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Existence in critical spaces for the magnetohydrodynamical system

in 3D bounded Lipschitz domains

Sylvie Monniaux∗†

Abstract

Existence of mild solutions for the 3D MHD system in bounded Lipschitz domains is established
in critical spaces with the absolute boundary conditions.

1 Introduction

The magnetohydrodynamical system in a domain Ω ⊂ R3 on a time interval (0, T ) (0 < T ≤ ∞)
as considered in [17] (with all constants equal to 1) reads

∂tu−∆u+∇π + (u · ∇)u = (curl b)× b in (0, T )× Ω
∂tb−∆b = curl (u× b) in (0, T )× Ω

div u = 0 in (0, T )× Ω
div b = 0 in (0, T )× Ω

(MHD)

where u : (0, T ) × Ω → R3 denotes the velocity of the (incompressible homogeneous) fluid, the
magnetic field (in the absence of magnetic monopole) is denoted by b : (0, T ) × Ω → R3 and
π : (0, T ) × Ω → R3 is the pressure of the fluid. The first equation of (MHD) corresponds to
Navier-Stokes equations subject to the Laplace force (curl b) × b applied by the magnetic field b.
Actually, the divergence-free condition on the magnetic field b comes from the fact that b is in the
range of the curl operator. The second equation of (MHD) describes the evolution of the magnetic
field following the so-called induction equation.

This system (MHD) (with T = ∞ and Ω = R3) is invariant under the scaling uλ(t, x) =
λu(λ2t, λx), bλ(t, x) = λb(λ2t, λx) and πλ(t, x) = λ2π(λ2t, λx), λ > 0. This suggests that a
critical space for (u, b) is C ([0,∞);L3(R3)3)× C ([0,∞);L3(R3)3).

The purpose of this paper is to prove existence of solutions of this system in this critical space
in a bounded Lipschitz domain under the so-called absolute boundary conditions, denoted by
(BC1) below. This is investigated in Theorem 3.3, Theorem 3.4 in Section 3. The methods used
here come from the theory developed in [9] for the absolute boundary conditions.

In Section 2 are collected results on potential operators (similar to the famous Bogovsk̆ıi op-
erator),the Stokes operators with Dirichlet boundary conditions and Hodge boundary conditions,
as well as properties of the Hodge Laplacian in bounded Lipschitz domains. Section 3 is devoted
to the existence of mild solutions of the system (MHD) under absolute boundary conditions on a
bounded Lipschitz domain in critical spaces.
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2 Tools

In this section are recalled some results proved in [9] which will be useful in the following. See
also [11] and [12].

Notation 2.1. For an (unbounded) operator A on a Banach space X, we denote by D(A) its
domain, R(A) its range and N(A) its null space.

2.1 Differential forms, Potential operators

We consider the exterior derivative d := ∇∧ =
∑n
j=1 ∂jej∧ and the interior derivative (or co-

derivative) δ := −∇y = −
∑n
j=1 ∂jejy acting on differential forms on a domain Ω ⊂ Rn, i.e.

acting on functions from Ω to the exterior algebra Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λn of Rn.
We denote by

{
eS ; S ⊂ {1, . . . , n}

}
the basis for Λ. The space of `-vectors Λ` is the span of{

eS ; |S| = `
}

, where

eS = ej1 ∧ ej2 ∧ · · · ∧ ej` for S = {ej1 , . . . , ej`} with j1 < j2 < · · · < j`.

Remark that Λ0, the space of complex scalars, is the span of e∅ (∅ being the empty set). We set
Λ` = {0} if ` < 0 or ` > n.

On the exterior algebra Λ, the basic operations are

(i) the exterior product ∧ : Λk × Λ` → Λk+`,

(ii) the interior product y : Λk × Λ` → Λ`−k,

(iii) the Hodge star operator ? : Λ` → Λn−`,

(iv) the inner product 〈·, ·〉 : Λ` × Λ` → R.

If a ∈ Λ1, u ∈ Λ` and v ∈ Λ`+1, then

〈a ∧ u, v〉 = 〈u, ay v〉.

For more details, we refer to, e.g., [3, Section 2] and [6, Section 2], noting that both these papers
contain some historical background (and being careful that δ has the opposite sign in [3]). In
particular, we note the relation between d and δ via the Hodge star operator:

?δu = (−1)`d(? u) and ? du = (−1)`−1δ(? u) for an `-form u. (2.1)

In dimension n = 3, this gives (see [6, §2]) for a vector a ∈ R3 identified with a 1-form

- u scalar, interpreted as 0-form: a ∧ u = ua, ayu = 0;

- u scalar, interpreted as 3-form: a ∧ u = 0, ayu = ua;

- u vector, interpreted as 1-form: a ∧ u = a× u, ayu = a · u;

- u vector, interpreted as 2-form: a ∧ u = a · u, ayu = −a× u.

The domains of the differential operators d and δ, denoted by D(d) and D(δ) are defined by

D(d) :=
{
u ∈ L2(Ω,Λ); du ∈ L2(Ω,Λ)

}
and D(δ) :=

{
u ∈ L2(Ω,Λ); δu ∈ L2(Ω,Λ)

}
.

Similarly, the Lp versions of these domains read

Dp(d) :=
{
u ∈ Lp(Ω,Λ); du ∈ Lp(Ω,Λ)

}
and Dp(δ) :=

{
u ∈ Lp(Ω,Λ); δu ∈ Lp(Ω,Λ)

}
.

The differential operators d and δ satisfiy d2 = d ◦ d = 0 and δ2 = δ ◦ δ = 0. We will also consider
the adjoints of d and δ in the sense of maximal adjoint operators in a Hilbert space: δ := d∗ and
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d := δ∗. They are defined as the closures in L2(Ω,Λ) of the closable operators
(
d∗,C∞c (Ω,Λ)

)
and(

δ∗,C∞c (Ω,Λ)
)
.

The following proposition has been proved in [9, Proposition 4.1] in a slightly more general
framework (see also [10, Theorem 1.5] and [6, Theorem 1.1, Theorem 4.6 and Remark 4.12]).

Proposition 2.2. Suppose Ω is a bounded Lipschitz domain. Then the potential operators RΩ, SΩ

and KΩ defined above satisfy for all p ∈ (1,∞), with the convention pS = np
n−p if p < n, pS = +∞

if p > n and pS ∈ [n,+∞) if p = n,

RΩ : Lp(Ω,Λ)→ Lp
S

(Ω,Λ) ∩ Dp(d), SΩ : Lp(Ω,Λ)→ Lp
S

(Ω,Λ) ∩ Dp(d∗),

KΩ : Lp(Ω,Λ)→ L∞(Ω,Λ) ∩ Dp(d), K∗Ω : Lp(Ω,Λ)→ L∞(Ω,Λ) ∩ Dp(d∗),

KΩ,K
∗
Ω are compact operators in Lp(Ω,Λ),

dRΩ +RΩd = I −KΩ, d∗SΩ + SΩd
∗ = I −K∗Ω,

dKΩ = 0, d∗K∗Ω = 0 and KΩ = 0 on Rp(d), K∗Ω = 0 on Rp(d∗),

dRΩu = u if u ∈ Rp(d), d∗SΩu = u if u ∈ Rp(d∗).

As direct consequence we obtain that dRΩ and d∗SΩ are projections from Lp(Ω,Λ) onto the
ranges of d and d∗, Rp(d) and Rp(d∗), for all p ∈ (1,∞).

2.2 Hodge-Laplacian and Hodge-Stokes operators in Lipschitz domains

Definition 2.3. The Hodge-Dirac operator on Ω with tangential boundary conditions is

D‖ := d+ d∗.

Note that −∆‖ := D2
‖ = dd∗ + d∗d is the Hodge-Laplacian with absolute (generalised Neumann)

boundary conditions.
For a scalar function u : Ω → Λ0 we have that −∆‖u = d∗du = −∆Nu, where ∆N is the

Neumann Laplacian.

Following [2, Section 4], we have that the operator D‖ is a closed densely defined operator in
L2(Ω,Λ), and that

L2(Ω,Λ) =R(d)
⊥
⊕ R(d∗)

⊥
⊕ N(D‖) (H2)

=R(d)
⊥
⊕ N(d∗) (2.2)

=N(d)
⊥
⊕ R(d∗) (2.3)

where N(D‖) = N(d) ∩ N(d∗) = N
(
∆‖
)

is finite dimensional. The orthogonal projection from
L2(Ω,Λ) onto N(d∗) (see (2.2)), restricted to 1-forms, is the well-known Helmholtz (or Leray)
projection denoted by P. Restricted to 2-forms, the orthogonal projection from L2(Ω,Λ) onto
R(d) will be denoted in the sequel by Q.

The p version of the previous Hodge decompositions can be found in [9, Theorem 4.3]: there
exist Hodge exponents pH , pH = p′H with 1 ≤ pH < 2 < pH ≤ ∞ such that

Lp(Ω,Λ) =Rp(d)⊕ Rp(d∗)⊕ N(D‖) (Hp)

=Rp(d)⊕ Np(d∗) (2.4)

=Np(d)⊕ Rp(d∗) (2.5)
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for all p ∈ (pH , p
H) and the projections P : Lp(Ω,Λ1) → Np(d∗)|Λ1

and Q : Lp(Ω,Λ2) → Rp(d)|Λ2

extend accordingly.

Remark 2.4. If the domain is smooth or have a Lipschitz boundary, we have the following estimates
on the Hodge exponents pH and pH .

1. If Ω ⊂ Rn is smooth, then pH = 1 and pH =∞ (see [16, Theorems 2.4.2 and 2.4.14].

2. In the case of a bounded Lipschitz domain, pH < 2n
n+1 and consequently pH > 2n

n−1 , which

gives in dimension n = 3: pH < 3
2 and pH > 3 (see [9, §7]).

Remark 2.5. Proposition 2.2 and the projections P and Q yield

P(RΩdu+KΩu) =u for u ∈ Np(d∗)|Λ1
,

Q(SΩd
∗b+K∗Ωb) = b for b ∈ Rp(d)|Λ2

for all pH < p < pH . The second equation comes from the fact that Rp(d) ⊂ Np(d), using (2.5).

The following results can be found partly in [11, Theorem 7.3] (sectoriality) and in [9, §8] (im-
provement of the interval of p for the Hodge-Stokes operator and bounded holomorphic functional
calculus):

Theorem 2.6. Suppose Ω is a bounded Lipschitz domain in Rn. Define −∆‖ = D2
‖ in L2(Ω,Λ).

If pH < p < pH , then the Hodge-Laplacian with absolute boundary conditions −∆‖ is sectorial of
angle 0 in Lp(Ω,Λ) and for all µ ∈ (0, π2 ), −∆‖ admits a bounded S◦µ+ holomorphic functional
calculus in Lp(Ω,Λ).

Define the Hodge-Stokes operator by S‖ := D2
‖ = d∗d in N2(d∗), restricted to 1-forms. If

max
{

1, npH
n+pH

}
< p < pH , then S‖ is sectorial of angle 0 in Np(d∗)|Λ1

and for all µ ∈ (0, π2 ), S‖
admits a bounded S◦µ+ holomorphic functional calculus in Np(d∗)|Λ1

. In particular, the semigroup

(e−tS‖)t≥0 is bounded on Np(d∗)|Λ1
with norm denoted by Kp,S.

Define the Hodge-Maxwell operator M‖ := dd∗ in N(d), restricted to 2-forms. If max
{

1, npH
n+pH

}
<

p < pH , then M‖ is sectorial of angle 0 in Np(d)|Λ2
and for all µ ∈ (0, π2 ), M‖ admits a bounded S◦µ+

holomorphic functional calculus in Np(d)|Λ2
. In particular, the semigroup (e−tM‖)t≥0 is bounded

on Rp(d)|Λ1
with norm denoted by Kp,M .

Using the results stated in Remark 2.5, one can prove Lp − Lq bounds for the operator S‖
(resp. M‖) (see [12, Theorems 3.1 and 4.1] for the dimension 3 and [8, Theorem 1.1] for the Riesz
transform like estimates (2.7) and (2.9)).

Theorem 2.7. Let p ∈
(
max

{
1, npH

n+pH

}
, pH

)
and q ∈ [p, pH) such that 1

p −
α
n = 1

q for some

α ∈ [0, 1]. Then the semigroup (e−tS‖)t≥0 in Np(d∗)|Λ1
satisfies the estimates

cSp,q := sup
t≥0

∥∥tα2 e−tS‖∥∥
Np(d∗)|

Λ1
→Lq + sup

t≥0

∥∥t 1+α
2 de−tS‖

∥∥
Np(d∗)|

Λ1
→Lq <∞ (2.6)

and
γSp,q := ‖S−

α
2

‖ ‖Np(d∗)|
Λ1
→Lq <∞. (2.7)

The semigroup (e−tM‖)t≥0 in Rp(d)|Λ2
satisfies the estimate

cMp,q := sup
t≥0

∥∥tα2 e−tM‖∥∥
Rp(d)|

Λ2
→Lq + sup

t≥0

∥∥t 1+α
2 d∗e−tM‖

∥∥
Rp(d)|

Λ2
→Lq <∞ (2.8)

and
γMp,q := ‖M−

α
2

‖ ‖Rp(d)|
Λ2
→Lq <∞. (2.9)
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3 Existence in the case of absolute boundary conditions

Thanks to the formula
(u · ∇)u = 1

2∇|u|
2 + u× (curlu)

for a sufficiently smooth vector field u, the system (MHD) can be reformulated as follows:
∂tu−∆u+∇π1 − u× (curlu) = (curl b)× b in (0, T )× Ω

∂tb−∆b = curl (u× b) in (0, T )× Ω
div u = 0 in (0, T )× Ω
div b = 0 in (0, T )× Ω

(3.1)

where the pressure π has been replaced by the so-called dynamical pressure π1 = π + 1
2 |u|

2.
This formulation can be translated in the language of differential forms: π1 is a scalar function,
interpreted as 0-form, u is a vector field interpreted as 1-form and b is a vector field interpreted
as 2-form. Following Section 2 one can rewrite (3.1) in terms of differential forms:

∂tu+ S‖u+ dπ1 + uy du = −d∗by b in (0, T )× Ω
∂tb+M‖b = −d(uy b) in (0, T )× Ω

u(t, ·) ∈ N(d∗)|Λ1
for all t ∈ (0, T )

b(t, ·) ∈ R(d)|Λ2
for all t ∈ (0, T ).

(MHD1)

The terms in the first equation are all 1-forms, in the second equation the terms are all 2-forms.
The absolute boundary conditions associated with the previous system (MHD1) are defined by
the term d∗ in −∆‖ = (dd∗ + d∗d):

ν · u = νyu = 0 on (0, T )× ∂Ω
−ν × curlu = νy du = 0 on (0, T )× ∂Ω

}
absolute b.c. for the 1-form u

−ν × b = νy b = 0 on (0, T )× ∂Ω
ν div b = νy db = 0 on (0, T )× ∂Ω.

}
absolute b.c. for the 2-form b

(BC1)

This formulation can be used, for instance, to study the magnetohydrodynamical system in di-
mensions greater than or equal to 2 with the same theoretical tools. Let us point out that these
boundary conditions are different to those usually investigated in magnetohydrodynamical prob-
lems, starting with the paper [17]; see also [1]. The boundary conditions (BC1) in the case of
Navier-Stokes equations (i.e. for b = 0) have been studied in [12]; see also [14] and [15].

Remark 3.1. The last condition in (BC1) is void since b ∈ R(d)|Λ2
: db = 0 in all Ω.

Definition 3.2. Let Ω ⊆ R3. A mild solution of the system (MHD1) with absolute boundary
conditions (BC1) and initial conditions u0 ∈ N(d∗)|Λ1

and b0 ∈ R(d)|Λ2
is a pair (u, b) of vector

fields satisfying

u(t) =e−tS‖u0 +

ˆ t

0

e−(t−s)S‖P
(
−u(s)y du(s)

)
ds+

ˆ t

0

e−(t−s)S‖P
(
−d∗b(s)y b(s)

)
ds, (3.2)

b(t) =e−tM‖b0 +

ˆ t

0

e−(t−s)M‖
(
−d
(
u(s)y b(s)

))
ds. (3.3)

From now on, we assume the following technical (Leibniz rule-like) property on the domain
Ω ⊂ R3: for all q ∈ [3, pH), there exists a constant Cq > 0 such that

‖d(ω1yω2)‖ q
2
≤ Cq

(
‖D‖ω1‖q‖ω2‖q + ‖ω1‖q‖D‖ω2‖q

)
(3.4)

for all ω1 ∈ Dp(D‖) ∩ Lq(Ω,Λ1) and all ω2 ∈ Dp(D‖) ∩ Lq(Ω,Λ2). This is the case if the domain
Ω is smooth.

The following theorem is about the global existence of mild solutions with small initial data.
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Theorem 3.3 (Global existence). Let Ω ⊂ R3 be a bounded Lipschitz domain or Ω = R3. Then
there exists ε > 0 such that for all u0 ∈ N3(d∗)|Λ1

and b0 ∈ R3(d)|Λ2
with ‖u0‖3 + ‖b0‖3 ≤ ε,

the system (MHD1) with the boundary conditions (BC1) and T = ∞ admits a mild solution
u, b ∈ C ([0,∞);L3(Ω)3).

The next result states local existence of mild solutions with no restriction on the size of the
initial data.

Theorem 3.4 (Local existence). Let Ω ⊂ R3 be a bounded Lipschitz domain or Ω = R3. Then
for all u0 ∈ N3(d∗)|Λ1

and b0 ∈ R3(d)|Λ2
there exists T > 0 such that the system (MHD1) with the

boundary conditions (BC1) admits a mild solution u, b ∈ C ([0, T );L3(Ω)3).

The methods to prove these two theorems are classical based on a fixed point theorem, already
used for the Navier-Stokes equations in the paper by Fujita and Kato [7] (see also [13]) and in [5]
(see also [4]) for the Boussinesq system. Most of the tools used here appeared in the paper [12];
see also [9].

Let q ∈
(
3,min{pH , 6}

)
and α ∈ (0, 1) such that 1

q = 1
3 −

α
3 . For 0 < T ≤ ∞, we define the

following spaces

UT :=
{
u ∈ C ((0, T );Nq(d∗)|Λ1

); du ∈ C ((0, T );Lq(Ω,Λ2)) : (3.5)

sup
0<t<T

(
t
α
2 ‖u(t)‖q + t

1+α
2 ‖du(t)‖q

)
<∞

}
and

BT :=
{
b ∈ C ((0, T );Rq(d)|Λ2

); d∗b ∈ C ((0, T );Lq(Ω,Λ1)) : (3.6)

sup
0<t<T

(
t
α
2 ‖b(t)‖q + t

1+α
2 ‖d∗b(t)‖q

)
<∞

}
,

endowed with the norms

‖u‖UT
:= sup

0<t<T

(
t
α
2 ‖u(t)‖q + t

1+α
2 ‖du(t)‖q

)
(3.7)

and
‖b‖BT

:= sup
0<t<T

(
t
α
2 ‖b(t)‖q + t

1+α
2 ‖d∗b(t)‖q

)
. (3.8)

Lemma 3.5. For u0 ∈ N3(d∗)|Λ1
and b0 ∈ R3(d)|Λ2

, we have

1. a1 : t 7→ e−tS‖u0 ∈ UT ,

2. a2 : t 7→ e−tM‖b0 ∈ BT ,

for all T > 0 Moreover, for all ε > 0, there exists T > 0 such that

‖a1‖UT
+ ‖a2‖BT

≤ ε. (3.9)

Proof. By Theorem 2.7, the following bound holds for all T > 0:

‖a1‖UT
+ ‖a2‖BT

≤ cS3,q‖u0‖3 + cM3,q‖b0‖3. (3.10)

Therefore, if ‖u0‖3 and ‖b0‖3 are small enough, (3.9) holds for every T > 0.
For any u0 and b0 (not necessarily small in the L3 norm), for ε > 0, let u0,ε ∈ Nq(d∗)|Λ1

and

b0,ε ∈ R3(d)|Λ2
such that

‖u0 − u0,ε‖3 + ‖b0 − b0,ε‖3 ≤ ε.
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We denote by a1,ε and a2,ε the quantities a1,ε(t) = e−tS‖u0,ε and a2,ε(t) = e−tM‖b0,ε. By (3.10),
there holds

‖a1 − a1,ε‖UT
+ ‖a2 − a2,ε‖BT

≤ ε (cS3,q + cM3,q). (3.11)

Applying (2.6) with p = q and α = 0, we obtain

‖a1,ε‖UT
≤ csq,qT

α
2 ‖u0,ε‖q.

The same reasoning applying (2.8) with p = q and α = 0 yields

‖a2,ε‖BT
≤ cMq,qT

α
2 ‖b0,ε‖q.

Now choosing ε > 0 small enough and T > 0 small enough, we find that (3.9) holds.

Next, we define the operators

B1(u, v)(t) =

ˆ t

0

e−(t−s)S‖P
(
−u(s)y dv(s)

)
ds, t ∈ [0, T ), u, v ∈ UT , (3.12)

B2(b, b′)(t) =

ˆ t

0

e−(t−s)S‖P
(
−d∗b(s)y b′(s)

)
ds, t ∈ [0, T ), b, b′ ∈ BT , (3.13)

B3(u, b)(t) =

ˆ t

0

e−(t−s)M‖
(
−d
(
u(s)y b(s)

))
ds, t ∈ [0, T ), u ∈ UT , b ∈ BT . (3.14)

The next lemma gives a precise statement about the boundedness of the bilinear operators B1, B2

and B3.

Lemma 3.6. The bilinear operators B1, B2 and B3 are bounded in the following spaces:

1. B1 : UT ×UT → UT ,

2. B2 : BT ×BT → UT ,

3. B3 : UT ×BT → BT

with norms independent from T > 0.

Proof. 1. For u, v ∈ UT , by definition of UT we have that s 7→ s
1
2 +αu(s)y dv(s) ∈ Cb((0, T );L

q
2 (Ω,Λ1)

with norm less than or equal to ‖u‖UT
‖v‖UT

. Since 3
2 <

q
2 < 3, P is bounded from L

q
2 (Ω,Λ1)

to N
q
2 (d∗)|Λ1

Moreover, e−(t−s)S‖ maps N
q
2 (d∗)|Λ1

to Nq(d∗)|Λ1
with norm cSq

2 ,q
(t − s)− 1−α

2

thanks to (2.6) with p = q
2 . Therefore, we have for all t ∈ (0, T )

‖B1(u, v)(t)‖q .
(ˆ t

0

s−
1
2−α(t− s)−

1−α
2 ds

)
‖u‖UT

‖v‖UT
. t−

α
2 ‖u‖UT

‖v‖UT
.

This gives the first estimate for B1(u, v) ∈ UT . For the second estimate, we note that
de−(t−s)S‖ maps N

q
2 (d∗)|Λ1

to Lq(Ω,Λ2) with norm cSq
2 ,q

(t − s)−1+α
2 thanks to (2.6) with

p = q
2 . Therefore, we have for all t ∈ (0, T )

‖dB1(u, v)(t)‖q .
(ˆ t

0

s−
1
2−α(t− s)−1+α

2 ds
)
‖u‖UT

‖v‖UT
. t−

1+α
2 ‖u‖UT

‖v‖UT
,

which gives the second estimate for B1(u, v) ∈ UT .

2. The proof that for b, b′ ∈ BT , B2(b, b′) ∈ UT with norm independent from T > 0 follows the
lines of the previous point. We omit the details here.
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3. Thanks to the property (3.4), the proof that for u ∈ UT and b ∈ BT , B3(u, b) ∈ BT with
norm independent from T > 0 can be copied from the proof of point 1, using the fact that
d∗e−(t−s)M‖ maps R

q
2 (d)|Λ2

to Lq(Ω,Λ1) with norm cMq
2 ,q

(t − s)−1+α
2 thanks to (2.8) with

p = q
2 .

This proves Lemma 3.6.

Lemma 3.7. Let T > 0. Assume that (u, b) ∈ UT × BT is a mild solution of (MHD1) with
absolute boundary conditions (BC1) with initial conditions u0 ∈ N3(d∗)|Λ1

and b0 ∈ R3(d)|Λ2
.

Then u ∈ Cb([0, T );N3(d∗)|Λ1
) and b ∈ Cb([0, T );R3(d)|Λ2

).

Proof. To prove this lemma, first observe that if u0 ∈ N3(d∗)|Λ1
and b0 ∈ R3(d)|Λ2

, then for all T >

0, t 7→ e−tS‖u0 ∈ Cb([0, T );N3(d∗)|Λ1
) and t 7→ e−tM‖b0 ∈ Cb([0, T );R3(d)|Λ2

). It remains to show

that if u ∈ UT and b ∈ BT , then B1(u, u) ∈ Cb([0, T );N3(d∗)|Λ1
), B2(b, b) ∈ Cb([0, T );N3(d∗)|Λ1

)

and B3(u, b) ∈ Cb([0, T );R3(d)|Λ2
). The continuity is straightforward. To prove boundedness, it

suffices to reproduce the proof of the previous lemma (recall that α = 1− 3
q ) to obtain

‖B1(u, u)(t)‖3 .
(ˆ t

0

s−
1
2−α(t− s)− 1

2 +α ds
)
‖u‖2UT

. ‖u‖2UT
,

using the fact that e−(t−s)S‖ maps N
q
2 (d∗)|Λ1

to L3(Ω,Λ1) with norm controlled by cSq
2 ,3

(t−s)−
3
q+ 1

2

thanks to (2.6). The terms B2 and B3 can be treated similarly.

Proof of Theorems 3.3 and 3.4. The system

u = a1 +B1(u, u) +B2(b, b) and b = a2 +B3(u, b), (u, b) ∈ UT (3.15)

can be reformulated as
u = a + B(u,u) (3.16)

where u = (u, b) ∈ UT × BT , a = (a1, a2) and B(u,v) = (B1(u, v) + B2(b, b′), B3(u, b′)) if
u = (u, b) and v = (v, b′). On UT ×BT we choose the norm ‖(u, b)‖UT×BT

:= ‖u‖UT
+ ‖b‖BT

.
One can easily check, using Lemma 3.6, that

‖B(u,v)‖UT×BT
≤ C‖u‖UT×BT

‖v‖UT×BT

where C is a constant independent from T > 0. We can then apply Picard’s fixed point theorem to
prove that for u0 ∈ N3(d∗)|Λ1

and b0 ∈ R3(d)|Λ2
, with T ≤ ∞ such that (3.9) holds for ε = 1

4C , the
system (3.16) admits a unique solution u = (u, b) ∈ UT ×BT . By Lemma 3.7, this provides a mild
solution (u, b) ∈ Cb([0, T );N3(d∗)|Λ1

) × Cb([0, T );R3(d)|Λ2
) of (MHD1) with boundary conditions

(BC1).
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