

α(R, z) = α(R0, z0) + a1 (R − R0) + a2 (z − z0)
+ a3 (R − R0)(z − z0)

+ a4 (R − R0)2 + a5 (z − z0)2 + . . . , (7)

where ai are constants and both R and z in kpc2. By definition
α(R0, z0) = 0◦. We further set z0 = 0 kpc (i.e. the symmetry plane
of α is set to be the Galactic midplane). Moreover, a1 = a4 = 0,
since for most realistic models the tilt angle does not vary at the
midplane. By symmetry arguments the coefficients of all even
powers of z (including a5) must be zero, since α is expected to be
either antisymmetric with respect to the midplane or zero. Since
we have found that at R ∼ 6 kpc the tilt angles are consistent with
spherical alignment for all z probed (see left panels of Fig. 3), we
additionally set a2 = 0 such that at R = R0: α(R0, z) = 0◦. With
these choices:

α(R, z) ≈ a3 (R − R0)z. (8)

We thus fit this functional form to the data to derive values for
R0 and a3 such that the χ2-statistic defined as:

χ2 =

Nbins∑
j=1

(
α(R j, z j)model − α(R j, z j)obs

ε[α(R j, z j)obs]

)2

. (9)

is minimised. Here j runs over the number of bins Nbins where a
measurement is made, in other words where N > 100 stars.

For most bins at |z| ≤ 2.0 kpc and 5 ≤ R ≤ 12 kpc the inferred
statistical errors on the tilt angles are very small (e.g. see the
dashed contours in Fig. 2). In that case systematic errors need
to be considered. One such source of systematic errors are sub-
structures. We performed tests to estimate the effect of substruc-
tures in velocity space on the tilt angle. To this end we inserted
Nsub = 1, 4, 9, 16, 25, or 36 substructures on smooth non-tilted
velocity distributions with velocity dispersions of 20 km s−1 and
35 km s−1 in vz and vR (i.e. values representative of the thin disk
near R ∼ R�), respectively. Each substructure was assigned a
random number of stars such that the total fraction of stars in
substructures is fsub = 5%, 10%, 15%, or 20%. We randomly
assigned velocity dispersions to the substructures, drawn uni-
formly from 1 km s−1 to 5 km s−1 in both directions. For each
combination of (Nsub, fsub) we considered 100 realisations. The
median (absolute) tilt angle found from these experiments is ∼1◦,
implying that this value is representative of the error introduced
by neglecting the presence of substructures in a velocity distri-
bution. This result is independent of the total number of stars N
for N & 10 000 (a value that is representative of the number of
stars in the bins with ε[α(R j, z j)] < 1◦). Thus, when minimising
the χ2 we consider a floor for the statistical error ε[α(R j, z j)] in
each bin of 1◦.

We fit to find R0 = (6.16 ± 0.16) kpc and a3 = (0.72 ±
0.04)◦/kpc2 resulting in a reduced χ2 of 1.65. The cyan line in
Fig. 3 shows the tilt angles predicted by this fit, which repro-
duces relatively well the trends observed in the data. The model

2 We prefer to quantify the deviation from spherical symmetry
directly on the spherical tilt angle α than to use the purely geomet-
ric parametrisation by Binney et al. (2014) of the cylindrical tilt angle
γ′= a0 arctan(z/R) = a0(π/2 − θ) where θ indicates the spatial location
of the bin (see also Eq. (3)). Although a0 = 1 implies spherical align-
ment and a0 = 0 cylindrical alignment, it is not intuitively clear what the
quantitive meaning of other a0 values is.
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Fig. 8. Left: differences in tilt angles, ∆γGUMS, between error convolved realisations (taking into account random and systematic parallax errors)
and the error-free GUMS catalogue. Centre: standard deviation of the tilt angles over all realisations. Right: division of the differences by the
corresponding standard deviation. At distances at around 2 kpc the changes are significant with respect to the scatter present between realisations.

goes through the 1σ-error bars for approximately 60% of all
spatial bins, while for 98% of bins the model matches the data
within 3× the estimated uncertainty. This indicates that our sim-
ple model provides a fair description of the behaviour of the tilt
of the velocity ellipsoid across the Galactic volume probed by
our dataset.

The fact that the total reduced χ2-value is greater than unity
indicates that the tilt angles for some bins are not fitted very
well by the model. For example at R ∼ 10 kpc the tilt angles
as inferred from the data are asymmetric with respect to the
z = 0 plane: at z> 0 kpc they more or less attain a constant value
of ∼2.0◦, whereas below the midplane the tilt angles become
steeper with z (e.g. −15◦ at z = −3.0 kpc). The fits at such radii
are therefore relatively poor. For the bins between R = 11 kpc
and R = 12 kpc, we notice that the observed tilt angles seem to
have a small positive offset from zero near z = 0. These offsets
are small (of order 2◦), although they do affect the goodness of
fit measure.

5. Discussion

5.1. The impact of (parallax) measurement errors on the
recovered tilt angles.

Gaia Collaboration (2018a) have reported the presence of a sys-
tematic error on the Gaia DR2 parallaxes in the form of a zero-
point offset of a few 10 of µas (in the sense that Gaia parallaxes
are too small) and whose exact amplitude depends on location
on the sky. Such systematic zero-point offset affects the tan-
gential velocities of the stars, which are determined from both
distances and proper motions. The overall systematic parallax
offset in Gaia DR2 was determined using distant quasars by
Lindegren et al. (2018) to be approximately −29 µas, with a large
rms of ∼43 µas. Arenou et al. (2018) using different samples of
objects (RR Lyrae stars, Magellanic Clouds, open clusters, dwarf
spheroidal galaxies, etc.) report important variations in the zero-
point offsets, highlighting the complexity of the offset. Nonethe-
less all values are consistent given the large estimated rms.

Around the time this paper was submitted, Schönrich et al.
(2019) reported a new estimate of the parallax zero-point offset
based on the distance estimation method used in Schönrich &
Aumer (2017) (also see Schönrich et al. 2012). These authors
argue for a much larger zero-point for the parallaxes in the RVS
subset of Gaia DR2, namely of magnitude −54 ± 6 µas. Zinn
et al. (2019) and Khan et al. (2019) applied asteroseismology
to determine distances to Red Giant Branch (RGB) and Red
Clump (RC) stars with Gaia G-band magnitudes similar to those

present in the RVS subset of Gaia DR2 and determined an offset
close to −50 µas, while Sahlholdt & Silva Aguirre (2018), using
asteroseismology information on dwarfs, report that the offset
could be ∼−35 ± 16 µas. More recently Hall et al. (2019), using
RC stars with asteroseismology, estimate the mean offset to be
−41 ± 10 µas. These comparisons suggest that the offset could
well be larger for the brighter stars of the Gaia RVS sample but
that its amplitude is quite uncertain.

5.1.1. Quantification of the impact of a zero-point offset

We first quantify how the tilt angles are affected if parallaxes
are underestimated. For illustration purposes, we estimate the
impact on the recovered tilt angles induced by a systematic error
(with mean −29 µas) while also including the effects of random
errors3. Their effect is examined by using the Gaia Universe
Model Snapshot (GUMS; Robin et al. 2012), which is based on
the Besançon Galaxy Model (Robin et al. 2003).

We mimic the Gaia DR2 subsample with full phase-space
information, by selecting stars in GUMS that have G < 13 mag,
as this is roughly the magnitude limit for radial velocities in
Gaia’s current data release. We generate 100 data realisations
by convolving the (error-free) GUMS sample with a Gaussian
with Gaia DR2-like random and systematic errors for the par-
allaxes (Lindegren et al. 2018). The systematic parallax offsets
for the stars are drawn from a Gaussian with mean −29 µas and
standard deviation of 30 µas4. To obtain a distance estimate we
invert the parallaxes and consider only those stars that satisfy
$/ε($) > 5 and $ & 200 µas. Here $ is the observed parallax
and ε($) the random parallax error and thus the same quality
criteria are applied as to the real data (see Sect. 2).

For each spatial bin the median (over all realisations) of the
distribution of tilt angles is compared to the tilt angles from
the error-free model, on the meridional plane. The error-free
GUMS model has close to cylindrically aligned velocity ellipses
(γGUMS ∼ 0◦). The impact of the random and systematic paral-
lax uncertainties on the tilt angles depends on location as can be
seen in the left panel of Fig. 8. At R . 7 kpc the orientations
of the velocity ellipses change towards the direction of spherical
alignment (∆γGUMS > 0 for z > 0 and ∆γGUMS < 0 for z < 0),
while for R & 9 kpc the change is in the opposite sense.

3 In Appendix B we analytically compute how the vR- and vZ-velocities
(and thus their moments and tilt angles) are affected by the parallax
zero-point offset alone.
4 As estimated in Gaia Collaboration (2018b).
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Fig. 9. Tilt angles as a function of Galactic height for different positions across the Galaxy. We show the trends with z for R = [5, 7, 9, 11] kpc for
different distance estimates for the stars. The blue squares and orange diamonds use distances based on inverting the parallaxes after correcting the
parallaxes for an offset of −29 µas and −54 µas, respectively. The green crosses and red starred symbols use Bayesian distances from McMillan
(2018) and Schönrich et al. (2019), respectively. The solid black line shows the trend that would correspond to spherical alignment.

The middle panel of Fig. 8 shows the spread in tilt angles
over all realisations, and reveals that the errors result in a spread
with a typical amplitude of .4◦, except for the outermost bins,
where it can be twice as large, and hence comparable to ∆γGUMS.
The right panel shows at which locations the median change in
tilt angles, caused by parallax errors, is larger than the rms from
realisation to realisation. For bins located at distances of∼2 kpc a
change in tilt angle due to parallax errors is thus likely to occur in
a preferential direction, with the amplitude of this change vary-
ing from realisation to realisation.

These findings imply that, if parallaxes are underestimated,
the tilt angles inferred may appear steeper than they really are in
the inner Galaxy, while the opposite happens in the outer Galaxy,
thus the tilt angles become shallower there. If we take the results
from GUMS at face value, |∆γGUMS| ≈ 6◦ at (R, |z|) ∼ (5, 3) kpc,
which means that an unaccounted for zero-point offset of magni-
tude 29 µas in the parallaxes affects the inferred tilt angles such
that they appear steeper by ∼6◦. This does not radically change
the type of alignment at this location (where spherical align-
ment would imply γ∼ 30◦). For (R, |z|)∼ (11, 2) kpc we find that
|∆γGUMS| can attain values close to 5◦, which is of similar ampli-
tude as the misalignment seen in Fig. 2. Although the GUMS tilt
angles intrinsically have γGUMS ∼ 0◦, we find similar amplitudes
for the cases explored in Appendix B, where we start from both
intrinsically spherically and cylindrically aligned ellipsoids.

In the analysis presented in previous sections, we have
effectively corrected for the parallax offset by using the
McMillan (2018) distances. If the assumed parallax zero-point
is too small, the results presented in this section indicate that,
especially towards the outer Galaxy, the zero-point offset could
produce tilts that are less steep than what they are intrinsically.
We explore such a larger offset next.

5.1.2. A zero-point offset as large as −54µas

Everall et al. (2019) have derived tilt angles using the
Schönrich et al. (2019) Bayesian distance estimates (with par-
allax zero-point of −54 µas). These authors showed that the tilt
angles appear to be much more consistent with spherical align-
ment when using those distances.

Since the method used in Schönrich et al. (2019) assumes
spherical alignment, we preferred not to directly use their dis-
tances while testing for the effect of a large −54 µas offset.
Therefore we here also explore how the tilt angles change if the
parallax offset would be as large as −54 µas, by comparing them
to the case in which the offset is −29 µas. For both cases we take
the extended sample and invert the parallaxes after correcting for
the zero-point offset (as in Sect. 4.3), such that the changes due
to the differences in parallax offset can be easily compared.

In Fig. 9 we show the results. The blue squares have been
calculated after correcting for a parallax zero-point offset of
−29 µas, whereas for the orange diamonds a value of −54 µas is
assumed. For the outer Galaxy (R = 9 kpc and R = 11 kpc) such
a larger parallax zero-point can modify the tilt angles such that
they are more consistent with spherical alignment, in agreement
with our analysis of the previous section.

A direct comparison of the tilt angles obtained using
McMillan (2018) Bayesian distances (who assumes a zero-point
of −29 µas, green crosses) with the results obtained from invert-
ing the parallaxes after correcting for a zero-point of −29 µas
(blue squares), shows good agreement except for R = 5 kpc. At
this location, it would seem as if the choice of the distance esti-
mator would play a role in the determination of the tilt angle.
The Bayesian distances result in tilt angles that are just slightly
steeper than expected for spherical alignment, while inverting
the parallaxes results in much shallower tilt angles (the larger
the offset assumed the shallower the tilt angles). On the other
hand, comparing the tilt angles obtained using Schönrich et al.
(2019) Bayesian distances (who find a zero-point of −54 µas, red
starred symbols), with the results obtained from inverting the
parallaxes after correcting for a zero-point of −54 µas (orange
diamonds), shows rather similar trends at R = 5 kpc. At the other
radii shown, these Bayesian distances also result in tilt angles
that are in good agreement with inverting the parallaxes.

The analysis presented in the last two sections shows that
the amplitude of the systematic error in the parallax, in the form
of a zero-point offset, plays a role in the determination of the
tilt angles for the outer Galaxy (R > 9 kpc). Since the offset is
known to vary with celestial position, magnitude and colour, it is
difficult at this point to properly correct for it, and this impairs a
very accurate determination of the tilt angle throughout the range
of distances probed. However, recall that the range of zero-point
offsets is bracketed by the values explored (i.e. from −54 µas to
−29 µas), so the analysis presented here gives us a handle on the
possible outcomes.

5.2. Constraints to models of the Milky Way

Several models of the Milky Way have been proposed by match-
ing a variety of constraints (e.g. McMillan 2011, 2017; Piffl
et al. 2014). Particularly useful for the interpretation of the find-
ings reported in this paper are Stäckel models (e.g. de Zeeuw
1985; Dejonghe & de Zeeuw 1988). Axisymmetric models with
a potential of Stäckel form have the property that the equations of
motion are separable in their spheroidal coordinates. Therefore
the principal axes of the velocity ellipsoids are always aligned
with these coordinates (also see: Eddington 1915). The foci of
such a coordinate system then determine the alignment at each
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Fig. 10. Contours of constant prolate spheroidal coordinates, (λ, ν), with
foci at R = 0 and z = ±0.88 kpc (see text). Contours of constant λ are
shown in blue, contours of constant ν in red. The green ellipses show
some of our measured velocity ellipses (Method 1). Their orientation
does not align with the coordinate contours at R & 10 kpc and |z| &
2 kpc.

position. For a composite model to be of a Stäckel form, the
locations of the foci must be identical for all components.

Famaey & Dejonghe (2003), for example, have extended the
two-Stäckel component work of Batsleer & Dejonghe (1994) by
adding a third component, such that the model could allow for a
thin and thick disk, in addition to a halo component. The authors
use constraints such as the (flat) rotation curve, circular veloc-
ity at the position of the Sun, the Oort constants, and the local
total mass density in the disk to search for a set of consistent
parameters for their Stäckel models. Here we take the set of pro-
late spheroidal coordinates, (λ, φ, ν), from Famaey & Dejonghe
(2003, mass model II). The foci of this oblate mass model are
located at (R, z) = (0, ±0.88) kpc. At R ∼ 0 and |z| . 0.88 kpc
such spheroidal coordinates align with the cylindrical coordinate
system (see Fig. 10). Outside of these foci and with increas-
ing distance from the Galactic centre the spheroidal coordinates
approach the spherical coordinate system. In general, any (com-
posite) Stäckel model predicts a change in the tilt of the veloc-
ity ellipse from cylindrical to spherical alignment. The transition
radius depends on the location of the foci.

Since the observed tilt angles at R∼ 4 kpc already show near
spherical alignment, this implies foci at |z| . 4 kpc. Their exact
position would depend on whether the innermost region of the
Galaxy, not probed by our dataset, is cylindrically aligned or
not, and if so at what distance the transition occurs. However,
the tilt angles in the outer Galaxy (9.R. 12 kpc) derived using
the McMillan (2018) distances are not consistent with Stäckel
models that have foci at |z| . 4 kpc, and would require a larger
focal distance. We have numerically checked these statements
by comparing the predicted tilt angles of both oblate and prolate
Stäckel models (for a large range of different focal distances) to
the observed tilt angles while taking into account their errors.

There are of course many more models with bulge, disk
and halo components, for example spherical bulge, exponential
disk, Navarro–Frenk–White (NFW; Navarro et al. 1996) halo, or
Miyamoto & Nagai (1975) models. The separable models are in
that sense a subset but have the advantage that for them the tilt
of the velocity ellipsoid is dictated by the coordinate system in
which the equations of motion (Hamilton–Jacobi equation to be
more precise) separate.
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Fig. 11. Tilt angles for both the Stäckel (purple line) and Piffl et al.
(2014, orange line) model for radii at R = 4 kpc and R = 8 kpc (see
text). For comparison we add our measurement as green diamonds
(Method 1).

Piffl et al. (2014) have applied a five component mass model
(gas disk, thin and thick disk, flattened bulge and dark halo) to
RAVE DR4 stars. Using their best-fitting parameters we com-
puted the relevant velocity moments from the distribution func-
tion for a similar range in R and z as probed in our dataset. The
tilt angles for this model are spherically aligned for R & 7 kpc
and are, as in the separable models discussed above, changing
towards cylindrical alignment with decreasing R.

In Fig. 11 we show the tilt angles for both the Stäckel
model (purple line) of Famaey & Dejonghe (2003) and the
Piffl et al. (2014) model (orange line), for radii R = 6 kpc and
R = 10 kpc. The green diamonds indicate the tilt angles as found
by Method 1. Since this Stäckel model has focii at |z| . 0.88,
which is very close to the Galactic centre with respect to the
innermost radius probed in our dataset, the Stäckel model is
almost indistinguishable from spherical alignment for all posi-
tions probed. The Piffl et al. (2014) model has tilt angles that are
shallower at R = 6 kpc, but also approaches spherical alignment
with increasing Galactic radius. At R = 10 kpc, for example, the
tilt angles from the Piffl et al. (2014) model are seen to nearly
coincide with the expectation for spherical alignment.

We note that if the parallax zero-point is larger than assumed
here the tilt angles do become more consistent with spherical
alignment for large radii (see Sect. 5.1.2). This is in line with
predictions for both composite Stäckel models as well as for the
Piffl et al. (2014) model. In addition, it would be interesting to
know whether the tilt angles become shallower towards the cen-
tral regions of the Galaxy (at R . 4 kpc). In principal it would
then be possible to solve for the focal distance. However, the
effects of both the type of distance estimator and the assumed
parallax zero-point are too large to make firm statements in this
region. Future data releases will for sure enable to probe regions
closer to the Galactic centre more robustly.

6. Conclusions

We have studied the trends in the tilt angle of the velocity ellip-
soids in the meridional plane for a high-quality sample of more
than 5 million stars located across a large portion of the Galaxy,
from R ∼ 4 kpc to R ∼ 13 kpc, and reaching a maximum distance
from the plane of ∼3.5 kpc.

We find that the tilt angles are somewhat dependent on
the offset of the Gaia DR2 parallaxes, and that the effects are
particularly important for the outer Galaxy. When using the
McMillan (2018) Bayesian distances, derived assuming an off-
set of −29 µas, we find that the tilt angles are consistent with
(near) spherical alignment at R. 7 kpc for all heights probed
(|z|. 3 kpc). Beyond R& 9 kpc the tilt angles clearly become
more shallower than expected for spherical alignment. These
trends remain when the stars are separated into “populations”
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according to their metallicity (as given by LAMOST DR4). We
provide a simple analytic function for the tilt angle in spheri-
cal coordinates α(R, z)/[deg]≈ 0.72(R − 6.16)z, that fits well the
trend observed as a function of Galactic radius and height, after
projecting the stars onto the (R, z)-plane.

We find that if the amplitude of the zero-point offset in the
parallax is underestimated, the angles tend to appear shallower
than they intrinsically are in the outer Galaxy (i.e. changing into
the direction of cylindrical alignment if the ellipsoid is intrin-
sically spherically aligned). We quantify the impact on the tilt
angles when assuming a parallax zero-point as large as −54 µas,
as estimated in Schönrich et al. (2019) (also see Everall et al.
2019). Such a large offset (the upper limit of estimates reported
in the literature by other authors) does indeed lead to tilt angles
that are more consistent with spherical alignment than obtained
when using the McMillan (2018) distances. Therefore it will be
particularly important to pin-down, in future Gaia data releases,
the amplitude of the parallax zero-point as well as its local varia-
tions as these affect our ability to constrain the mass distribution
in our Galaxy.
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Appendix A: Standard errors of sample (co)variances
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Fig. A.1. Error distributions for the bin at R = 11.5 kpc and z = 1.5 kpc for the different velocity components: vR (left), vz (middle), and its
covariance (right). The corresponding medians of the error distributions are shown by the vertical grey dotted lines. The vertical grey dashed lines
indicate the values of the velocity moments taken from the data directly (i.e. not accounting for the errors). The black vertical solid lines lines
show the recovered intrinsic velocity moment from Method 1 (see Sect. 3). Even at this bin, which still contains 2016 stars, the impact of the
measurement errors on the recovered velocity moments is relatively small.

To estimate the error on the inferred tilt angles from Method 1
of Sect. 3.2 we propagate the errors of the relevant velocity
moments from Eq. (1).

The error on a sample variance, s2, can be estimated (e.g.
Rao 1973; Mood et al. 1974) by using

var(s2) =
1
N

(
µ4 −

N − 3
N − 1

var(v)2
)

(A.1)

for N stars. Here, µ4 denotes the intrinsic 4th central moment and
s2 = 1

N−1
∑N

i=1 (vi − 〈v〉)2, for which vi is the relevant velocity
component, either vR or vz, of star i and 〈v〉 its mean taken over
all stars in the bin considered. The intrinsic velocity moments
are estimated by their observed values, which is a good approx-
imation given the relatively small errors in the data for the bins
explored.

The error on a sample covariance S xy of x and y can be esti-
mated (see Stuart & Ord 1987 or Rose & Smith 2002 for using
mathStatica) by

var(S xy) =
1
N

[
µ22 −

N − 2
N − 1

cov(x, y)2 +
1

N − 1
var(x)var(y)

]
, (A.2)

where µ22 = E[{x− E(x)}2{y− E(y)}2] for E denoting the expec-
tation value. We have defined S xy = 1

N−1
∑N

i=1(xi − 〈x〉) (yi − 〈y〉).
In our application x is replaced for vR and y for vz. The intrinsic
moments are again estimated by taking the equivalent moments
directly from the observed velocity distribution.

As an example for Sect. 3.2 we show in Fig. A.1 the error dis-
tributions for the bin at R = 11.5 kpc and z = 1.5 kpc. This bin is
near the edge of the volume investigated, but still contains 2016
stars. The vertical grey dashed lines indicate the values of the
velocity moments that would be derived by using the data directly
(i.e. not accounting for the errors). The medians of the error distri-
butions are indicated by the vertical grey dotted lines. The recov-
ered intrinsic velocity moments from Method 1 are visualised
by the vertical black solid lines (as here, these usually coincide
with the vertical grey dashed lines). Thus, even for this outer
bin, the effects of measurement errors are relatively small.

Appendix B: The impact of a systematic parallax
offset on the recovered tilt angles

Here we explain how a systematic parallax offset can affect
the inferred tilt angles. For this purpose, we now only consider

the (x, z)-plane and we assume that all parallaxes are shifted by
the same offset ∆$ = −0.029 mas.

For Galactic longitude l and latitude b the (U,V,W)-
velocities in km s−1 can be computed the usual way (Johnson
& Soderblom 1987; Bovy 2011):U

V
W

 =

cos(l) cos(b) − sin(l) − cos(l) sin(b)
sin(l) cos(b) cos(l) − sin(l) sin(b)

sin(b) 0 cos(b)




vlos
k
$
µl?

k
$
µb

 . (B.1)

Here, µl? = µl cos(b) and µb denote the proper motions in
mas yr−1 in the direction of l and b, respectively,$ is the parallax
in mas, and k = 4.74047 km s−1

kpc mas yr−1 (assuming a Julian year).
When only considering an error in the parallaxes the

“observed” velocities are affected as:U
V
W


1

=

U
V
W


0

+
∂

∂$

U
V
W


∣∣∣∣∣∣∣∣
0

∆$ + O(∆$2). (B.2)

Subscript 0 denotes the true position and velocities, subscript 1
the “observed” quantities. Furthermore:

∂

∂$

U
V
W

 = −
1
$

U − cos(l) cos(b) vlos
V − sin(l) cos(b) vlos
W − sin(b) vlos

 , (B.3)

and:

vlos = cos(b) cos(l) U + cos(b) sin(l) V + sin(b) W. (B.4)

Let us now define the tilt angle δ as:

tan(2δ) =
2cov(U,W)

var(U) − var(W)
· (B.5)

In a steady state axisymmetric system 〈vR〉 = 〈vz〉 = 0. There-
fore, at the (x, z)-plane 〈U〉 = 〈W〉 = 0, and thus var(U) = 〈U2〉,
var(W) = 〈W2〉, and cov(U,W) = 〈UW〉. For l = 0◦ and l = 180◦
we also notice that U = −vR and W = vz, and therefore that
δ = −γ. In the remainder of this appendix we refer to δ when we
use “tilt angle” (unless stated otherwise).

Plugging Eq. (B.2) up to first order in ∆$
$0

into Eq. (B.5) we
get:

tan(2δ1) '
2〈U0W0〉 + εA

〈U2
0〉 − 〈W

2
0 〉 + εB

, (B.6)
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Fig. B.1. Effect of a constant shift in the parallaxes of the stars (∆$ = −0.029 mas) on the tilt angle γ, as measured in Galactocentric cylindrical
coordinates for different types of intrinsic alignment. Left columns: intrinsic tilt angles γ0 as a function of R and z. Middle columns: tilt angles γ1
computed from the “observed” velocity moments. Right columns: ∆γ = γ1 − γ0. Be aware of the different colourbar ranges. Top panels: we set the
velocity covariances such that the input alignment is spherical. Bottom panels: the input alignment is cylindrical. Black contours denote regions
where the tilt angle is not affected, i.e. ∆γ = 0◦. For spherical alignment this is expected to be the case on the line passing through the Galactic
centre and the position of the Sun, thus along z ≈ 0 kpc, and on the circle that goes through the Galactic centre and the position of the Sun. For
cylindrical alignment this is expected to occur at both z = z� ≈ 0 kpc and R = R�.

in which:

εA =
[
±

(
〈U2

0〉 + 〈W
2
0 〉

)
sin(2b) − 2〈U0W0〉

] (∆$

$0

)
εB = 2

[
〈W2

0 〉 cos2(b) − 〈U2
0〉 sin2(b)

] (∆$

$0

)
,

(B.7)

where ± holds for l ∈
{

0◦
180◦

}
.

To further explore the effect of a shift in the parallaxes we
now investigate what would happen to the tilt angles in two dif-
ferent cases of alignment: spherical alignment and cylindrical
alignment.

We start by rewriting Eq. (B.6) into the form of

δ1 =
1
2

arctan [(1 + x) tan(2δ0)]

δ1 = δ0 +
1
4

sin(4δ0) x + O(x2)

∆δ '
1
4

sin(4δ0) x.

(B.8)

We then get:

tan(2δ1) '
2〈U0W0〉

〈U2
0〉 − 〈W

2
0 〉

[
1 − εC
1 − εD

]
tan(2δ1) ' tan(2δ0)

[
1 − εC
1 − εD

]
,

(B.9)

in which:

εC =

1 ∓  〈U2
0〉 + 〈W

2
0 〉

2〈U0W0〉

 sin(2b)
 (∆$

$0

)
εD = 2

 〈U2
0〉 sin2(b) − 〈W2

0 〉 cos2(b)

〈U2
0〉 − 〈W

2
0 〉

 (∆$

$0

)
.

(B.10)

Then, under the assumptions that |εC | � 1 and |εD| � 1, we get:

x ' εD − εC . (B.11)

We highlight the effects for four different latitudes:

b = 0◦ : x = −

(
∆$

$0

)  〈U2
0〉 + 〈W

2
0 〉

〈U2
0〉 − 〈W

2
0 〉


|b| = 90◦ : x = +

(
∆$

$0

)  〈U2
0〉 + 〈W

2
0 〉

〈U2
0〉 − 〈W

2
0 〉

 (B.12)

b = +45◦ : x = ±

(
∆$

$0

)  〈U2
0〉 + 〈W

2
0 〉

2〈U0W0〉


b = −45◦ : x = ∓

(
∆$

$0

)  〈U2
0〉 + 〈W

2
0 〉

2〈U0W0〉

 .
Since the velocity ellipse is mostly non-tilted (δ0 = 0◦) at the
Galactic midplane the inferred tilt angles at b = 0◦ are not
affected by an error in the parallax. Geometrically this is not
surprising since, at b = 0◦, the U-component of the velocities
are not affected. The W-velocities are only inflated and do not
change the tilt angle. However, if δ0 , 0◦, then the term between
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the square brackets becomes larger than one, since for typical
values of the velocity moments at the midplane σ(vR) > σ(vz)
(see e.g. Gaia Collaboration 2018c). The inferred tilt angle is
therefore steeper (more positive if δ0 > 0◦ and more negative if
δ0 < 0◦). At |b| = 90◦, the effect is reversed and the tilt angle
becomes shallower (less positive if δ0 > 0◦ and less negative
if δ0 < 0◦) due to the parallax offset. For the case of spherical
alignment the relation tan(2δ0) = tan(2θ) can be applied.

The approximations used so far fail for 〈U0W0〉 ' 0, since
then |εC | 3 1, and for 〈U2

0〉 ' 〈W
2
0 〉, since then |εD| 3 1, and thus

|x| 3 1. In the case of cylindrical alignment (δ0 = 〈U0W0〉 = 0)
and for |εD| � 1 we get5:

δ1 ' ±
1
2

sin(2b)
 〈U2

0〉 + 〈W
2
0 〉

〈U2
0〉 − 〈W

2
0 〉

 (∆$

$0

)
, (B.13)

where we used that tan(2δ1) ' 2δ1 for small deviations around
δ1 = 0◦. This means that at l = 0 (l = 180◦) and for σ(vR) >

5 If, hypothetically, both 〈U2
0〉 = 〈W2

0 〉 and 〈U0W0〉 = 0, then
tan(2δ1) = ± tan(2b).

σ(vz) the tilt angles appear to be negative (positive) for b > 0◦,
and positive (negative) for b < 0◦.

We have inserted the relevant Galactic velocity disper-
sions as a function of R and z and set the covariance
term such that there is either spherical or cylindrical align-
ment throughout the extent of the dataset. We find that the
tilt angles are affected very similarly. This is visualised in
Fig. B.1 (recall that γ = −δ since we here consider l = 0◦
and l = 180◦ only). We therefore think that our test per-
formed in Sect. 5.1 is realistic, even though the intrinsic tilt
angles of the GUMS catalogue are more or less cylindrically
aligned.

Besides the fact that the orientation of the velocity ellipse
changes due to the parallax offset, obviously the stars under con-
sideration also move in position. Thus, in fact a sample of stars
with tilt angle δ0 at parallax $0 gets “observed” at $1 with tilt
angle δ1. We have not taken this effect into account in the ana-
lytic description from this appendix.
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