
HAL Id: hal-03158692
https://hal.science/hal-03158692v1

Submitted on 4 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Simultaneity as a Design Constraint
Jean Guyomarc’H, François Guerret, Bilal El Mejjati, Emmanuel Ohayon,

Bastien Vincke, Alain Mérigot

To cite this version:
Jean Guyomarc’H, François Guerret, Bilal El Mejjati, Emmanuel Ohayon, Bastien Vincke, et
al.. Non-Simultaneity as a Design Constraint. 27th International Symposium on Temporal
Representation and Reasoning (TIME 2020), Sep 2020, Bozen-Bolzano, Italy. pp.13:1–13:15,
�10.4230/LIPIcs.TIME.2020.13�. �hal-03158692�

https://hal.science/hal-03158692v1
https://hal.archives-ouvertes.fr

Non-Simultaneity as a Design Constraint
Jean Guyomarc’h
Krono-Safe, 91300, Massy, France
Université Paris-Saclay, CNRS, Systèmes et Applications des Technologies de l’Information et de
l’Energie, 91400, Orsay, France
jean.guyomarch@krono-safe.com

François Guerret
Krono-Safe, 91300, Massy, France
francois.guerret@krono-safe.com

Bilal El Mejjati
Krono-Safe, 91300, Massy, France
bilal.elmejjati@krono-safe.com

Emmanuel Ohayon
Krono-Safe, 91300, Massy, France
emmanuel.ohayon@krono-safe.com

Bastien Vincke
Université Paris-Saclay, CNRS, Systèmes et Applications des Technologies de l’Information et de
l’Energie, 91400, Orsay, France
bastien.vincke@universite-paris-saclay.fr

Alain Mérigot
Université Paris-Saclay, CNRS, Systèmes et Applications des Technologies de l’Information et de
l’Energie, 91400, Orsay, France
alain.merigot@universite-paris-saclay.fr

Abstract
Whether one or multiple hardware execution units are activated (i.e. CPU cores), invalid resource
sharing, notably due to simultaneous accesses, proves to be problematic as it can yield to unexpected
runtime behaviors with negative implications such as security or safety issues. The growing
interest for off-the-shelf multi-core architectures in sensitive applications motivates the need for safe
resources sharing. If critical sections are a well-known solution from imperative and non-temporized
programming models, they fail to provide safety guarantees. By leveraging the time-triggered
programming model, this paper aims at enforcing that identified critical windows of computations
can never be simultaneously executed. We achieve this result by determining, before an application
is compiled, the exact dates during which a task accesses a shared resource, which enables the off-line
validation of non-simultaneity constraints.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Temporal reasoning, Temporal constraints, Specification and verification of
systems

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.10

Supplementary Material The implementation of algorithms is available at https://github.com/
krono-safe/mcti-detect/

Funding This research is supported by the company Krono-Safe

Acknowledgements We would like to thank Fabien Siron, Matthieu Texier for their interesting and
constructive discussions and other engineers from Krono-Safe who helped contributing to this paper.
We would also like to thank the anonymous reviewers for their feedback and suggestions.

© Jean Guyomarc’h, François Guerret, Bilal El Mejjati, Emmanuel Ohayon, Bastien Vincke and
Alain Mérigot;
licensed under Creative Commons License CC-BY

27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7389-6686
mailto:jean.guyomarch@krono-safe.com
mailto:francois.guerret@krono-safe.com
mailto:bilal.elmejjati@krono-safe.com
mailto:emmanuel.ohayon@krono-safe.com
mailto:bastien.vincke@universite-paris-saclay.fr
mailto:alain.merigot@universite-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.TIME.2020.10
https://github.com/krono-safe/mcti-detect/
https://github.com/krono-safe/mcti-detect/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Non-Simultaneity as a Design Constraint

1 Introduction

Resources sharing is a topic of particular interest, notably in safety-critical real-time research,
which is challenging for multi-core architectures. These systems are usually bound to stringent
timing constraints: failure to perform a computation within a well-specified time interval
contributes to the system failure [16]. As failure is not an option, industrials usually rely on a
strategy of time provisioning, where predefined slices of time are dedicated to computations,
with an additional safety margin. For example, this concept is described as a system of
time frames in the ARINC-653P1 specification, which is used in the avionic industry [11].
Determining a strict upper bound of the computation time is known as the Worst-Case
Execution Time (WCET) problem: the execution times of a sequence of computations may
vary between multiple runs. This variability of execution times is caused by multiple factors,
such as the hardware implementation [30, 13], the physical environment in which the hardware
operates or the implementation of the software and the interactions software-hardware [32].

To reduce the development and production costs of their systems, as well as the time-
to-market, industrials usually rely on commercially available Components Off-The-Shelf
(COTS) instead of designing and manufacturing their own hardware [6]. Hardware COTS are
produced by a different industry that targets a wider audience. As a result, most architectures
are designed in order to minimize average execution times, rather than worst-case execution
times. In addition to time-interferences induced by a single core, simultaneous accesses to a
same hardware resource (e.g. the shared memory or a peripheral) made by multiple cores
causes the hardware to arbitrate these concurrent accesses and to serialize them, effectively
introducing additional time-interferences [31]. It is estimated that the current WCET analysis
techniques would yield the WCET to be multiplied by a value close to the number of cores
activated [24, 22, 8]. Such pessimistic estimates lead to over-constrained systems, wasting
computing resources, causing higher development and production costs with an unnecessarily
increased power consumption.

Contributions. This paper proposes a technique for safe multi-core systems design that is
based on an offline temporal partitioning. It allows a system designer to specify windows
of computations that shall never be executed simultaneously. Such property would be of
great importance for safety-critical avionics systems [1, 29]. After reviewing related work
in Section 2, we detail the model of computation our work is based on in Section 3. We
then improve this model in Section 4 to express simultaneity, and in Section 5 we devise
state-of-the-art algorithms to verify that non-simultaneity constraints always hold. An
illustrative proof-of-concept is then provided in Section 6 before we conclude in Section 7.

2 Related Work

As summarized in [28], resources sharing can either be limited or avoided by design to
ensure the absence of interferences, or controlled during the execution of the system through
dedicated services. We advocate for the first proposition, however other interesting research
has been conducted in different directions and are worth mentioning.

2.1 Hardware Design
In this paper, we focus only on off-the-shelf processors because they are intensively used by
industrials. However, it should be noted that hardware solutions have been devised, notably
with PRET machines [13] or the MERASA project [30], with the goal to design specific

J. Guyomarc’h et al. 10:3

hardware that are better suited towards time-sensitive applications. For example, Reineke et
al. [26] have designed a DRAM controller that aims at eliminating contention for shared
resources.

2.2 Runtime Mitigations

Mancuso et al. [20] have proposed the Single Core Equivalence framework, that can be
applied on COTS platforms to partition shared resources and, as a result dynamically provide
isolation between the different cores. To achieve this goal, the authors rely mainly on three
techniques: colored cache lockdown [19], MemGuard [34] and PALLOC [33]. These have been
implemented on a Linux kernel and are well suited for dynamic systems by assigning portions
of cache to tasks, regulating memory bandwidth and allocating memory pages based on the
affinity of DRAM banks with tasks. Bak et al. [5] build on the PREM model of execution [23]
by taking advantage of predictable intervals that distinguish memory and execution phases.
Memory phases are dedicated to access shared memories, while execution phases shall not
(by contract) access these. This allows to dynamically schedule tasks so two memory phases
do not execute simultaneously, effectively removing sources of inter-core interferences. If
these approaches effectively contribute to improving resources sharing, they do not provide
strict design guarantees, because the resolution of resources sharing is determined at runtime.

2.3 Time-Division Multiplexing

Time-Division Multiplexing (TDM) has been extensively studied because of its inherent
predictability and improved composability [16, 4]. Because immutable time slices are statically
reserved in TDM, this time-division scheme presents the downside to cause underutilization
of resources [14]. This is however a useful safety guarantee for safety-critical systems, because
it offers greater failure detection capabilities [15].

TDM are enforced at run-time by an execution model, which usually consists in a tasks
scheduler based on a source of time. Because they are difficult to build by hand, multiple
solutions have been devised to generate them. Boniol et al. [9] propose an approach in
which they instantiate a scheduling plan in which time slices are dedicated either to access
the shared memory or to execute code that does not use shared resources. Their system is
generated from a model of the hardware and a static analysis of WCET. Similar works have
been conducted by Becker et al. [7].

David et al. [12], Chabrol et al. [10] and Lemerre et al. [18] rely on a model of computation
that can be instantiated to express temporal constraints. From instances of this model of
computation, data configuring an execution model are produced. This execution model
ensures that the specified temporal constraints are enforced at run-time. This model has been
formalized as a time-constrained automata [17]. It has also been explicitly used by Jan et al.
[15] to automatically generate a TDM scheme allowing the control of a real-time network
bus from communication specifications that were expressed in the model of computation.
Our contribution follows the same path, by improving their model of computation with
non-simultaneity semantics; effectively enabling to design critical sections driven by the time-
triggered paradigm. It differs from critical sections used in imperative and non-temporized
programming models [25] in that the dates at which each critical section start and end are
precisely known at compile-time, offering additional safety properties, such as the guaranteed
absence of deadlocks.

TIME 2020

10:4 Non-Simultaneity as a Design Constraint

S A B C D

Figure 1 Example of a trivial time-constrained automaton that describes a periodic behavior.
After starting at node S, the node A is accepted. Then the sequence of nodes B, C and D is
periodically repeated.

3 Time-Constrained Automata

The model proposed in this paper is based on the model of computation formalized by
Lemerre et al.: time-constrained automata [17]. We extend it later in Section 4.2, but we
start by explaining briefly its foundations. This formalism defines a block as a sequence of
computations that are time-bounded by at least one of the following constraints:

after that indicates that a block may only start from a given date; and

before that indicates that a block must end before a given date.
They respectively define the earliest start date and deadline of a batch of blocks, with
homogeneous time units. Such automata are formalized as directed graphs, where arcs
represent the blocks and nodes represent the temporal constraints that are applied to the
arcs joining them (hence constraining the blocks). A node may carry both constraints, but
only one constraint for each type. Therefore, three types of time-constrained node exist.
They can either be a representation of:

a single after constraint, denoted by , which can be seen in Figure 1 as the node S.

a single before constraint, usually denoted by , but not represented in this paper as it is
never used as the sole constraint of a node;

both a before and an after constraints, denoted by , which can be seen in Figure 1 as
the nodes A, B, C and D. This particular node is named synchronization.

I Definition 1 (Trivial time-constrained automaton). A time-constrained automaton is trivial
if and only if every node of the automaton has exactly one output arc. Otherwise, the
automaton is said non-trivial.

There exist several graph simplification techniques that allow to detect impossible graphs
or to remove redundant constraints. They are formally defined in the original paper, and we
only assume their existence and that graphs can possibly be re-written to a simpler form
or proved impossible. In the following of this paper, we assume that all time-constrained
automata are valid and reduced to their most simplified form.

An interesting application of time-constrained automata is the ability to derive execu-
tion models (i.e. scheduling schemes) that preserves the temporal constraints that bound
computation blocks. The ability to transform a mathematical model to a concrete result
that can be embedded on a hardware target asserted our choice to build on top of this
model. The authors of the original paper designed and implemented a variation of the EDF
(Earliest Deadline First) algorithm, called EDF-dyn, which has been proved optimal for
time-constrained sequences of blocks on single processors. However, our approach is not
limited to one specific scheduling algorithm, since verification algorithms are applied on the
model of computation, and not on the model of execution.

J. Guyomarc’h et al. 10:5

4 System Model

The model of computation we propose is based on time-constrained automata described in
Section 3. We insist on the separation of model of computation that embodies the design
space and the model of execution that embodies the run-time of the designed application on
a specific execution platform (e.g. an embedded COTS system).

4.1 Non-Simultaneity as a Design Constraint
In this paper, we define the simultaneity as applied to windows of computations that execute
within a known and bounded time span. Simultaneity between two windows of computations
describes that their execution may overlap in time.

In Section 2.3, it has been shown that scheduling plans implementing critical sections
driven by the time-triggered paradigm can be generated from constraints deduced from
characteristics of the system. In approaches that do not rely on a model of computation,
there is no guarantee that a feasible schedule exists, because simultaneity is yet another
parameter involved in scheduling algorithms. In such cases, it is necessary to tweak multiple
parameters of the scheduling algorithm to hope for a viable solution to be found. This
process is not guaranteed to converge towards a solution.

Considering a model of computation during the design phase that is implemented by a
model of execution allows to divide the global scheduling problem into independent ones.
As the model of computation deals with temporal constraints, simultaneity can be verified
regardless of the actual execution times of the tasks. If the application does not respect these
new design constraints, then only the original design has to be modified. On the contrary, if
such errors were detected later, fixing them would jeopardize the whole application: both its
design and implementation.

To the best of our knowledge, there exist no methodology in time-triggered resource
sharing that allows to model simultaneity as an explicit design constraint integrated to a
model of computation. We think that addressing this early in the design phase contributes
to safer and more robust multi-core applications.

4.2 Augmenting Time-Constrained Automata
This paper claims to add a new semantic to time-constrained automata, which is detailed in
this section.

Temporal transitions. Let a clock be a structure that causes the global time to advance; a
time-constrained automaton is bound to exactly one clock. We define a temporal transition
as the ordered set of blocks encompassed within exactly one after and one before constraints.
It is associated with the time span of the computations, which corresponds to the time
difference between the deadline (carried by the before constraint) and the earliest start date
(carried by the after constraint). This time span, denoted by t may only be strictly positive
and is expressed as a finite number of clock ticks. As such, a temporal transition is formally
written as the time interval τ+t. The time span can be omitted for brevity; in this case a
temporal transition is only denoted by its name (e.g. τ).

Isochronous Time-Constrained Automata. Let us consider time-constrained automata
where every sequence of blocks is bounded by exactly one after and one before constraints.
They are composed of an entry node and a connected graph of synchronization nodes, in

TIME 2020

10:6 Non-Simultaneity as a Design Constraint

S A B

C

τ+1
0

τ+1
1

τ+1
3

τ+2
2τ+1

4

(a) Non-trivial time-constrained automata with
each temporal transition is bounded by a before
and an after node.

τ0
τ1

τ3

τ2

τ2

τ4

(b) Isochronous equivalent of the automaton in
Figure 2a.

Figure 2 Representations of a non-trivial time-constrained automaton (Figure 2a) and its
isochronous equivalent (Figure 2b). From the start node S, only one temporal transition is allowed:
τ0, which is performed in one clock tick. After A is reached, either B or C is reachable, respectively
through τ1 in one tick and τ2 in two ticks. A is then activated from either B or C in one tick through
either τ3 or τ4, depending on the previous transition. This behavior is then infinitely repeated.

which each node has at least one output arc. As a result, there exists at least one cycle in
this graph. The entry node is an after node, which represents the unique entry point of the
automaton. It is connected to the graph of synchronization nodes by at least one output
arc, and it accepts no input arc. Such automata can be made isochronous by splitting each
temporal transition into a sequence of successive transitions of unitary length, such that the
sum of lengths of the resulting transitions equals the time span of the original transition.
In the underlying graphical representations, these additional nodes are denoted by . We
define such automata as isochronous time-constrained automata. Figure 2 illustrates how the
non-trivial time-constrained automaton with labeled temporal transitions shown in Figure 2a
can be represented as an isochronous time-constrained automaton in Figure 2b.

Time-Constrained Applications A time-constrained application is defined as a fixed set of
isochronous time-constrained automata that share a same unique base clock. More specifically,
at each clock tick a new temporal transition is simultaneously completed by all the automata
that compose the application: because they share the same clock, they are synchronous. A
software implementation of time-constrained applications is required to implement bound
multi-processing: each task described by an isochronous time-constrained automaton must
be statically assigned to one execution unit (i.e. a CPU core).

An application is associated with a set of exclusion groups, an exclusion group being
a fixed set of temporal transitions that shall not overlap in time. These are specified by
the designer of the application after a preliminary analysis. The property that temporal
transitions of a given exclusion group do not overlap in time is a safety property ("bad things
do not happen during execution of a program" [2]). For a given exclusion group, this property
must be verified on the result of the composition of every automata that has at least one
temporal transition belonging to this exclusion group.

Exclusion groups model the non-simultaneity within a system. When part of a set, they
translate the requirement that the simultaneous execution of their associated windows of
computation is forbidden.

J. Guyomarc’h et al. 10:7

τA0
τA2

τA1

(a) Automaton A, allocated to core cA, which de-
scribes a periodic behavior: after τA0 has been
taken, the sequence τA1 and τA2 is repeated.

τB0 τB1 τB3τB2

τB4

(b) Automaton B, allocated to core cB , which de-
scribes a periodic behavior: after τB0 has been
taken, the sequence τB1 , τB2 , τB3 and τB4 is re-
peated.

Figure 3 Example of time-constrained application composed of two trivial isochronous time-
constrained automata A and B respectively allocated to cores cA and cB such that cA 6= cB . The
temporal transitions τA1 , τB2 and τB4 shall not overlap in time.

τA0 τA2 τA2 τA2τA1 τA1τA1 τA1

τB0 τB1 τB3 τB1 τB3τB2 τB4 τB2

Figure 4 Infinite "unfolding" of automata A (above) and B (below). It hints towards a periodic
pattern where temporal transition in the exclusion group G = {τA1 , τB2 , τB4 } cannot overlap in
time, because of the temporal specfication of A and B.

4.3 Example
Figure 3 shows an example of a simple time-constrained application that consists in two trivial
time-constrained automata A and B that are allocated to two different CPU cores. Each
automaton defines its own set of temporal transitions: τA0 , τA1 and τA2 for A and τB0 , τB1 ,
τB2 , τB3 and τB4 for B. One exclusion group is arbitrarily defined here: G = {τA1 , τB2 , τB4}:
these temporal transitions shall not overlap in time.

In this example, the temporal design of automata A and B allows for the exclusion
group G to hold: since isochronous time-constrained automata within a time-constrained
application are synchronous and since temporal transitions are isochronous, one can observe
that when A runs τA1 , B simultaneously runs either τB1 or τB3 , but never τB2 nor τB4 . This
is illustrated by Figure 4, which shows that "unfolding" A and B hints towards thinking that
temporal transitions listed in the exclusion group G cannot overlap in time. In the next
section, we show how this problem can be automatically verified.

5 Validating the simultaneity constraints

We have introduced in Section 4 the notions of time-constrained applications and of exclusion
groups, that specify the property that the temporal transitions they contain must not execute
simultaneously. In this section, we propose algorithms that verify this property.

5.1 Formalization of the problem
Time-constrained automata may exhibit an infinite possibility of temporal behaviors, because
a task embodying the software implementation of an automaton virtually does not have an
upper bound of running time. The dates at which a transition can be activated may result
from all the infinite possible sequences of these cycles. As an illustration of this complexity,
Figure 5 shows all the possible temporal behaviors of the time-constrained automaton shown
in Figure 2b between clock ticks zero and seven.

Because a time-constrained application is composed of isochronous time-constrained
automata and because they all share the same clock, they are also synchronous. As a result,
each clock tick causes a temporal transition to be activated in each automata. This implies

TIME 2020

10:8 Non-Simultaneity as a Design Constraint

τ0

τ2 τ2 τ4

τ2 τ2 τ4
τ2

τ1

τ1 τ3
τ2 τ2

τ1 τ3

τ1 τ3

τ2 τ2 τ4
τ2 τ2

τ1 τ3

τ1 τ3

τ2 τ2 τ4

τ1 τ3
τ2

τ1

Figure 5 Tree that results from the "unfolding" of temporal behaviors of the non-trivial time-
constrained automaton shown in Figure 2b after seven clock ticks. The transition τ0 is activated at
date zero and each arc represents the occurrence of a clock tick.

that a temporal transition can be activated for a possibly infinite set of dates, where a date
is represented by a natural number. For example, in Figure 3a, τA0 can only be activated
at date zero, whereas τA1 can be activated for all dates that are odd. An isochronous
time-constrained automaton can therefore be understood as a finite automaton, where:

each state but the initial one can be marked as accepting;
the increment of time, associated to all the temporal transitions can be seen as the symbol
of a unary alphabet (isochronous property);
the set of dates at which a state can be reached is given by set of the lengths of the words
that lead to this state. Note that this set may be infinite, if the state is included in a
cycle.

The set of dates at which a state can be reached can therefore be expressed as the regular
language over a unary alphabet accepted by the automaton where only this state is marked
as accepting. It is known that each regular unary language can be represented as the union
of a finite number of arithmetic progressions of the form {c+ dk|k ∈ N} where c and d are
positive constants specifying their offset and period [27]. They can also be written as the
pair (c, d).

Temporal transitions that originate from a state are reachable at this set of dates.
Therefore, the set of dates at which a temporal transition can be activated is the union of
set of dates at which their respective states are reachable.

5.2 Determination of dates of reachability for every transitions
Notations. Let a unary, non-deterministic finite automaton (UNFA) A with n ≥ 2 states
and m transitions, such that A = (Q, δ, I, F) where Q is the finite set of states (|Q| = n),
δ ⊆ Q×Q is a transition relation, I ⊆ Q is the set of initial states of the automaton and
F ⊆ Q is the set of accepting states. Using the notations defined in [27], q x−→ q′ denotes that
there exist a path of length x from q ∈ Q to q′ ∈ Q. On a UNFA, a path of length x can
be seen as a word x; as such, a word of length x is accepted by A if there exists a path of
length x from qi ∈ I to qf ∈ F , and the language L(A) accepted by A is the set of all the
words accepted by A.

Expressing L(A). Sawa proposes in [27] the algorithm UNFA-Arith-Progressions that
processes a UNFA A to construct a finite set of arithmetic progressions R describing the

J. Guyomarc’h et al. 10:9

language L(A), with a space complexity in O(n+m) and a time complexity in O(n2(n+m)).
Applied to isochronous time-constrained automata, the result of this algorithm consists in the
exhaustive set of dates at which a given state can be reached. The essence of the algorithm
relies on expressing a path α from qi ∈ I to qf ∈ F via q ∈ Q so that qi

c1−→ q
c2−→ qf . If q

belongs to a cycle of length d, then the length of α can be expressed as the pair (c1 + c2, d);
otherwise it is simply (c1 + c2, 0). As such, R = R1 ∪ R2 with |R1| ≤ n2 and |R2| ≤ n. R1
contains every word of length x < n2 written (x, 0) whereas R2 contains all the other words
of L(A) (with x ≥ n2) expressed as arithmetic progressions (at most n).

Tailoring the algorithm. Running the algorithm unmodified for each of the n − 1 states
that can be marked as accepting1 would yield a total time complexity of O(n3(n+m)). We
propose a modified version of this algorithm to specifically determine the set of reachability
dates of temporal transitions without degrading the time complexity:

For q ∈ Q, the value sl(q) is defined as the length of the shortest loop that can be done
in q. If q is not part of a loop, then sl(q) is undefined.
A state q is called important if q belongs to a nontrivial strongly connected component C
(implying that sl(q) is defined) and the value sl(q) is minimal for all states in C.
The sets Si are computed so each set contains all states reachable from the initial state s
by i steps: Si = {q ∈ Q : s i−→ q} for i ∈ [0, n2).
Let Imp the set of important states of A.
Let Qimp = Sn−1 ∩ Imp the important states that can be reached after exactly n − 1
steps from the initial state s.
Let D = {sl(q)|q ∈ Qimp} the set of the shortest loop lengths among the important states
in Qimp.
Since there is only one initial state s to isochronous time-constrained automata, I can be
written as I = {s}.
We re-define F as the set of states that can be marked as accepting. By definition,
F = Q\{s}.
We define Tq the set of temporal transitions that can be activated at state q, that is the
outgoing vertices.

From the definition of isochronous time-constrained automata, we can propose a new
formulation of the set R1, such that R1 = {(i, 0)|i ∈ [1, n2)}. This allows to build a first set
of dates at which states are reachable. In this case, we can re-use this formula to determine
an initial set of dates for each temporal transition D1,τ as shown in Algorithm 1. Because
the original formula excludes the initial state, we add that the transitions reachable from the
initial state are all reachable at date zero (by definition). We just associate the temporal
transitions activated at a state q with the date at which q is reached. This is possible because
each state is associated with a date.

The second set of dates R2 is built around the sets Ti that contain all states from which
some final state can be reached by i steps. They are defined as in Equation (1). Then the
pair (c′ + n − 1, d) is added to R2 for c′ ∈ [n2 − 2n, n2 − n − 1] and each d ∈ D such that
c′ ≥ n2 − n− d, if there exists some q ∈ Qimp with sl(q) = d such that q ∈ Tc′ .

Ti = {q ∈ Q|∃qf ∈ F : q i−→ qf} for i ∈ [0, n2 − n− 1] (1)

1 the initial state cannot be reached from another state

TIME 2020

10:10 Non-Simultaneity as a Design Constraint

Algorithm 1 Construction of the first set of dates D1,τ that contains dates at which each
temporal transition τ is activated.

for τ ∈ Ts do
D1,τ = {(0, 0)}

for i ∈ [1, n2) do
for q ∈ Si do

for τ ∈ Tq do
D1,τ = D1,τ ∪ {(i, 0)}

A consequence of this formulation in the original algorithm is that the different temporal
transitions leading to qf ∈ F are entangled in the construction of the sets Ti in Equation (1).
To preserve dates specific to temporal transitions, we can instead propose the creation of the
sets that discriminate temporal transitions, as written in Equation (2).

Ti,qf
= {q ∈ Q : q i−→ qf} for i ∈ [0, n2 − n− 1] and qf ∈ F (2)

Considering each qf ∈ F , and each τ ∈ Tqf
, the same algorithm can be re-used to

compute D2,τ as in Algorithm 2 by substituting Ti with Ti,qf
. Finally the set of dates Dτ

for which each temporal transition τ is activated can be computed as Dτ = D1,τ ∪D2,τ .
Instead of running the original algorithm for each of the n− 1 accepting states, we build

the sets Ti,qf
once. Furthermore, constructing the sets Ti,qf

requires the same operations
than the sets Ti as only data organization changes. Thus, we can preserve the overall time
complexity of the original algorithm (O(n2(n+m))) since the application of Algorithm 2
does not increase it.

Algorithm 2 Construction of the second set of dates D2,τ that contains dates at which
each temporal transition τ is activated.

for q ∈ Qimp do
for c′ ∈ [n2 − 2n, n2 − n− 1] do

for qf ∈ F do
if q ∈ Tc′,qf

and c′ ≥ n2 − n− sl(q) then
for τ ∈ Tqf

do
D2,τ = D2,τ ∪ {(c′ + n− 1, sl(q))}

Special case of trivial time-constrained automata. The structure of trivial time-constrained
automata allows major simplifications of this algorithm. The dates at which a state can
be reached can be written as a single arithmetic progression. If we consider the graph
representation of the automaton, nodes that are not part of a cycle can be written as (i, 0)
where i can be trivially found by exploring the automaton until the node is reached. Nodes
that are part of a cycle can be written as (c, d) where c is the first date at which the node
is reached and d is the length of the loop. For example, in Figure 3a, dates at which the
temporal transition τA1 is activated are {1 + 2k|k ∈ N}. Similarly, they are {2 + 2k|k ∈ N}
for τA2 and {0} for τA0 .

J. Guyomarc’h et al. 10:11

5.3 Intersection of dates

We have shown earlier how to compute the set of dates Dτ at which each temporal transition
τ is activated. This set can be defined as a union of:

singletons; and
arithmetic progressions expressed as {c+ dk|k ∈ N}.

For a given exclusion group G, verifying that the intersection of the dates that characterize
temporal transitions belonging to different automata is empty is equivalent to verify the
safety property that temporal transitions within G cannot overlap in time, and as a result
cannot be executed simultaneously. We now show the conditions that apply on two dates
Da and Db for them to intersect. Different techniques may be used depending on whether
Da and Db represent constants or arithmetic progressions.
Intersection of dates for two constants: let Da = ha and Db = hb two constant dates. In

this trivial case, they share a date in common if and only if ha = hb.
Intersection of dates for arithmetic progressions: let Da = {ca + dak|k ∈ N} and Db =
{cb + dbk|k ∈ N} two arithmetic progressions. Their intersection is not empty if and only
if the following linear diophantine equation has a solution: αx+ βy = γ for x ∈ Z and
y ∈ Z, with α = da, β = −db and γ = cb − ca. Linear diophantine equations are well-
known structures that have been extensively studied; the problem of testing the existence
of solutions as well as finding them has long been solved [3]. This linear diophantine
equation admits a solution in Z2 if and only if the greatest common denominator of α
and β divides γ. If this equation has no solution then the intersection of Da and Db is
empty. Otherwise, if there exists a solution in Z2 then Da and Db have in common an
infinite set of dates since for any solution (x0, y0) of the equation, the set of solutions
{(x0 + dbk, y0 + dak)|k ∈ Z} can always be built (this set of solutions in Z2 contains an
infinite number of pairs where both members are natural integers).

Intersection of dates for a constant and an arithmetic progression: if Da = {ha} is a sin-
gleton and Db = {cb+dbk|k ∈ N} is an infinite set representing an arithmetic progression,
they may intersect at most once, if Da ⊂ Db, that is when they exist x ∈ N such that
ha = cb + dbx. We find that this is true when ha ≥ cb and db divides ha − cb.

6 Proof of Concept

Implementation and Reproducibility. The model defined in Section 4 has been integrated
to the ASTERIOS suite, developed by the Krono-Safe company. It relies on a programming
model detailed by Methni et al. in [21] to instantiate a model of computation, in which
support for simultaneity has been added. The algorithms presented in Section 5 and the
method to validate the intersection of dates have been implemented in a standalone executable
that has been open-sourced2 under the Apache-2.0 license. It takes as inputs a specification
of the different tasks that compose an application with the list of exclusion groups to be
checked, and generates a report containing the dates at which each temporal transition can
be activated, as well as a graphical representation of the time-constrained application and
either the validation of exclusion groups or a counter-example. The proof-of-concept in this
section is based on the open-source version.

2 https://github.com/krono-safe/mcti-detect/

TIME 2020

https://github.com/krono-safe/mcti-detect/

10:12 Non-Simultaneity as a Design Constraint

E10 E9

E11

E7

E5

E0

E8

E13 E12

E3E4E14E15

E1E2

E6

E16

G14G15

G13

G9

G11

G16

G3

G0

G17

G6

G10 G2 G12G7

G4

G1

G8

G5

Figure 6 Design in which E2, E4, E6, E11, G3, G6, G8 and G14 are used to access the shared
resource. However it is found that E11 and G6 can be simultaneously reached at the same date.
This is therefore an example of a design that does not guarantee safe resources sharing.

Tick 0 1 2 3 4 5 6 7 8 9 10 11 12
Task E E0 E1 E4 E12 E6 E7 E8 E10 E11 E7 E8 E10 E11

Task G G0 G1 G10 G11 G9 G5 G6 G1 G12 G17 G13 G15 G6

Table 1 Counter-example showing traces leading for E11 and G6 to overlap in time at tick 12

Sharing resources between two parallel tasks. For this illustrative proof-of-concept, let’s
consider a simple application that uses two non-trivial tasks E and G, each implanted on
a different CPU core. The requirements of this application impose they exchange data
through a shared resource (e.g. shared memory). In this specific use case, we assume the
temporal constraints are fixed: nodes cannot be added nor removed. When considering an
incremental design, this may not be the case. The end goal is to guarantee that accesses to
the shared resources are performed during temporal transitions that never overlap in time.
The occurrence of unwanted simultaneous accesses may result in data corruption (e.g. the
two tasks write at the same memory address) or in increased execution times caused by
additional contention.

Exposing an invalid design. A first design can be seen in Figure 6, which represents a
time-constrained application composed of two non-trivial tasks where accesses to the shared
resource are performed during the temporal transitions E2, E4, E6, E11, G3, G6, G8 and
G14. However, we find that temporal transitions E11 and G6 may overlap in time, as shown
in Table 1. This small example showcases that checking for absence of simultaneity is not a
trivial process and highlights the importance of automated validation.

Towards a safe design. If the design in Figure 6 does not guarantee safe resources sharing,
it is possible to try other design candidates. If the functional requirements of the application

J. Guyomarc’h et al. 10:13

E10 E9

E11

E7

E5

E0

E8

E13 E12

E3E4E14E15

E1E2

E6

E16

G14G15

G13

G9

G11

G16

G3

G0

G17

G6

G10 G2 G12G7

G4

G1

G8

G5

Figure 7 Design in which E2, E4, E6, E11, G3, G5, G8, G14 and G15 are used to access the
shared resource. It is found that they never overlap in time. This is therefore an example of a design
that guarantees safe resources sharing, given that accesses to the shared resource happen only during
these temporal transitions.

allow it, the shared resource could be accessed from G5 and G15 and the retrieved data made
available to G6. This modified design is checked as in Figure 7 and the new set of temporal
transitions that access the shared resource (E2, E4, E6, E11, G3, G5, G8, G14 and G15) have
been found to never overlap in time. Implementing such design removes entire classes of
problems that could comprise data integrity or negatively impact execution times, while
allowing for a better use of overall computing resources.

7 Conclusion and Perspectives

We have presented a model of computation based on time-constrained automata, that can
be used to express non-simultaneity as a design constraint in a model of computation. This
allows to express a safety property over parallel systems, which, if verified, ensures that
litigious sequences of computations can never run simultaneously. Designing such systems
with non-simultaneity as a constraint from the ground-up is believed to bring significant
safety benefits, notably for safety-critical real-time systems. We have then shown that this
safety property could be automatically verified, with reasonable complexity, by standalone
and open-sourced algorithms that extend the state of the art. As for future work, it would be
interesting to propose more advanced techniques to help the designer to interactively explore
the traces leading to a violation of its design constraints, for a more efficient convergence
towards a safe design. It seems also important to explore techniques to determine the sources
of time-interferences when they occur.

TIME 2020

10:14 Non-Simultaneity as a Design Constraint

References

1 Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J Cazorla. On the
tailoring of cast-32a certification guidance to real cots multicore architectures. In 2017 12th
IEEE International Symposium on Industrial Embedded Systems (SIES), pages 1–8. IEEE,
2017. doi:10.1109/SIES.2017.7993376.

2 Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Distributed computing,
2(3):117–126, 1987. doi:10.1007/BF01782772.

3 George E Andrews. Number theory. Courier Corporation, 1994.
4 Christophe Aussagues, Damien Chabrol, and Vincent David. Method for the deterministic

execution and synchronisation of an information processing system comprising a plurality of
processing cores executing system tasks, april 2010. Patent WO 2010/043706 A2.

5 Stanley Bak, Gang Yao, Rodolfo Pellizzoni, and Marco Caccamo. Memory-aware scheduling
of multicore task sets for real-time systems. In 2012 IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 300–309. IEEE, 2012.
doi:10.1109/RTCSA.2012.48.

6 Thomas G Baker. Lessons learned integrating cots into systems. In International Conference on
COTS-Based Software Systems, pages 21–30. Springer, 2002. doi:10.1007/3-540-45588-4_3.

7 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and
Thomas Nolte. Contention-free execution of automotive applications on a clustered many-core
platform. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages 14–24.
IEEE, 2016. doi:10.1109/ECRTS.2016.14.

8 Jingyi Bin, Sylvain Girbal, Daniel Gracia Pérez, Arnaud Grasset, and Alain Mérigot. Studying
co-running avionic real-time applications on multi-core COTS architectures. In Embedded Real
Time Software and Systems (ERTS2014), Toulouse, France, February 2014.

9 Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. Deterministic execution
model on cots hardware. In International Conference on Architecture of Computing Systems,
pages 98–110. Springer, 2012. doi:10.1007/978-3-642-28293-5_9.

10 Damien Chabrol, Vincent David, Patrice Oudin, Gilles Zeppa, and Mathieu Jan. Freedom
from interference among time-triggered and angle-triggered tasks: a powertrain case study. In
Embedded Real Time Software and Systems (ERTS2014), Toulouse, France, February 2014.

11 Airlines Electronic Committee. Avionics application software standard interface - part 1:
Required services. Arinc 653p1, Airlines Electronic Committee, august 2015.

12 Vincent David, Christophe Aussaguès, Stéphane Louise, Philippe Hilsenkopf, Bertrand Ortolo,
and Christophe Hessler. The oasis based qualified display system. In Fourth American
Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls and
Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, USA, page 11,
2004.

13 Stephen A Edwards and Edward A Lee. The case for the precision timed (pret) machine. In
Proceedings of the 44th annual Design Automation Conference, pages 264–265. ACM, 2007.
doi:10.1145/1278480.1278545.

14 Farouk Hebbache, Mathieu Jan, Florian Brandner, and Laurent Pautet. Shedding the shackles
of time-division multiplexing. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages
456–468. IEEE, 2018. doi:10.1109/RTSS.2018.00059.

15 Mathieu Jan, Jean-Sylvain Camier, and Vincent David. Scheduling safety-critical real-time
bus accesses using time-constrained automata. In RTNS, pages 87–96. Citeseer, 2011.

16 Hermann Kopetz. Real-time systems: design principles for distributed embedded applications.
Real-Time Systems Series. Springer, 2011. doi:10.1007/978-1-4419-8237-7.

17 Matthieu Lemerre, Vincent David, Christophe Aussagues, and Guy Vidal-Naquet. An intro-
duction to time-constrained automata. In Proceedings of the 3rd Interaction and Concurrency
Experience Workshop (ICE’10), volume 38, pages 83–98, june 2010. doi:10.4204/EPTCS.38.9.

https://doi.org/10.1109/SIES.2017.7993376
https://doi.org/10.1007/BF01782772
https://doi.org/10.1109/RTCSA.2012.48
https://doi.org/10.1007/3-540-45588-4_3
https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1007/978-3-642-28293-5_9
https://doi.org/10.1145/1278480.1278545
https://doi.org/10.1109/RTSS.2018.00059
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.4204/EPTCS.38.9

J. Guyomarc’h et al. 10:15

18 Matthieu Lemerre and Emmanuel Ohayon. A model of parallel deterministic real-time
computation. In 2012 IEEE 33rd Real-Time Systems Symposium, pages 273–282. IEEE, 2012.
doi:10.1109/RTSS.2012.78.

19 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo
Pellizzoni. Real-time cache management framework for multi-core architectures. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54.
IEEE, 2013. doi:10.1109/RTAS.2013.6531078.

20 Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun. Wcet
(m) estimation in multi-core systems using single core equivalence. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 174–183. IEEE, 2015. doi:10.1109/ECRTS.2015.23.

21 Amira Methni, Emmanuel Ohayon, and François Thurieau. ASTERIOS Checker : A
Verification Tool for Certifying Airborne Software. In 10th European Congress on Em-
bedded Real Time Systems (ERTS 2020), Toulouse, France, January 2020. URL: https:
//hal.archives-ouvertes.fr/hal-02508852.

22 Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures in
avionics. In 2012 Ninth European Dependable Computing Conference, pages 132–143. IEEE,
2012. doi:10.1109/EDCC.2012.27.

23 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for cots-based embedded systems. In 2011
17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 269–279.
IEEE, 2011. doi:10.1109/RTAS.2011.33.

24 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst case delay analysis for memory interference in multicore systems. In 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), pages 741–746. IEEE,
2010. doi:10.1109/DATE.2010.5456952.

25 Michel Raynal. Concurrent programming: algorithms, principles, and foundations. Springer
Science, 2013. doi:10.1007/978-3-642-32027-9.

26 Jan Reineke, Isaac Liu, Hiren D Patel, Sungjun Kim, and Edward A Lee. Pret dram controller:
Bank privatization for predictability and temporal isolation. In 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), pages 99–108. IEEE, 2011. doi:10.1145/2039370.2039388.

27 Zdeněk Sawa. Efficient construction of semilinear representations of languages accepted by
unary nondeterministic finite automata. Fundamenta Informaticae, 123(1):97–106, 2013.
doi:10.3233/FI-2013-802.

28 Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling cache coherence to expose
interference. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.ECRTS.2019.18.

29 Certification Authorities Software Team. Multi-core processors - position paper. Cast-32a,
Certification Authorities Software Team, november 2016.

30 Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov, Christine
Rochange, Eduardo Quinones, Mike Gerdes, Marco Paolieri, Julian Wolf, et al. Merasa:
Multicore execution of hard real-time applications supporting analyzability. IEEE Micro,
30(5):66–75, 2010. doi:10.1109/MM.2010.78.

31 Stephen C Vestal, Pamela Binns, Aaron Larson, Murali Rangarajan, and Ryan Roffelsen. Safe
partition scheduling on multi-core processors, November 20 2012. US Patent 8,316,368.

32 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, et al.
The worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):36, 2008. doi:10.1145/1347375.
1347389.

33 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore platforms. In 2014 IEEE 19th

TIME 2020

https://doi.org/10.1109/RTSS.2012.78
https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1109/ECRTS.2015.23
https://hal.archives-ouvertes.fr/hal-02508852
https://hal.archives-ouvertes.fr/hal-02508852
https://doi.org/10.1109/EDCC.2012.27
https://doi.org/10.1109/RTAS.2011.33
https://doi.org/10.1109/DATE.2010.5456952
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1145/2039370.2039388
https://doi.org/10.3233/FI-2013-802
https://doi.org/10.4230/LIPIcs.ECRTS.2019.18
https://doi.org/10.1109/MM.2010.78
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389

10:16 Non-Simultaneity as a Design Constraint

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 155–166.
IEEE, 2014. doi:10.1109/RTAS.2014.6925999.

34 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-core platforms. In
2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 55–64. IEEE, 2013. doi:10.1109/RTAS.2013.6531079.

https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2013.6531079

	Introduction
	Related Work
	Hardware Design
	Runtime Mitigations
	Time-Division Multiplexing

	Time-Constrained Automata
	System Model
	Non-Simultaneity as a Design Constraint
	Augmenting Time-Constrained Automata
	Example

	Validating the simultaneity constraints
	Formalization of the problem
	Determination of dates of reachability for every transitions
	Intersection of dates

	Proof of Concept
	Conclusion and Perspectives

