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ABSTRACT
A new family of self-consistent distribution function (DF)-based models of stellar systems is
explored. The stellar component of the models is described by a DF depending on the action
integrals, previously used to model the Fornax dwarf spheroidal galaxy (dSph). The stellar
component may cohabit with either a dark halo, also described by a DF, or with a massive
central black hole. In all cases we solve for the models self-consistent potential. Focussing on
spherically symmetric models, we show how the stellar observables vary with the anisotropy
prescribed by the DF, with the dominance and nature of the dark halo, and with the mass of
the black hole. We show that precise fits to the observed surface brightness profiles of four
globular clusters can be obtained for a wide range of prescribed velocity anisotropies. We
also obtain precise fits to the observed projected densities of four dSphs. Finally, we present a
three-component model of the Sculptor dSph with distinct DFs for the red and blue horizontal
branch stars and the dark matter halo.

Key words: globular clusters: general – galaxies: dwarf – galaxies: kinematics and dynam-
ics – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

Diagnosing the dynamics of collisionless systems is central to
contemporary astrophysics. The systems of interest range from
clusters of galaxies, through giant elliptical galaxies and disc
galaxies like the Milky Way, to Magellanic and spheroidal dwarf
galaxies and star clusters. All these systems are dominated by
the mass contributed by some mixture of dark matter particles,
galaxies or stars, and have relaxation times that greatly exceed their
crossing times. In every case comparison with observations requires
one to recognize that these particles fall into distinct classes: a
cluster of galaxies contains dark matter particles, and galaxies of
several morphological types; a giant elliptical galaxy contains dark
matter particles and populations of stars with distinct chemistry; the
Milky Way and dwarf spheroidal galaxies (hereafter dSphs) contain
dark matter particles and populations of stars of distinct chemistry
and age, and a globular cluster (hereafter GC) contains stars with
radically different masses and subtly different chemistry.

Until recently, dynamical models of stellar systems have been
simplified to the extent of containing only one stellar population
and have represented dark matter by a simple density distribution
without regard to its internal dynamics. With the advent of high-
resolution kinematics for billions of stars (Gaia Collaboration 2018)
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and spectra for millions of stars (Cui et al. 2012; Gaia Collaboration
2018) it has become essential to develop multicomponent models
of stellar systems. In such a model each observationally distinct
population is represented by a distribution function (hereafter DF)
f(x, v) that gives the probability density for finding an object of
the relevant population at the phase-space point (x, v). Given these
DFs, one can solve for the gravitational potential �(x) that these
populations jointly generate. That done, the model predicts both the
spatial distribution of each population and the population’s velocity
distribution at every point.

The parameters characterizing each component DF can be fitted
to data in a variety of ways. If individual particles are observed,
as in a dwarf spheroidal galaxy (dSph), the likelihood of the
data given in each model and the observational uncertainties can
be computed and used to find the range of parameters that is
consistent with the data (e.g. Pascale et al. 2018). If individual
particles are not observationally resolved, as in distant galaxies,
the models parameters can be constrained by comparing observed
surface densities and velocity moments with the models precisely
equivalent predictions. If the number of resolved particles is large,
the cost of computing individual likelihoods may be unfeasible,
forcing one to bin the data and constrain parameters as in the case
of unresolved particles (e.g. Cole & Binney 2017). Whatever the
scale and completeness of the data, a rigorous and tractable method
of parameter constraint is available.
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Models based on a DF have been considered since the beginning
of stellar dynamics (Eddington 1915; Michie 1963; King 1966).
These models almost invariably take advantage of the Jeans theorem
to posit that the DF depends on (x, v) only through constants of
stellar motion. The energy E is the most available of such constants
and until recently it invariably featured as an argument of the DF.
The key to producing multicomponent and non-spherical models,
however, proves to be to exclude E from the DF in favour of the
action integrals Ji (Binney 2010; Binney 2014). A complete set of
action integrals Jr, Jz, and Jφ is guaranteed in any spherical potential,
and numerical experiments (Binney & Spergel 1982; Ratcliff,
Chang & Schwarzschild 1984) with galaxy-like potentials indicate
that in realistic potentials the vast majority of orbits are quasi-
periodic, which guarantees the existence of action integrals (Arnold
1978). Moreover, by torus mapping (Binney & McMillan 2016) one
can closely approximate any given axisymmetric Hamiltonian with
one in which all orbits are quasi-periodic. Hence it is intellectually
sound to require that the DF depends only on actions.

None the less, it is practicable to take the DF to depend on
actions only if their values can be computed from (x, v). When
Binney (2010) first started experimenting with DFs f(J), he used the
adiabatic approximation to compute actions. This approximation
works well only for thin-disc stars and is inapplicable to halo stars
or dark matter particles. Fortunately a technique for the evaluation of
actions soon appeared that provides good accuracy for all stars and
dark matter particles. This is the ‘Stäckel Fudge’ (Binney 2012a),
which involves using for an arbitrary potential formulae that are
strictly valid only for Stäckel’s separable potentials (Stäckel 1893).
Recently Vasiliev (2018) has released a numerical implementation
of the Stäckel Fudge that is highly optimized for speed and is
complemented by efficient code for solving Poisson’s equation
for the potential generated by an arbitrary axisymmetric mass
distribution. Sanders & Binney (2016) extended the Stäckel Fudge
to non-axisymmetric potentials that have no figure rotation.

Early applications of action-based DFs were restricted to mod-
elling the kinematics of solar-neighbourhood stars in given Galactic
potentials (Binney 2010; Binney & McMillan 2011; Binney 2012b;
Bovy & Rix 2013). The arrival of the Stäckel Fudge opened
the way for global modelling, including imposition of the self-
consistency condition. Binney (2014) generalized the isochrone
model (Hénon 1960) to flattened systems, and Piffl, Penoyre &
Binney (2015) presented a model disc galaxy in which populations
of stars spanning a range of ages self-consistently generate the
potential jointly with a realistic population of dark matter particles.
Using models of the Fornax dSph in which the potential is self-
consistently generated by stars and dark matter, Pascale et al. (2018)
ruled out the possibility that the phase-space distribution of the dark
matter at the centre of this dark matter dominated system has the
cuspy structure that is predicted by cosmological simulations that
contain only dark matter.

Central to the art of modelling stellar systems with action-based
DFs is a library of analytic functions f(J) that can be employed for
the DFs of individual components. Binney (2010) introduced a form
of the ‘quasi-isothermal’ DF, which, refined by Binney & McMillan
(2011), has been extensively used to model our Galaxy’s discs. Posti
et al. (2015) and Williams & Evans (2015a) introduced a family of
DFs f(J) that yield self-consistent models that have two-power-law
density profiles which, inter alia, can closely match the models
of Jaffe (1983), Hernquist (1990), and Navarro, Frenk & White
(1996b; NFW). Cole & Binney (2017) introduced a modification of
the Posti et al. (2015) DFs that flattens the models central cusp into
a core by making the central phase-space density finite.

To model a dSph, Pascale et al. (2018) had to introduce a DF
f(J) that produces systems with exponential rather than power law
outer density profiles. The purpose of this paper is to explore in a
general way models in which the stellar component is represented
by this DF. In Section 2, we establish our notation. In Section 3.1,
we explore the dependence of the observable properties of single-
component models on the DF’s parameters. In Section 3.2, we
embed these models in a dark halo and explore the dependence of the
observables on the degree of dark matter domination. In Section 3.3,
we add central massive black holes to the models. In Section 4.1,
we show that the density profiles of several well observed globular
clusters can be accurately fitted by the models. For each cluster
we display four models that differ markedly in their kinematics. In
Section 4.2, we use the new DF to fit observations of the dSphs
Carina, Leo I, Sculptor, Sextans, and Ursa Minor. In the case of
Sculptor our model assigns distinct phase-space distributions to two
populations of observationally distinguishable stars and a separate
component to the dark matter halo. Section 5 concludes.

2 F(J) MODELS WITH MULTIPLE
C O M P O N E N T S

Throughout this paper DFs are normalized to have unit integral over
phase space∫

d3q d3p f = 1, (1)

where (q, p) is any system of canonical coordinates. Let fi(J) be
such a DF for the i-th component of a composite stellar system.
Sometimes we require a system’s luminosity density, at other times
we require its mass density. Any such phase-space density can be
obtained by multiplying f by an appropriate dimensional factor Q;
for example, to obtain the dark matter mass density we multiply the
DF of dark matter by the total dark matter mass, and to obtain the
g-band luminosity density of a stellar component we multiply fi by
the component’s total g-band luminosity.

The real-space mass densities are

ρi(x) = Mi

∫
d3v fi(J). (2)

The line-of-sight velocity distributions (hereafter LOSVDs) are

Li(x⊥, v||) = Mi

∫
d2v⊥dx|| fi(J)∫

dx|| ρi(x)
, (3)

where || and ⊥ denote components parallel and orthogonal to the
line of sight, respectively.

Evaluation of equations (2) and (3) requires the mapping between
(x, v) and (θ , J), which depends on the models gravitational
potential �, which is related to ρ i via the Poisson equation
∇2� = 4πG

∑N

i=0 ρi , with G the gravitational constant. We rely on
the Stäckel Fudge as implemented in the software library ‘action-
based galaxy modelling architecture’ (AGAMA1) that is described
in Vasiliev (2018), where one can find an extensive analysis of the
extent to which action values vary along numerically integrated
orbits. The variation exceeds ∼2 per cent only on orbits that have
been trapped by a resonance. We use AGAMA additionally to solve
for self-consistently generated potentials and to compute moments
of DFs. AGAMA provides an optimized interative procedure to
construct a self-consistent solution, which takes at most less than 4
min using an eight core machine (for details, see Vasiliev 2018).

1https://github.com/GalacticDynamics-Oxford/Agama

MNRAS 488, 2423–2439 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/488/2/2423/5519235 by guest on 28 M
ay 2023

https://github.com/GalacticDynamics-Oxford/Agama


Models for dSphs and globular clusters 2425

Figure 1. Reference, one component, isotropic model (α = 0.5, η = 0.75).
From top to bottom, anisotropy parameter, slope of the logarithmic density,
density, and projected density are plotted against radius. In the bottom two
panels ρ̃iso(r) ≡ ρiso(r)/ρiso(rc,�) and ˜	iso(R) ≡ 	iso(R)/	iso(rc,�), where
ρiso and 	iso are, respectively, the density and projected density and rc,� is
the core radius, such that γ�(rc,�) = − 1

2 .

3 D I S T R I BU T I O N FU N C T I O N S F O R DWA R F
S P H E RO I DA L S A N D G L O BU L A R C L U S T E R S

We define Jr, Jφ , and Jz as the radial, azimuthal, and vertical actions,
respectively, and, following Pascale et al. (2018), use the DF

f�(J) = f0 exp

[
−
(

k(J)

J0,�

)α]
, (4)

with

k(J) ≡ Jr + ηφ |Jφ | + ηzJz. (5)

The factor

f0 = ηφηzα

(2πJ0,�)3�(3/α)
, (6)

where � is the gamma function, normalizes f�(J) (equation 1).
This DF produces potentially anisotropic components with density
distributions that have cores and at large radii can be truncated in
an adjustable way.

We restrict to spherical models by fixing ηz = ηφ ≡ η. In
a spherical potential, Jφ and Jz are related to the total angular
momentum L by L ≡ |Jφ | + Jz, so equation (5) reduces to

k(J) = Jr + η(|Jφ | + Jz) = Jr + ηL. (7)

We define the stellar core radius rc,� as the radius where

γ� ≡ d ln ρ�

d ln r
= −1

2
. (8)

We define the half-mass radius rh to be the radius of the sphere
containing half of the stellar mass, and the effective radius Re to be
the radius on the plane of the sky that contains half of the projected
mass.

With σ t and σ r the velocity dispersions in the tangential and
radial directions, respectively,

β ≡ 1 − σ 2
t

2σ 2
r

(9)

measures the amount of velocity anisotropy. Isotropic velocity
distributions correspond to β = 0, tangentially biased ones to β

< 0 and radially biased ones to 0 < β ≤ 1.
We briefly comment on the physical meaning of the relevant free

parameters of the DF (4) when the latter is multiplied by the stellar
mass M�.

(i) J0, �: the action scale that naturally defines the length-scale

r0,� = J 2
0,�

GM�

(10)

and the velocity scale

v0,� = GM�

J0,�

. (11)

Any pair among M�, J0,�, r0,�, and v0,�, sets the models physical
scales and can be adjusted to match some physical property of a
target system (for instance, the total mass or the central velocity
dispersion).

(ii) α: a non-negative, dimensionless parameter that mainly
regulates the models density profile.

(iii) η: a non-negative, dimensionless parameter that mainly con-
trols the radial or tangential bias of the model velocity distribution;
models sharing the parameters (α, η) are homologous.

In the case of spherical symmetry (ηφ = ηz), the DF (4) can
be considered a generalization of the spherical anisotropic Michie–
King DF f(E, L). Dealing with actions J rather than (E, L) facilitates
extension to multicomponent and flattened models (Binney 2014).
Models generated by the DF (4) lack rotation, but the model can be
set rotating without changing the density distribution by adding a
DF that is odd in Jφ = Lz.

3.1 Spherical one-component models

Fig. 1 plots the general properties of a nearly isotropic model,
obtained with (α, η) = (0.5, 0.75). Panel a shows that the model is
almost isotropic along the whole radial extent, with |β| ≤ 0.1 out to
r � 30rc,�. Panel c shows that the density distribution is cored, so γ �

� 0 near the centre, and is exponentially truncated farther out, so γ �

� −3 at r � rh (panel b). The fact that an almost isotropic model is
obtained when η = 0.75 can be explained as follows. Since the DF
fiso(J) of an isotropic model can depend on only the Hamiltonian H,
it will satisfy

∂fiso(J)

∂L

/
∂fiso(J)

∂Jr

= �L

�r

, (12)

where �L = ∂H/∂L and �r = ∂H/∂Jr are, respectively, the tangential
and radial frequencies. We expect �L/�r to be a smooth function
of J, ranging from 1/2 for small actions (where � is almost simple

MNRAS 488, 2423–2439 (2019)
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Figure 2. One-component models with, from left to right, α = 0.5, 1, 2. Orange, blue, red, and green curves refer to models with η = 0.35, 0.75, 1, and 2,
respectively. Top: anisotropy parameter. Centre: ratio between model normalized density and normalized density of the isotropic model (Fig. 1). Bottom: same
as centre row, but for surface density. In the left column we show the isotropic reference model (α, η) = (0.5, 0.75) only in the top panel (dashed blue curve).
Distances are normalized to the core radius rc,�. We define ρ̃(r) ≡ ρ(r)/ρ(rc,�) and ˜	(R) ≡ 	(R)/	(rc,�). ρ̃iso and ˜	iso are the density and surface density
profiles of the isotropic model, respectively (Fig. 1).

harmonic) to 1 for large actions (where � is almost Keplerian).
However, the DF (4) is such that

∂f�(J)

∂L

/
∂f�(J)

∂Jr

= η, (13)

independent of the actions. The choice η � 0.75 reasonably ensures
a good compromise between the expected �L/�r in the two regimes
of small and large actions.

Figs 2 and 3 show how α and η affect the models anisotropy and
density profiles by comparing them with those of the reference
isotropic model. The parameter η mainly regulates the orbital
anisotropy (Fig. 2 top row). Models are isotropic when r � rc,�

because no model with a cored density distribution can be radially
anisotropic inside the core (An & Evans 2006, Ciotti & Morganti
2010). In the outer regions, a model can be either tangentially or
radially biased. Anisotropy is mildly enhanced by increasing α:
tangentially biased models become more tangential and radially
biased models become more radial (Fig. 3 top row).

Let the normalized density profile be ρ̃ ≡ ρ/ρ(rc,�) and the
normalized surface density profile be 	̃ ≡ 	/	(rc,�), and call these
quantities for the isotropic model ρ̃iso and 	̃iso, respectively. Then
the middle and bottom rows of Figs 2 and 3 show, respectively, the
profiles of ρ̃/ρ̃iso and 	̃/	̃iso. We see that α and η are degenerate
in determining the density profile. Increasing α truncates the DF
(4) more rapidly for large actions, while decreasing η encourages

orbits with high angular momentum. In either case, the outer density
profile steepens. Increasing η favours eccentric orbits and thus
makes the density distribution slightly more cuspy (Fig. 2 middle
row). Conversely, very tangentially biased models may present a
density minimum at the centre (Fig. 3 middle left panel).

One could make η a function of J to achieve greater flexibility
in the anisotropy (see Williams & Evans 2015b), but the simple
choice of constant η provides significant flexibility (Figs 2 and
3), and avoids the introduction of new free parameters. We find
empirically that models with η > 2 or α > 2 have properties very
similar to models with η = 2 or α = 2, so we do not show them
here.

Fig. 4 shows how the physical scales rh/r0,�, ρrc,� /ρ0,�, and
	rc,� /	0,� vary with (α, η). Here ρrc,� ≡ ρ(rc,�), 	rc,� ≡ 	(rc,�),
ρ0,� ≡ M�/r

3
0,�, and 	0,� ≡ M�/r

2
0,�. When η is decreased at fixed

α, the model becomes more compact (middle row of Fig. 2), so
rh/r0,� decreases and ρ/ρ0,� increases. Changing α at fixed η affects
the physical scaling only when α � 0.5: in this regime, rh/r0,�

shortens (Fig. 4a) and models are slightly more cuspy, moving ρrc,�

to higher values.
Fig. 5 plots the line-of-sight velocity dispersion profiles of models

with different values of α and η, together with LOSVDs at three
radii. The shape of a LOSVD encodes the velocity anisotropy: a
flat-topped LOSVD indicates a tangentially biased system, while
a radially biased system yields peaky LOSVDs. A wide LOSVD

MNRAS 488, 2423–2439 (2019)
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Models for dSphs and globular clusters 2427

Figure 3. Same as Fig. 2 but now in each column η is fixed to η = 0.35, 0.75, and 2, from left to right. Blue, green, red, and orange curves mark models with
α = 0.5, 1, 1.5, and 2, respectively. In the second column, we show the isotropic reference model (α = 0.5, η = 0.75) only in the top panel (dashed blue curve).
The definitions of ρ̃(r), ˜	(R), and rc,� are as in Fig. 2.

reflects highly populated nearly circular orbits: note how models
with η = 0.35 generate the widest LOSVDs. The model with (α,
η) = (2, 0.35) is an example of a model with extreme tangential
anisotropy, in which the LOSVD is double peaked around plus and
minus the circular speed. This generates the flattest line-of-sight
velocity dispersion profiles (Fig. 5, left column).

3.2 Spherical two-component models

We focus now on two-component spherical models, consisting of
a stellar population with DF (4) and a dark halo with DF fdm(J).
The adiabatic invariance of the actions makes them natural tools
with which to analyse the addition of a stellar component to a dark
halo. In the simplest scenario, gas falls into a dark halo over many
dynamical times, so the dark halo contracts adiabatically. In this
case the dark halo’s present configuration can be computed from
its original DF f(J) without knowing how the rate of accretion of
baryons varied over cosmic time. The dark halo is then predicted
to have a very cuspy central structure, comprising particles with
very small velocities. So, it would not be surprising if fluctuations
in the gravitational potential generated by the baryons before most
of them were driven out by supernovae had upscattered the least
energetic dark matter particles and thus erased the cusp (Navarro,
Eke & Frenk 1996a; Governato et al. 2012; Nipoti & Binney 2015;
Read, Walker & Steger 2019). For this reason we explore models
with a dark matter DF that, depending on the value of a parameter
Jc,dm, generates either a classical cuspy halo or a cored halo. This

DF is (Cole & Binney 2017; Pascale et al. 2018)

fdm(J) = gc(J)gNFW(J)T (J), (14)

where

gc(J) =
[(

Jc,dm

h(J)

)2

− μ
Jc,dm

h(J)
+ 1

]−5/6

, (15)

gNFW(J) = gdm

J 3
0,dm

[1 + J0,dm/h(J)]5/3

[1 + h(J)/J0,dm]2.9
, (16)

and

T (J) = exp

[
−
(

h(J)

Jt,dm

)2]
. (17)

Here h(J) is a homogeneous function of the actions of degree one

h(J) = Jr + hφ |Jφ | + hzJz. (18)

The core action Jc,dm sets the spatial extent of the core in the density
distribution, while μ is a dimensionless parameter used to make
the dark matter mass independent of Jc,dm (Cole & Binney 2017).
This convention is motivated by the idea that non-zero Jc,dm arises
through dark matter particles being upscattered but not ejected
from the halo. Jt,dm is the truncation action, which serves to make
normalization of the DF possible (equation 1).

We set the dimensionless parameters hφ and hz to a common value
h so the DF (14) generates spherical models. In this case we cannot
give an analytic expression for the constant gdm, which normalizes

MNRAS 488, 2423–2439 (2019)
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Figure 4. Measures of concentration versus α for one-component models
with η = 0.35, 0.75, 1, and 2. Top: rh/r0,�. Centre: ρrc,� /ρ0,�. Bottom:
	rc,� /	0,�. Orange, blue, red, and green curves refer to models with
η = 0.35, 0.75, 1, and 2, respectively. r0,� is defined by equation (10),
ρ0,� ≡ M�/r

3
0,�, 	0,� ≡ M�/r

2
0,�, ρrc,� ≡ ρ(rc,�), and 	rc,� ≡ 	(rc,�). The

blue circle marks the position of the isotropic model.

fdm(J) to unity. However, it can be readily computed following
appendix A of Pascale et al. (2018). The total dark matter mass Mdm

together with the action scale J0,dm define via equations (10) and
(11) a scale radius r0,dm and a scale velocity v0,dm.

Posti et al. (2015) showed that, in isolation, the DF (16) generates
NFW-like models. The factor (15) was added by Cole & Binney
(2017) to enable the DF to describe cored NFW models.2 The factor
(17) was introduced by Pascale et al. (2018).

As in Pascale et al. (2018), we define the dimensionless parame-
ters

J̃c,dm ≡ Jc,dm/J0,dm, (19)

J̃0,dm ≡ J0,dm/J0,�. (20)

J̃t,dm = Jt,dm/J0,dm, (21)

and

M̃dm ≡ Mdm/M�. (22)

Models sharing α, η, J̃c,dm, J̃0,dm, J̃t,dm, M̃dm, μ, and h are
homologous. The physical scales can be set a posteriori by choosing

2The DF (16) is singular for ||J|| → 0, and equation (15) compensates for
such divergence, making the central phase-space density finite.

any pair among Mdm, J0,dm, r0,dm, and v0,dm. We introduce the
logarithmic slope of the dark matter density γ dm ≡ dln ρdm/dln r,
and define the halo scale radius rs, dm from the relation

γdm(rs,dm) = −2, (23)

as for the classical NFW model. The truncation and core radii are
defined by

γdm(rt,dm) = −3, (24)

and

γdm(rc,dm) = −1

2
, (25)

respectively.

3.2.1 Impact of stars on dark haloes

We consider representative stellar components with several orbital
anisotropies, and examine the effects that cuspy or cored dark haloes
and stars have on each other when they cohabit in the potential they
jointly generate. We set α = 0.5 and select stellar DFs (4) that gen-
erate, in isolation, tangential, isotropic, and radially biased models,
by fixing η = 0.35, 0.75, and 1, respectively (Section 3.1). For fixed
Mdm, we vary M� to control the relative mass contribution M̃dm.
For both cuspy and cored haloes, and for each stellar anisotropy,
we consider three groups of models, with M̃dm = 104, 103, 102. We
refer to them as DMi-NFW for the NFW haloes, and DMi-Cored, for
the cored haloes, with i = 1, 2, 3, respectively. As M̃dm decreases,
the stellar component becomes more massive. The chosen values
of M̃dm generate models in which the dark halo strongly dominates
over the stars in the central parts (DM1, M̃dm(rh) � 20), models
in which stars and dark matter have similar density in the central
parts (DM2, M̃dm(rh) � 1), and models in which the stars dominate
in the central parts (DM3, M̃dm(rh) � 0.1). In all groups the dark
matter dominates far out. We do not explore different dark-halo
anisotropies (for details, see Piffl et al. 2015) but set h = 1, which
makes the dark halo slightly radially biased. Also, J̃0,dm = 3000,
which ensures rs, dm/rh > 1 in all cases.

The exponential cut-off (17) introduces much freedom in setting
J̃t,dm, which, as long as it is large enough, does not affect the
halo’s central properties. Thus, we standardize on J̃t,dm = 20, which
truncates the halo density sufficiently far from the scale radius that
it has no impact in the observationally accessible region (rt, dm/rs, dm

� 30). Once J̃t,dm and h have been set for an NFW model, the DF’s
physical scales follow unambiguously – Table 1 lists the values
of rs,dm/r0,dm and vc,dm(rs,dm)/v0,dm (i.e. the halo circular speed
computed at rs, dm). The quantities rs,dm and vc,dm(rs,dm) are available
from cosmological simulations, and the pair (r0,dm, v0,dm) can be
easily computed from Table 1 to scale any f(J) NFW-model on to the
required scales. For the cored models we chose J̃c,dm = 0.02, which
implies μ = 0.2117. The resulting core radius is rc,dm � 0.1rs,dm.
Table 2 summarizes the relevant parameters used to generate the
presented models.

Fig. 6 plots, for our two-component models, the profiles of the
dark matter (black curves) and stars (coloured curves), and also
the dark matter logarithmic density slopes γ dm (long-thin bottom
panels). Models with NFW haloes are plotted in the top row, while
the bottom row shows models with cored haloes. The left column
shows models with tangentially biased stellar components, while
the rightmost column shows models in which the stellar component
is radially biased. Dotted (i = 1), dashed (i = 2), and full (i =
3) black lines show the dark haloes of models with increasingly
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Models for dSphs and globular clusters 2429

Figure 5. Kinematic observables in one-component models. Orange, red, and blue curves are for models with η = 0.35, 0.75, and 2, respectively. Panels in
the left column show line-of-sight velocity dispersions, normalized to σlos,Re ≡ σlos(Re), when α = 0.5, 1, and 2. The other three panels show LOSVDs with
the velocity scale normalized to vc, R, the circular speed at the radius of observation R, which increases from left to right: R = 5 × 10−1 Re, R = Re, and R =
3Re. The value of α increases from top to bottom: α = 0.5, 1, and 2.

Table 1. Scale radii and corresponding circular speeds for one-component
NFW haloes expressed in terms of the characteristic radius and velocity that
follow from the halo’s DF ( Equations 10 and 11 with � replaced by dm).
equation (23) defines rs,dm.

rs,dm/r0,dm vc,dm(rs,dm)/v0,dm

0.67 0.40

Table 2. Parameters used to generate the representative, two-component
models: h, dimensionless parameter regulating the anisotropy of the dark
halo; ˜J0,dm and ˜Jt,dm as in equations (20) and (21); α and η, defined by
the DF (4); ˜Mdm as in (22); ˜Jc,dm, as in equation (19); μ, dimensionless
parameter used to make the normalization of the DF (14) independent of
Jc,dm.

h ˜J0,dm ˜Jt,dm α ˜Mdm η

1 3000 20 0.5 103–104–105 0.35–0.75–1
NFW models Cored models
( ˜Jc,dm, μ) = (0,0) ( ˜Jc,dm, μ) = (0.02,0.2117)

massive stellar components. Whereas the dark haloes differ only
modestly between i = 1 and i = 2, once the case i = 3, M̃dm = 102

is reached, the stars’ gravity enhances the central density of the halo
by a factor ∼10 in the case of an NFW halo, and by a larger factor in
the case of a cored halo. In all the i = 3 models, the halo-steepness
parameter hangs around −2 over a wide range of radii interior to
rs,dm with the consequence that the scale radius rs,dm of these models
is not uniquely defined. The steepening of γ dm can reduce the core
radii rc,dm of cored models by a factor 10. The ratio rc,dm/rh also
reduces, by a factor ∼2. This reduction diminishes the extent of the
stellar system that is dominated by the halo’s core. Radially biased
stellar components contract their dark haloes more strongly than

tangential biased ones because radial bias increases the central star
density (Figs 2–4).

3.2.2 Impact of dark haloes on stars

Figs 7 and 8 show, respectively, the impact NFW and cored
haloes have on the kinematics of the stellar component. Again
dotted, dashed, and full curves relate to increasingly massive stellar
components (i = 1, 2, 3), and black, grey, and light grey curves
relate to tangentially biased, isotropic, and radially biased stellar
components. Addition of a dark halo changes the velocity anisotropy
of the stellar component (left column) by decreasing the ratio
�L/�r at a given radius, and it is this ratio which sets the value
of η that corresponds to isotropy (equations 12 and 13). Since
adding a halo diminishes the critical value of �L/�r, at fixed η

it increases radial bias (broken curves above full curves in left
columns of Figs 7 and 8). This effect is most pronounced at r

 rh, where the potential of a one-component model is almost
Keplerian.

These changes in β make the LOSVD at R = 3Re, shown in
the central columns, more peaky, but the effect is quite weak and
would be very hard to detect observationally. The right columns plot
σ los(R), which is significantly flattened by the addition of a massive
dark halo, a consequence of adiabatic compression of the envelope
of the stellar system by the very extended dark matter distribution.

3.3 Effects of a central massive black hole

Here we explore how stellar components with the DF (4) are
modified by a central massive black hole (hereafter BH). We present
models with and without a dominating dark halo. The potential of
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2430 R. Pascale et al.

Figure 6. Density profiles of models with both stellar and dark matter components with radii normalized to the scale radius r̃s of the corresponding one-
component halo. Models shown in the upper row have NFW haloes, while models shown in the lower row have cored haloes. Table 2 lists the models’
parameters. The stellar mass fraction increases along the sequence dotted, dashed, and full curves. Dark matter profiles are plotted in black while stellar profiles
are coloured. Squares indicate the half-mass radii of the stellar components, while in the lower row the black circles mark the dark matter core radii, defined
by γ dm(rc,dm) = −1/2.

the BH is taken to be that of a Plummer model

�BH = − GMBH√
r2 + a2

, (26)

with a too small to impact any observable.
We choose two representative stellar components with α = 0.5

that, in isolation, are quasi-isotropic (η = 0.75) and radially biased
(η = 1). When a dark halo is included, its parameters are those
of the DM2-NFW model (Section 3.2.1, Table 2). We consider BH
masses of μBH ≡ MBH/M� ≡ 0.001, 0.0017, 0.005 (Magorrian et al.
1998). The BH’s radius of influence Rinfl is the projected distance
on the plane of the sky within which the BH’s gravity cannot be
neglected. We define it such that (Binney & Tremaine 2008)

σlos,�(Rinfl) =
√

GMBH

Rinfl
, (27)

where σ los,� is the stars line-of-sight velocity dispersion. Table 3
lists the parameters of our models, including Rinfl.

Fig. 9 plots stellar properties of the models without dark haloes.
The left column plots three three-dimensional diagnostics: from top
to bottom logarithmic slope γ �, density ρ, and anisotropy β. The
right column plots projected quantities: from top to bottom loga-
rithmic slope γ �, 	 ≡ dln 	/dln R, surface density 	 and velocity

dispersion σ los in units of the line-of-sight velocity dispersion at Re

in the corresponding one-component model. Solid and dashed lines
relate to models with η = 0.75 (∼isotropic) and 1 (radially biased),
respectively. Values of μBH increase from bottom to top, with orange
curves showing models without BHs. Black points mark values of
Rinfl.

It is evident that Rinfl is essentially proportional to μBH and
insensitive to η (Table 3). It is also evident that on the sky the
region that is significantly affected by the BH is much smaller
than the corresponding three-dimensional region. In the latter, the
stellar density becomes very cuspy, with γ � approaching −1.5 as
predicted by previous works (Quinlan, Hernquist & Sigurdsson
1995; Binney & Tremaine 2008). At Rinfl the logarithmic slope of
the projected density profile γ �, 	(Rinfl) � −0.13 in the model with
the highest μBH. The central divergence of the line-of-sight velocity
dispersion is σ los � r−1/2, as expected, but sets in only well inside
Rinfl. The bottom left panel of Fig. 9 shows that the models remain
isotropic at their centres (Goodman & Binney 1984).

Fig. 10 plots the same quantities as Fig. 9 but for the models with
a dominant dark halo. In a model with both stars and a dark halo, the
slopes of the cusps that the BH creates in each component are the
same (ρ� ∼ r−3/2, ρdm ∼ r−7/3, Quinlan et al. 1995) as those created
by BHs in single-component models. The main effect of adding a
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Models for dSphs and globular clusters 2431

Figure 7. Stellar kinematics in two-component models with NFW dark matter haloes (equation 14). The stellar mass fraction increases along the sequence
dotted, dashed, and full curves. All models have α = 0.5 while η increases from top to bottom (η = 0.35, 0.75, 1) so the top and bottom models are tangentially
and radially biased, respectively. The left column shows the anisotropy parameter, the centre column shows the LOSVD at R = 3Re normalized to the local
velocity dispersion, and the right column shows σ los normalized to its value at Re. In all models ˜J0,dm = 3000, ˜Jt,dm = 20, ˜Jc,dm = 0, μ = 0, h = 1, and α =
0.5 (Table 2).

Figure 8. As Fig. 7 except for models with cored haloes (see Table 2).

dark halo is to increase the stellar velocity dispersion before addition
of a BH, with the consequence that the dynamical impact of the BH
is confined to smaller radii than in a model without a dark halo; Rinfl

shrinks by a factor 2–3 (Table 3). The change in the outer stellar
velocity distributions (Fig. 10, bottom panel, left column) is only
due to different �L/�r set by the dark halo (see Section 3.2.2).

Fig. 11 shows stellar LOSVDs for models without dark matter,
computed at both R = Rinfl (left column) and R � 10−3 Re. There
are substantial differences between the LOSVDs with different μBH

only at the smaller radius.
These models underline the need for exquisitely accurate surface

brightness profiles and velocity measurements to well inside Rinfl if
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2432 R. Pascale et al.

Table 3. Main parameters of models with BHs. The stellar DF has the form
(4) and the BH’s potential is given by (26). If the model has dark halo,
its (NFW) DF is given by (14). All models have α = 0.5 and η controls
the stellar anisotropy. The BH-to-stellar mass fraction is μBH = MBH/M�.
Equation (27) defines the radius of influence Rinfl, which is given as a fraction
of the stellar effective radius. For models with dark matter, the quantities
defined by equations (21), (22), and (20) are ˜Jt,dm = 20, ˜Mdm = 1000, and
˜J0,dm = 3000. M� and J0,� can be scaled to any values of interest.

No dark matter With dark matter
η μBH Rinfl/Re Rinfl/Re

0.005 2.81 × 10−2 9.67 × 10−3

0.75 0.0017 9.87 × 10−3 3.31 × 10−3

0.001 6.02 × 10−3 2.00 × 10−3

0.005 2.43 × 10−2 9.94 × 10−3

1 0.0017 8.60 × 10−3 3.40 × 10−3

0.001 5.24 × 10−3 2.05 × 10−3

intermediate massive BHs (IMBHs) are to be detected in GCs and
dSphs. In GCs, Rinfl is often already close to the smallest currently
resolvable spatial scale. For instance: if ω Centauri, one of the largest
GCs with rh � 5 arcmin (Harris 1996) and a good candidate to host
an IMBH (van der Marel & Anderson 2010), contained a BH with
μBH = 0.005, Rinfl would be of the order of 10 arcsec (assuming
rh � Re, Table 3). Moreover, extreme crowding, the problem of
locating the centre of a system, and the possibility that any inward
increase in the velocity dispersion is driven by mass segregation
rather than a BH, all make it hard to build a convincing case for an
IMBH in a GC (Zocchi, Gieles & Hénault-Brunet 2019). We have
shown that the dark haloes of dSphs make the problem harder in
dSphs by driving Rinfl inwards.

4 A PPLICATION TO DATA

We have indicated that the DF (4) has all the required features to
model the typically observed properties of dSphs and GCs. In this
section we justify this statement.

Fitting models to data for a specific object involves careful
consideration of issues with the data such as degradation by
seeing, foreground contamination, selection effects associated with
crowding or field-of-view limitations and selection of bright stars
for spectroscopy. Consequently, presentation of a thorough fitting
exercise of a single system would shift the focus from the DF (4)
to the fitted system. Presentation of the same exercise for several
diverse systems is not feasible in a single paper. Hence we do not
attempt detailed fits. Instead, we plot alongside data the predictions
of a variety of models in the hope of convincing readers that there
are models within the set explored that would provide acceptable
fits to the data after correction of all relevant observational biases.

4.1 Globular clusters

We chose four representative GCs: ω Centauri, NGC 5904, NGC
5024, and NGC 7089. To demonstrate the flexibility of the DF (4),
we fit the surface brightness profiles of each GC with four one-
component models, each with a different velocity anisotropy.

Cluster distances are taken from the Harris (1996) catalogue, the
surface brightness profiles from the catalogue of Trager, King &
Djorgovski (1995), while the line-of-sight velocity dispersion pro-
files from Baumgardt et al. (2019). The surface brightness data
sets consist of triplets of {Ri, I

obs
i , δIi}, with i = 1, ..., N, where

Ri is the i-th bin’s average radius and Ii and δIi are its surface

brightness and error. The errors are computed following section 2.2
of McLaughlin & van der Marel (2005). The line-of-sight velocity
dispersion profiles consist of triplets {Rk, σ los,k, δσ los,k}, with k =
1, ..., M, where Rk is the bin’s avarage radius, while σ los,k and δσ los,k

are its line-of-sight velocity dispersion and error, respectively.
We present models with η = 0.5, 0.75, 1, 1.5, to cover a wide

range of anisotropies (see Section 3.1). To determine the best-fitting
model, we minimize the chi squared

χ2 ≡
N∑

n=1

(
Imod
i (Ri) − I obs

i

δIi

)2

. (28)

Since equation (28) does not include the fit to the kinematics, the
only free parameters to be constrained by data are α, r0,�, and a
normalization parameter Q ≡ M�/Υ�, where Υ� is the mass-to-
light ratio. The mass scale M� of each model is then determined by
fitting the observed GC velocity dispersion profile only.

Given the few free parameters, we adopt a uniform grid search
method to find the minimum of (28). The model surface brightness
Imod
i (Ri) is computed assuming a constant mass-to-light ratio Υ�.

The value of Υ� is unambiguously determined by the requirement
that the model provides the total luminosity.3

The upper panels of Fig. 12 show that for all four values of
η one can fit the very precise photometric data almost perfectly,
even though the data extend over nearly five orders of magnitude in
surface brightness. As measure of the goodness of the fits, Fig. 12
lists the values of the reduced chi square, χ̃2 ≡ χ2/d.o.f., where
d.o.f. = N − 2. The only slight misfit is at the centre of NGC 5904,
where a mild cusp in the data cannot be reproduced by the DF
(4). The lower panels of Fig. 12 show the line-of-sight velocity
dispersion profiles of the models scaled to match the observed
profiles. The shape of the line-of-sight velocity dispersion profiles
of each GC is well reproduced by at least one model. The parameters
of these models are listed in Table 4.

While we have demonstrated that the application of the DF
(4) to GCs is promising, our one-component models can only be
regarded as starting points for a much more sophisticated modelling
effort. All GCs have experienced significant mass segregation.
Consequently, stars of different masses and evolutionary stage will
be distributed differently in action space. In particular, more massive
stars will be more tightly clustered towards the origin of action space
than less massive stars. Black holes and neutron stars will be most
tightly clustered around the origin, followed by horizontal-branch
stars, followed by turn-off stars. Low-mass main-sequence stars will
extend furthest from the origin of action space. Each stellar type
should have its own DF f(J) and be an independent component of a
composite model (Gieles & Zocchi 2015; Zocchi et al. 2016). The
observables such as surface brightness and line-of-sight velocity
dispersion would be predicted by weighting these components
according to their luminosity. Many GCs show significant signs
of rotation (Bianchini et al. 2018), and to reproduce this aspect of
the observations we would need to include in the DF a component
odd in Jφ (Binney 2014, see also Jeffreson et al. 2017 who used a
different family of action-based DFs to reproduce flattened, rotating,
and almost isotropic GCs).

3Given a model surface brightness profile properly length-scaled, the
equation

∂χ2

∂Q
= 0 (29)

can be solved analytically.
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Models for dSphs and globular clusters 2433

Figure 9. Impact of a central black hole of mass μBH ≡ MBH/M� on two models with no dark matter. A model with η = 0.75 is shown by full curves while
dashed curves show the radially biased model with η = 1. Both models have α = 0.5. Colours indicate BH mass fraction: orange for no black hole, greys
for μBH = 0.001, 0.0017, 0.005, respectively. Panels in the left column show from top to bottom: logarithmic slope of the stellar density profile γ �; stellar
density; anisotropy parameter. Panels in the right column show: logarithmic slope of the projected density profile γ �,	 ; projected density; line-of-sight velocity
dispersion. Black points mark values of Rinfl. Densities are normalized to ρrh ≡ ρ(rh), surface densities to 	Re ≡ 	(Re), and line-of-sight velocity dispersions
to σ one C

los,Re
, the line-of-sight dispersion of the model with no BH, computed at R = Re.

4.2 Dwarf spheroidal galaxies

Pascale et al. (2018) demonstrated that the DF (4) yields very
accurate models of the Fornax dSph. Here we model five further
dSphs: Carina, Leo I, Sculptor, Sextans and Ursa Minor, with
the aim to prove that the use of the DF (4) can be extended to
the whole population of classical dSphs. We present spherical,
anisotropic models, with separate DFs for the stellar and the halo
components, which just fit the dSph number density profiles, given a
certain orbital anisotropy. For Sculptor we present three-component
models, which have distinct DFs for the red and blue horizontal
branch stars and the dark matter halo.

The projected number density profiles of the Carina, Leo I,
Sextans, and Ursa Minor dSphs have been taken from Irwin &
Hatzidimitriou (1995), while their line-of-sight velocity dispersion
profiles are from Walker et al. (2007). The projected number
density and line-of-sight velocity dispersion profiles of the distinct
populations of Sculptor are from Battaglia et al. (2008). We adopt
distances from Mateo (1998).

4.2.1 Carina, Leo I, Sextans, and Ursa Minor

Our analysis proceeds essentially as described in Section 4.1.
The photometric contribution is now computed from triplets
{Ri, n

obs
�,i , δn

obs
�,i }, where nobs

�,i and δnobs
�,i are a number density and

its error. The predicted number density, nmod
� , is computed from the

surface density of mass assuming a constant mass per detected star,
m. The kinematics is computed from triplets {Rk, σ los,k, δσ los,k}.
The stellar component of each dSph is represented by DF (4), with
fixed stellar masses M� (see Table 5). The dark matter haloes are
described by the cuspy DF (14, J̃c,dm = 0). For each dSph with
stellar mass M�, according to estimates of the low-mass end of the
stellar-to-halo mass relation (Read et al. 2017), and to the halo–mass
concentration relation (Muñoz-Cuartas et al. 2011), we fix the dark
matter mass enclosed within the halo scale radius Mdm(<rs,dm), and
the halo scale radius rs,dm, to values predicted by cosmology. The
prescribed values of Mdm(< rs,dm) and rs, dm are obtained by varying
iteratively Mdm and J0,dm (the final values of these parameters are
given in Table 5).
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2434 R. Pascale et al.

Figure 10. Same as Fig. 9 except for models with an NFW dark halo. The green curves in the centre left panel show the density of dark matter. All grey and
black curves refer to the stars.

The upper panels of Fig. 13 show that for all four values of η the
best DF provides an excellent fit to the observed number density
profiles of the four galaxies. The lower panels show the observed
velocity dispersion profiles of the galaxies alongside the predictions
for each value of η.

Table 5 gives the values of the parameters and of χ2 for the
best-fitting models of Carina, Leo I, Sextans, and Ursa Minor. It
also gives the parameters and χ2 for the best-fitting Sérsic (1968)
profile

nS(R) = n0 exp

[
−
(

R

RS

)1/m]
. (30)

Every DF yields a comparable or lower χ2 than does the Sérsic
profile. This is remarkable in as much as (i) fits of both the DF
and the Sérsic profile require searches over just two parameters
in addition to a basic scaling parameter, yet (ii) the DF defines a
complete, dynamically consistent six-dimensional model whereas
the Sérsic profile provides nothing beyond the radial run of density.
Consequently, it can be argued that a dSph is more effectively
described by the parameters of its best-fitting f(J) than by the
parameters of the best-fitting Sérsic profile.

4.2.2 Sculptor

dSphs usually exhibit complex star formation and chemical en-
richment histories. These galaxies seem to experience bursts of
star formation, and the stars formed in each burst are distributed
differently in action space. Since all populations move in a common
potential, observations that are able to distinguish between the
populations have the potential to constrain the system’s gravitational
field more strongly than is possible in a system with only a single
population (Walker & Peñarrubia 2011; Agnello & Evans 2012;
Amorisco, Agnello & Evans 2013).

We model two populations in the Sculptor dSph, with each
population described by the DF (4), and with a separate component
describing a dark matter halo DF (14). The two populations are the
stars on the blue (red) horizontal branch BHB (RHB), which are
less (more) metal rich and more (less) extended spatially.

We will refer to all the parameters belonging to the BHB (RHB)
populations, as ∗BHB (∗RHB) where ∗ = α, η, M�, J0,�. For simplicity
in each model η is the same for both populations and the total stellar
mass MBHB

� + MRHB
� is fixed. We consider two representative cases,

η = 0.75 (slightly radially biased) and η = 1 (radially biased). We
assume a cored dark matter halo described by DF (14; J̃c,dm = 0.02).
As for the other dSphs, we fix the enclosed mass Mdm(< rs,dm) and
the scale radius rs,dm to cosmologically motivated values.
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Models for dSphs and globular clusters 2435

Figure 11. The impact of a BH on LOSVDs in models with no dark matter: upper row an isotropic model (η = 0.75); lower row a radially biased model (η =
1); left column LOSVD at R = 10−3 Re; right column LOSVD at R = Rinfl. Black hole mass fractions from zero to 0.005 are indicated by line type. Velocities
are normalized to the line-of-sight velocity dispersion at the relevant radius, vno BH

R , with R = 10−3 Re, Rinfl, respectively, in the left and right columns. The
orange curves show the LOSVD of the corresponding model with no BH. In this case Rinfl is not defined so we plot the LOSVD at 10−2 Re.

Figure 12. One-component models of globular clusters. From left to right: ω Centauri, NGC 5904, NGC 5024, and NGC 7089. The upper panels show data
and model predictions for surface brightness. Curves show the models that fit the data best for pre-determined anisotropy: η = 0.5 (green), 0.75 (grey), 1 (blue),
and 1.5 (red). The models’ line-of-sight velocity dispersion profiles, scaled to match the observed line-of-sight velocity dispersion profiles (Baumgardt et al.
2019), are shown in the bottom panels. For each model, we report the value of the reduced chi squared χ̃2.
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Table 4. Parameters of the models fitted to GC data. η and α are dimensionless parameters in the DF (4). J0,� is the action scale, while M� is the total mass.
M�/LV is the mass-to-light ratio, with LV the total luminosity in the V band, taken from Harris (1996). χ2 of the best-fitting model is defined by equation (28).
N is number of bins in the observed surface brightness profile.

ω Centauri (N = 51)

η α J0,� (kpc km s−1) M� (105 M) M�/LV χ2

0.5 0.931 2.15 34.8 3.20 84.51
0.75 0.954 2.87 31.7 2.91 68.22

1 1.02 3.78 29.2 2.69 63.88
1.5 1.26 6.59 26.3 2.42 58.40

NGC 5904 (N = 78)
η α J0,� (kpc km s−1) M� (105 M) M�/LV χ2

0.5 0.503 6.70 × 10−2 3.06 1.07 216.92
0.75 0.522 1.08 × 10−1 2.98 1.04 182.09

1 0.543 1.55 × 10−1 2.88 1.00 161.60
1.5 0.605 3.15 × 10−1 2.72 0.95 139.98

NGC 5024 (N = 111)
η α J0,� (kpc km s−1) M� (105 M) M�/LV χ2

0.5 0.464 1.25 × 10−1 2.54 0.98 166.82
0.75 0.480 2.18 × 10−1 2.94 1.13 168.15

1 0.502 3.60 × 10−1 3.30 1.27 172.87
1.5 0.556 8.50 × 10−1 3.96 1.52 181.53

NGC 7089 (N = 82)
η α J0,� (kpc km s−1) M� (105 M) M�/LV χ2

0.5 0.500 2.29 × 10−1 7.83 2.24 60.34
0.75 0.517 3.62 × 10−1 7.85 2.24 50.45

1 0.540 5.55 × 10−1 7.90 2.26 48.77
1.5 0.600 1.14 7.84 2.24 49.58

Table 5. Parameters of two-component models fitted to dwarf spheroidal galaxies. η and α are dimensionless parameters in the DF (4). J0,� is the action scale
while M� is the dSph total stellar mass: 1Ural et al. (2015), 2Weisz et al. (2014), and 3Karlsson et al. (2012). Mdm and J0,dm are the halo total mass and action
scale equation (14). The dark halo DF is cuspy, with ˜Jc,dm = 0. The figure of merit χ2 of the best-fitting model is defined by (equation 28). N is number
of bins in the observed star-count profile. n0, m, and RS are the normalization, Sérsic index, and scale radius, respectively, of the best-fitting Sérsic profile
(equation 30).

Carina (N = 36)
f(J) model Sérsic fit

η α J0,� (kpc
km s−1)

M�

(106 M)
Mdm

(108 M)
J0,dm (kpc

km s−1)
χ2 n0 (n�

kpc−2)
m Rs (kpc) χ2

0.5 0.946 0.677 0.481 8.69 44.58 56.42 14.17 0.813 0.215 57.42
0.75 1.10 1.21 56.88

1 1.33 1.96 57.11
1.5 1.81 3.48 57.90

Leo I (N = 31)
η α J0,� (kpc

km s−1)
M�

(106 M)
Mdm

(109 M)
J0,dm (kpc

km s−1)
χ2 n0 (n�

kpc−2)
m Rs (kpc) χ2

0.5 0.714 0.513 5.52 6.57 174.3 44.03 38.03 0.876 0.182 44.80
0.75 0.860 1.18 44.63

1 0.933 1.74 44.87
1.5 1.34 4.20 45.52

Sextans (N = 56)
η α J0,� (kpc

km s−1)
M�

(106 M)
Mdm

(108 M)
J0,dm (kpc

km s−1)
χ2 n0 (n�

kpc−2)
m Rs (kpc) χ2

0.5 0.594 0.420 0.53 7.94 47.0 47.31 3.33 1.13 0.339 48.54
0.75 0.656 0.828 47.39

1 0.724 1.41 47.40
1.5 0.902 3.33 47.33

Ursa Minor (N = 37)
η α J0,� (kpc

km s−1)
M�

(106 M)
Mdm

(109 M)
J0,dm (kpc

km s−1)
χ2 n0 (n�

kpc−2)
m Rs (kpc) χ2

0.5 1.17 1.54 0.292 1.316 50.7 44.43 3.62 0.665 0.278 42.743
0.75 1.39 2.61 44.82

1 1.32 2.94 46.00
1.5 2.20 6.03 46.42
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Figure 13. Models of dSphs with a stellar component and a dark matter halo. Columns from the left to the right: Carina, Leo I, Sextans, Ursa Minor. Upper
panels show projected number densities together with fits by four models with pre-determined stellar velocity anisotropy: η = 0.5 (green), 0.75 (grey), 1
(blue), and 1.5 (red). The parameters of the models are reported in Table 5. Lower panels show observed line-of-sight velocity dispersions and the models’
predictions. For each model we report the value of the reduced chi squared.

Then the models free parameters are

ξ =
(

αi, J i
0,�,

MBHB
�

MBHB
� + MRGB

�

, J0,dm, Mdm

)
, (i = RHB, BHB).

(31)

We minimize the figure of merit

χ2
tot = χ2

RHB + χ2
BHB, (32)

where χ2 for each population is defined by equation (28).
In view of the higher dimensionality of this problem, we explored

the parameter space using a stochastic search method based on a
Markov Chain Monte Carlo (MCMC) algorithm, with a Metropolis–
Hastings (Metropolis et al. 1953, Hastings 1970) sampler, to sample
from the posterior distribution. We used uninformative, flat priors
on the free parameters (31).

In the upper panels of Fig. 14 squares and circles mark the number
densities of BHB and RHB stars, respectively. The predictions for
these populations of the best-fitting models are shown by blue and
red curves, respectively. The left-hand panel shows the fit provided
by the mildly radially biased model, and the right-hand panel shows
the fit provided by the radially biased model. It is clear that both
three-component models provide excellent fits to the data, and that
also the models predictions on the line-of-sight velocity dispersion
profiles provide an excellent description of the data. Table 6 gives
the models’ parameters.

These simple test cases prove that the extension of the DF (4)
to the whole system of classical dSphs is possible and promising,
whether the galaxy is represented as a single stellar population or
in more sophisticated model that reflects the chemodynamic history
of the system.

5 C O N C L U S I O N S

As we acquire more complete data for galaxies and star clusters,
more sophisticated models are required to fit the data well and to
provide predictions for further observations that can be tested by
extending the available data. Full exploitation of the best current
data requires models that (i) include several components and (ii)
predict not just velocity moments but full LOSVDs. Models that
meet these criteria are readily constructed if we use action integrals
as the arguments of the DF. A self-consistent model that provides a
good fit to a given system can be quickly constructed by allocating
each component, disc, stellar halo, dark halo, etc., a DF with an
appropriate functional form. In this paper, we have explored the
scope of the DF (4) that was introduced by Pascale et al. (2018)
to model the Fornax dSph. This DF complements DFs previously
introduced by Binney (2010) and Posti et al. (2015) in yielding
spheroidal systems with exponential density profiles.

The DF has two key parameters, η and α, which principally con-
trol velocity anisotropy and the radial density profile, respectively.
We have explored models that contain only stars and models that
also have a dark halo. We have investigated the impact that the
dark halo has on stellar observables both when the halo has been
adiabatically distorted by the stars from the classic NFW form, and
when dark matter particles have been scattered out of low-action
orbits to form a dark core. We have also explored models in which
a massive BH sits at the centre of the galaxy.

We have shown that models generated by the Pascale et al. (2018)
DF provide excellent fits to both globular clusters and to four
dSph galaxies. The surface-brightness profiles can be fitted equally
well with models that have a wide range of velocity anisotropies,
from radially to tangentially biased. These models provide an
extremely convenient platform from which to explore that potential
of observations to detect dark matter and IMBHs in globular clusters
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2438 R. Pascale et al.

Figure 14. Three-component models of the Sculptor dSph (two stellar components and a dark matter halo). The velocity anisotropy of the stellar components
is slightly radially biased (η = 0.75) in the left column and radially biased (η = 1) in the right column. Red and blue curves in the upper panels show model
fits to the observed surface densities of RHB and BHB, respectively. The lower panels show the predicted line-of-sight velocity dispersion profiles of each
component alongside the observed profiles.

Table 6. Parameters of DFs fitted to three components the Sculptor dwarf spheroidal galaxy. ηpop and αpop are dimensionless parameters in the DF (4). J pop
0,� is

the scale action defined by the DF. Mpop
� the component’s mass, with pop=BHB and RHB. J0,dm and Mdm are the halo action scale and total mass (equation 14).

The dark halo DF (14) is cored, with ˜Jc,dm = 0.02. The figure of merit χ2 of the best-fitting model is defined by equation (28). The BHB and RHB star-count
profiles have a number of bin NBHB = 23 and NRHB = 11, respectively. The total stellar mass MBHB

� + MRHB
� = 2.3 × 106 M (Weisz et al. 2014).

Sculptor

ηBHB = ηRHB αBHB J BHB
�,0 (kpc km s−1) αRHB J RHB

�,0 (kpc km s−1) MBHB
�

MBHB
� +MRHB

�
J0,dm (kpc km s−1) Mdm (109 M) χ2

0.75 0.591 0.389 1.83 1.86 0.892 148.2 5.87 49.50
1 0.554 0.359 2.41 2.79 0.736 167.8 7.36 46.09

or dSphs. We have also presented a three-component model of the
Sculptor dSph that describes perfectly the different spatial extents
of the stars on the blue and red horizontal branches, again for a wide
range of assumed velocity anisotropies.

The models presented are all non-rotating and spherical. One of
the strengths of the f(J) modelling technique is the ease with which
a spherical model can be flattened and set rotating (Binney 2014),
and a forthcoming paper will explore rotating and flattened models
systematically.
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