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LINEAR HYPERBOLIC SYSTEMS ON NETWORKS:

WELL-POSEDNESS AND QUALITATIVE PROPERTIES∗

Marjeta Kramar Fijavž1,2, Delio Mugnolo3 and Serge Nicaise4,∗∗

Abstract. We study hyperbolic systems of one-dimensional partial differential equations under gen-
eral, possibly non-local boundary conditions. A large class of evolution equations, either on individual
1-dimensional intervals or on general networks, can be reformulated in our rather flexible formalism,
which generalizes the classical technique of first-order reduction. We study forward and backward well-
posedness; furthermore, we provide necessary and sufficient conditions on both the boundary conditions
and the coefficients arising in the first-order reduction for a given subset of the relevant ambient space
to be invariant under the flow that governs the system. Several examples are studied.
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1. Introduction

This paper is devoted to the study of systems of partial differential equations in 1-dimensional setting,
more precisely, on collections of intervals: not only internal couplings are allowed, but also interactions at the
endpoints of the intervals. It is then natural to interpret these systems as networks, and in fact, we will dwell
on this viewpoint throughout the paper.

Partially motivated by investigations in quantum chemistry since the 1950s, differential operators of second
order on networks have been often considered in the mathematical literature since the pioneering investigations
by Lumer [50] and Faddeev and Pavlov [59]: in these early examples, either heat or Schrödinger equations were
of interest. This has paved the way to a manifold of investigations, see e.g. the historical overview in [54].

The equations we are going to study in this paper will, however, be rather hyperbolic; more precisely, the
hyperbolic systems of partial differential equations of our interest are of the form

u̇ = Mu′ +Nu,
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2 M.K. FIJAVŽ ET AL.

where, here and below, we denote everywhere by u̇ and u′ the partial derivative of a function u with respect to
the time variable t and to the space variable x, respectively.

Each of these equations models a physical system: we consider several of these systems and allow them
to interact at their boundaries, thus producing a collection of hyperbolic systems on a network. Hyperbolic
evolution equations of different kinds taking place on the edges of a network have been frequently considered
in the literature, we refer to [20, 22, 45, 54, 55] for an overview. Let us emphasize that we shall only consider
linear systems: for a survey on some recent developments of the theory for nonlinear hyperbolic systems and
many practical applications see e.g. [13].

On each edge of the network we allow for possibly different dynamics (say, Dirac-like, wave-like, beam-like,
etc.), thus it would be more precise to write

u̇e = Meu
′
e +Neue, e ∈ E, (1.1)

where E is the edge set of the considered network. In particular, in the easiest cases Me may be a diagonal
matrix of coefficients of a transport-like equations, but Me may well have off-diagonal entries, or even have a
symplectic structure: additionally, we allow all these Me’s to have different size, which of course has to be taken
into account by the boundary conditions.

We are not going to assume the matrices Me to be either positive or negative semidefinite – in fact, not
even Hermitian; therefore, it is at a first glance not clear at which endpoints the boundary conditions should be
imposed at all. Indeed, the choice of appropriate transmission conditions in the vertices of the network is the
biggest difficulty one has to overcome.

While Ali Mehmeti began the study of wave equations on networks already in [1], it was to the best of our
knowledge only at the end of the 1990s that first order differential operators on networks began to be studied.
In [16], Carlson defined on a network the momentum operator – i.e., the operator defined edgewise as ı d

dx –
and gave a sufficient condition – in terms of the boundary conditions satisfied by functions in its domain – for
self-adjointness, hence for generation of a unitary group governing a system of equations

u̇ = ±u′ (1.2)

with couplings in the boundary (i.e., in the nodes of the networks). Similar ideas were revived in [23, 30], where
different sufficient conditions of combinatorial or algebraic nature were proposed. A characteristic equation and
the long-time behavior of the semigroup governing (1.1) as well as further spectral and extension theoretical
properties were discussed in [36, 37], respectively, in dependence of the boundary conditions. While all the
above mentioned authors – as well as the present manuscript – apply Hilbert space techniques, a semigroup
approach to study simple transport equations in Banach spaces (like the space of L1-functions along the edges
of a network) was presented in [22, 42, 52], see also ([7], Sect. 18) and the references given there.

All these above mentioned papers treat essentially the same parametrization of boundary conditions, namely

u(0) = Tu(`)

for a suitable matrix T (possibly consisting of diagonal blocks that correspond to the network’s vertices), where
u(0) and u(`) denote the vectors of boundary values of u at the initial and terminal endpoints of all intervals,
respectively.

Bolte and Harrison studied in [9] the Dirac equation on networks. The 1D Dirac equation consists of a system
of two coupled first order (both in time and space) equations, much like (1.1); the matrix Me is Hermitian, which
allows for simple integration by parts and, in turn, for the emergence of a convenient symplectic structure. Both
internal and boundary couplings had to be considered, and the relevant coupling matrix is indefinite. They thus
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adopted the parametrization

Au(0) +Bu(`) = 0

for the boundary conditions, for suitable matrices A,B: mimicking ideas from [39], they were able to characterize
those A,B that lead to self-adjoint extensions. Self-adjointness of more general first-order differential operator
matrices has been studied in [65].

In this paper, we opt for yet another parametrization of the boundary conditions, inspired by a classical
Sturm–Liouville formalism borrowed by Kuchment to discuss self-adjoint extensions of Laplacians on networks
in [43] (see also [56] for the “telegrapher’s equation” on networks with similar boundary conditions). More
precisely, we impose boundary conditions of the form

(
u(0)

u(`)

)
∈ Y

for a subspace Y of the space of boundary values; and find sufficient conditions on Y that, in dependence on M
and an auxiliary matrix Q, guarantee that the abstract Cauchy problem associated with (1.1) is governed by a
(possibly unitary, under stronger assumptions) group, or a (possibly contractive, under stronger assumptions)
semigroup.

The auxiliary matrix Q – often called a Friedrichs symmetrizer in the literature, see Defintion 2.1 of [8] –
will play a fundamental role in our approach. Roughly speaking, its role is not to diagonalize M , but only to
make it Hermitian; this is done by suitably modifying the inner product of the L2-space over the network by
means of Q, which therefore has in turn to be positive definite; especially for this reason, our whole theory is
essentially relying upon the Hilbert space structure. Our approach allows us in particular to prove generation
of unitary C0-groups and contractive C0-semigroups (and, by perturbation, of general C0-(semi)groups). This
has a long tradition that goes back to Lax and Phillips [47], who already propose the idea of transforming
boundary conditions into the requirement that at each boundary point v the boundary values belong to a given
subspace Yv. Indeed, while our well-posedness results are not surprising once the correct boundary conditions
are found, the actually tricky task – as long as M is not diagonalizable, the standard assumption among others
in [6, 8, 24, 35, 64] – is to actually find the right dimension of the space Yv. In this paper, we pursue this task
by a fair amount of linear algebra that eventually allows us to parametrize the boundary conditions leading to
contractive (semi)groups. This should be compared with the more involved situation in higher dimension, see
e.g. [63], which allows for less explicit representation of the boundary conditions. Our setting is thus arguably
more general than the approaches to hyperbolic systems on networks that have recently emerged, including
port-Hamiltonian systems [34, 67, 69] and hyperbolic systems that can be transformed into characteristic forms
via Riemann coordinates [6], both based on diagonalization arguments.

A relevant by-product of our approach is the possibility to characterize in terms of Q,M,N positivity and
further qualitative properties of the solutions of the initial value problem associated with (1.1). In this context,
we regard as particularly relevant Proposition 4.11 and Lemma 4.13, which roughly speaking state that the
semigroup governing (1.1) can only be positive if M is diagonal, up to technical assumptions (including that Q
is diagonal too; this is not quite restrictive, as e.g. all of the examples we will discuss in Sect. 5 will satisfy it);
this negative result essentially prevents most evolution equations of non-transport type arising in applications
from being governed by a positive semigroup.

The obtained results also form a basis for studies of different stability and control problems related to the
presented hyperbolic systems. In Remark 4.4 we give some immediate indications for these studies but leave
further problems for possible future considerations.

Let us sketch the structure of our paper. In Section 2 we present our general assumptions and discuss their
role by showing that a broad class of examples fits into our scheme. In Sections 3 and 4 we then show that
our description of boundary condition allows for easy description of realizations that generate (semi)groups. We
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also find necessary and sufficient conditions for qualitative properties of these semigroups, including reality and
positivity.

We conclude this paper by reviewing in Section 5 several applications of our method; among other we discuss
forward and backward well-posedness of different equations modeling wave phenomena on networks, including
1D Saint–Venant, Maxwell, and Dirac equations. We study different regimes for the Saint-Venant equation and
discuss transmission conditions in the vertices that imply forward, but not backward well-posedness of the Dirac
equation. We also study in detail an interesting model of mathematical physics for heat propagation in supercold
molecules; we extend the results from [62] by providing physically meaningful classes of transmission conditions
implying well-posedness and proving nonpositivity of the semigroup governing this system.

Some technical results, which seem to be folklore, are recalled in the appendices.

2. General setting and main examples

Let E be a nonempty finite set, which we will identify with the edges of a network upon associating a length
`e with each e ∈ E. To fix the ideas, take e ∈ E and `e > 0. (We restrict for simplicity to the case of a network
consisting of edges of finite length only, although our results can be easily extended to the case of networks
consisting of finitely many leads – semi-bounded intervals – attached to a “core” of finitely many edges of finite
length.) We will consider evolution equations of the form

u̇e(t, x) = Me(x)u′e(t, x) +Ne(x)ue(t, x), t ≥ 0, x ∈ (0, `e), (2.1)

where ue is a vector-valued function of size ke ∈ N1 := {1, 2, . . .}, and Me and Ne are matrix-valued functions
of size ke × ke. We will couple equations (2.1) for different e ∈ E via boundary conditions given later on.

If Me(x) is Hermitian for all x, then integrating by parts we obtain for all u ∈
⊕

e∈EH
1(0, `e)

ke1

2<
∑
e∈E

∫ `e

0

Meu
′
e · ūe dx = −

∑
e∈E

∫ `e

0

ue ·M ′eūe dx+
∑
e∈E

[Meue · ūe]
∣∣∣`e
0
, (2.2)

which – provided M ′e is essentially bounded – allows for an elementary dissipativity analysis of the operator
that governs the abstract Cauchy problem associated with (2.1) in a natural Hilbert space. Also the case of
diagonalizable matrices Me is benign enough, see e.g. Section 7.3 [29]. In the case of general Me, however, it is
not easy to control all terms that arise when integrating against test functions and we have to resort to different
ideas.

Assumption 2.1. For each e ∈ E the following holds.

(1) The matrix Me(x) is invertible for each x ∈ [0, `e] and the mapping [0, `e] 3 x 7→Me(x) ∈Mke(C) is Lipschitz
continuous, in other words, Me ∈W 1,∞(0, `e).

(2) The mapping [0, `e] 3 x 7→ Ne(x) ∈Mke(C) is of class L∞.
(3) There exists a Lipschitz continuous function [0, `e] 3 x 7→ Qe(x) ∈Mke(C) such that

(i) Qe(x) and Qe(x)Me(x) are Hermitian for all x ∈ [0, `e],
(ii) Qe(·) is uniformly positive definite, i.e., there exists q > 0 such that

Qe(x)ξ · ξ̄ ≥ q‖ξ‖2 for all ξ ∈ Cke and x ∈ [0, `e].
2

If Me(x) is Hermitian for all x, then Assumptions 2.1.(3i) are trivially satisfied by taking Qe to be the ke× ke
identity matrix, although this is not the only possible choice and, in fact, it is sometimes actually possible and

1Throughout this paper ⊕e∈EHe denotes the direct sum of the Hilbert spaces He, e ∈ E, i.e.,
⊕

e∈E He := {(he)e∈E : he ∈ He}.
2 Throughout this paper, Cke is equipped with its Euclidean norm ‖ · ‖ and Mke (C) with the induced operator norm, also denoted

by ‖ · ‖, since no confusion is possible.
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convenient to take non-diagonal Qe. Assumptions 2.1.(3) holds if and only if the system (2.1) is hyperbolic in
the sense of [6], see Lemma A.1 below. But we prefer this formulation because the matrices Qe will be involved
in the boundary conditions.

The fact that Qe(x)Me(x) is Hermitian for all x greatly simplifies our analysis. At the same time, many
examples from physics, chemistry, biology, etc., fit in this framework.

The most trivial examples are obtained by taking Me as a diagonal matrix with spatially constant entries:
this choice leads to classical (vector-valued) transport problems on networks. For ke ≡ 1 they were considered
in [42] and subsequent papers, cf. the literature quoted in Section 18 of [7].

Example 2.2. The 2× 2 hyperbolic system{
ṗ+ Lq′ +Gp+Hq = 0 in (0, `)× (0,+∞),
q̇ + Pp′ +Kq + Jp = 0 in (0, `)× (0,+∞),

(2.3)

on a real interval (0, `) generalizes the first order reduction of the wave equation and offers a general framework
to treat models that appear in several applications. The analysis of this system on networks with different
boundary conditions has been performed in [56].

In electrical engineering [33, 51], p (resp. q) represents the voltage V (resp. the electrical current I) at

(`− x, t), H = J = 0, L = 1
C , P = 1

L , G = Ĝ
C , K = R

L , where C > 0 is the capacitance, L > 0 the inductance,

Ĝ ≥ 0 the conductance, and R ≥ 0 the resistance: (2.3) is then referred to as “telegrapher’s equation”.
This system also models arterial blood flow [12, 18] for which p is the pressure and q the flow rate at

(x, t), L = 1
C , P = A, K = − 2α

α−1
ν
A , G = 0, where A > 0 is the vessel cross-sectional area, C > 0 is the vessel

compliance, ν ≥ 0 is the kinematic viscosity coefficient (ν ≈ 3.2× 10−6 m2/s for blood) and α > 1 is the Coriolis
coefficient or correction coefficient (α = 4/3 for Newtonian fluids, while α = 1.1 for non-Newtonian fluids, like
blood).

Given L,P ∈ C, the Assumptions 2.1. (3) hold for system (2.3) with

Me = −
(

0 L
P 0

)
, Ne = −

(
G H
K J

)
, and Qe =

(
a b
c d

)
(2.4)

if and only if 3

a, d ∈ R, b = c, a > 0, ad > |b|2, aL = dP , bP, bL ∈ R, LP 6= 0. (2.5)

Example 2.3. The momentum operator ı d
dx [17, 30] does not satisfy Assumptions 2.1. More generally, if Me

is skew-Hermitian, then Assumptions 2.1 imply that there exists a Hermitian, positive definite matrix Qe that
anti-commutes with Me. But then TrQe, the trace of the matrix Qe, satisfies

TrQe = Tr(M−1
e QeMe) = −TrQe,

hence TrQe = 0 which is in contradiction with positive definiteness of Qe.

Example 2.4. The linearized Saint-Venant equation gives rise to a case where Ne 6= 0, see equation (1.27) of
[6]. Indeed, it corresponds to the 2× 2 system{

ḣ = −V h′ −Hu′ − V ′h−H ′u in (0, `)× (0,+∞),

u̇ = −V u′ − gh′ + Cf
V 2

H2h− (V ′ + 2Cf
V
H )u in (0, `)× (0,+∞),

(2.6)

3 For a complex number z, z̄ denotes its complex conjugate.
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where h is the water depth and u the water velocity, and corresponds to the linearization around a steady state
(H,V ) of the Saint-Venant model, that in particular satisfies

H 6= 0, (HV )′ = 0 and gH − V 2 6= 0. (2.7)

Here, g is the constant of gravity and Cf is a (positive) constant friction coefficient.
Note that Assumptions 2.1 holds for system (2.6) with

Me :=

(
−V −H
−g −V

)
and Qe :=

(
g 0
0 H

)
(2.8)

whenever H and V are of class H1 and H > 0, which holds as soon as we consider a non trivial and smooth
enough steady state (H,V ), see (2.7).

Finally Ne is clearly given by

Ne :=

(
−V ′ −H ′

Cf
V 2

H2 −(V ′ + 2Cf
V
H )

)
. (2.9)

3. Parametrization of the realizations: the isometric case

The catchiest application of our general theory arises whenever we discuss hyperbolic equations (or even
systems thereof) on networks (also known as metric graphs in the literature); in this case, it is natural to
interpret E as a set of intervals, each with length `e; and boundary conditions in the endpoints 0, `e turn into
transmission conditions in the ramification nodes. Indeed, for each edge e, ke boundary conditions are required.
In general, they are expressed in Riemann (characteristic) coordinates, see for instance [6]. This means that
system (2.1) is transformed into an equivalent system with a diagonal matrix M̃e with k+

e (resp. k−e ) positive
(resp. negative) eigenvalues with k+

e + k−e = ke and k+
e (resp. k−e ) boundary conditions are imposed at 0 (resp.

`e), which allows to fix the incoming information. Here, we prefer to write them in the original unknowns.
Furthermore it is a priori not clear how these conditions should be adapted to the case of a network, so we
will conversely try to parametrize all those transmission conditions in the network’s vertices that lead to an
evolution governed by a semigroup (of isometries).

In particular, we are going to look for dissipativity, hence m-dissipativity of the operator ±A whose restriction
to the edge e is given by

(Au)e := Meu
′
e +Neue (3.1)

in a natural Hilbert space, see (2.1).
To begin with, let us impose the following assumption.

Assumption 3.1. Let G be a finite network (or metric graph) with underlying (discrete) graph G, i.e., G =
(V,E) is a finite, directed graph with node set V and edge set E and each e ∈ E is identified with an interval
(0, `e) whereby the parametrization of the interval agrees with the orientation of the edge.

We are going to study the problem (2.1) in the vector space

L2(G) :=
⊕
e∈E

L2(0, `e)
ke .
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Clearly, L2(G) becomes a Hilbert space once equipped with the inner product

(u, v) :=
∑
e∈E

∫ `e

0

Qe(x)ue(x) · v̄e(x) dx, u, v ∈ L2(G), (3.2)

(where, here and below, z · z̄1 means the Euclidean inner product in Cke between z and z1), which is equivalent
to the canonical one. The associated norm will be denoted by ‖ · ‖, because no confusion is possible with the
Euclidean and matrix norms introduced before.

Of course, if Me is diagonal, then Assumptions 2.1.(3i) is satisfied e.g. whenever Qe(x) is the identity for all
x; however, Example 2.2 shows that QeMe may be Hermitian even when Me is not. It thus turns out that such
an alternative inner product is tailor-made for the class of hyperbolic systems we are considering. The main
reason for restricting to the Hilbert space setting is that checking dissipativity in Lp-spaces is less immediate.

3.1. Transmission conditions in the vertices

In order to tackle the problem of determining the correct transmission conditions on A, let us first introduce
the maximal domain

Dmax :=
⊕
e∈E

{u ∈ L2(0, `e)
ke : Meu

′ ∈ L2(0, `e)
ke}. (3.3)

We want to explicitly state the following, whose easy proof we leave to the reader. Recall that invertibility of
Me(x) is assumed for all x ∈ [0, `e].

Lemma 3.2. It holds

Dmax =
⊕
e∈E

H1(0, `e)
ke , (3.4)

and therefore Dmax is densely and compactly embedded in L2(G).

We stress that compactness of the embedding can actually fail if 0 is an eigenvalue of Me(·) at the endpoints
of (0, `e): to see this, take over – with obvious changes – the proof of Lemma 4.2 of [44].

Let us see why we have chosen to define an alternative inner product on L2(G). Under our standing assumption
Qe(x)Me(x) is for all x a Hermitian matrix, so it can be diagonalized – although these matrices need not
commute, so they will in general not be simultaneously diagonalizable. If however there exists a diagonal matrix
De such that

De = Qe(x)Me(x) for all x, (3.5)

then the semigroup generated by Me
d

dx on L2(G) with respect to the inner product in (3.2) agrees with the

semigroup generated by Qe(·)Me(·) d
dx = De

d
dx on L2(G) with respect to the canonical inner product: the latter

one is simply the shift semigroup, up to taking into account the boundary conditions, cf. Proposition 3.3 of [21]
or Proposition 18.7 of [7] for a special case where De = I. So, the complete operator A will generate a semigroup
(etA)t≥0 that can be semi-explicitly written down by means of the Dyson–Phillips Series, since the perturbation
QeNe is bounded, see Proposition 3.1.2, page 77 of [60] or Theorem 1.10 [28]; and also by means of Trotter’s
Product Formula, see Exercise III.5.11 of [28].

Even when (3.5) does not hold we are still in a commendable situation: indeed,

(Au, v) =
∑
e∈E

∫ `e

0

Qe (Meu
′
e +Neue) · v̄e dx for all u, v ∈ Dmax. (3.6)
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Due to our standing assumptions, QeMe and hence its space derivative are hermitian: integrating by parts we
hence find

∑
e∈E

∫ `e

0

QeMeu
′
e · v̄e dx = −

∑
e∈E

∫ `e

0

ue ·
(
QeMeve

)′
dx+

∑
e∈E

[QeMeue · v̄e]
∣∣∣`e
0
.

= −
∑
e∈E

∫ `e

0

ue ·QeMev′e dx−
∑
e∈E

∫ `e

0

ue · (QeMe)
′
ve dx

+
∑
e∈E

[QeMeue · v̄e]
∣∣∣`e
0

(3.7)

Now, for u = v (3.7) can be equivalently written as

2<
∑
e∈E

∫ `e

0

QeMeu
′
e · ūe dx = −

∑
e∈E

∫ `e

0

(QeMe)
′
ue · ūe dx+

∑
e∈E

[QeMeue · ūe]
∣∣∣`e
0

; (3.8)

both addends on the right hand side are real, in view of our standing assumptions on Qe,Me.
For all v ∈ V, let us denote by Ev, the set of all edges incident in v. We introduce for each v ∈ V the trace

operator γv :
⊕

e∈EH
1(0, `e)

ke → Ckv defined by

γv(u) = (ue(v))e∈Ev
, v ∈ V,

where kv :=
∑

e∈Ev
ke, and the kv × kv block-diagonal matrix Tv with ke × ke diagonal blocks

Tv := diag (Qe(v)Me(v)ιve)e∈Ev
, v ∈ V, (3.9)

where we recall that the |V| × |E| incidence matrix I = (ιve) of the graph G is defined by

ιve :=

 −1 if v is initial endpoint of e,
+1 if v is terminal endpoint of e,
0 otherwise.

(3.10)

With these notation, we see that the identity (3.8) is equivalent to

2<
∑
e∈E

∫ `e

0

QeMeu
′
e · ūe dx = −

∑
e∈E

∫ `e

0

(QeMe)
′
ue · ūe dx

+
∑
v∈V

Tvγv(u) · γv(ū).

(3.11)

Taking the real part of (3.6) and using the last identity we find

< (Au, u) = <
∑
e∈E

∫ `e

0

QeNeue · ūe dx

− 1

2

∑
e∈E

∫ `e

0

(QeMe)
′
ue · ūe dx+

1

2

∑
v∈V

Tvγv(u) · γv(ū).

(3.12)
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The boundary terms vanish if so does γv(u) for all v ∈ V; however, upon introducing the quadratic form

qv(ξ) := Tvξ · ξ̄, ξ ∈ Ckv , (3.13)

it is more generally sufficient to impose that γv(u) belongs to a totally isotropic subspace Yv associated with qv,
i.e., to a vector space Yv such that the restriction of qv to Yv vanishes identically, see Definition C.1. (Observe
that qv(ξ) ∈ R, due to our standing assumptions on Qe,Me.) This means that it suffices to assume that

γv(u) ∈ Yv for all v ∈ V. (3.14)

Remark 3.3. Introducing

ω(f, g) :=
∑
e∈E

∫ `e

0

QeMeu
′
e · v̄e dx, f, g ∈ Dmin,

defines a skew-symmetric form in the sense of Definition 2.2 in [65], where Dmin :=
⊕

e∈EH
1
0 (0, `e)

ke . All skew-
adjoint extensions of A|Dmin

can be then parametrized by Theorem 3.6 of [65]. We are however rather interested
in the general case of possibly variable coefficients and therefore prefer to pursue an approach based on the
classical Lumer–Phillips Theorem.

Example 3.4. For the system (2.3) with the choice of Qe from (2.4) in which we take a = P , b = c = 0, d = L,
the matrix QeMe is given by

QeMe = −
(

0 PL
LP 0

)
and therefore, with ue = (pe, qe)

>, the expression QeMeue · ūe takes the form

QeMeue · ūe = −2<(PLqep̄e).

One may e.g. consider the vertex transmission conditions (see [56], p. 56)

– p is continuous across the vertices and
∑

e∈Ev
qe(v)ιve = 0 for all v ∈ V; or

– q is continuous across the vertices and
∑

e∈Ev
pe(v)ιve = 0 for all v ∈ V.

They both fit to our framework. Indeed, if for simplicity we write γv(u) = ((pe(v))e∈Ev , (qe(v))e∈Ev)
>, then in the

first case it suffices to take

Yv = span{1Ev} ⊕ span{ιEv}⊥,

where 1Ev := (1, . . . , 1) ∈ C|Ev| and ιEv is the vector in C|Ev| whose e-th entry equals ιve, the appropriate nonzero
entry of the incidence matrix defined in (3.10). Observe that (3.14) now yields that the values pe(v) coincide for
all e ∈ Ev while the vectors (qe(v))e∈Ev and ιEv are orthogonal. To cover the second set of transmission conditions
we on the contrary let

Yv = span{ιEv}⊥ ⊕ span{1Ev}.

Before proving our first well-posedness result, we reformulate the condition (3.14) for constant vector fields
ue. Namely, if we assume that ue ≡ Ke ∈ Cke for all edges e, (3.14) is equivalent to

(Ke)e∈Ev ∈ Yv for all v ∈ V. (3.15)
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Denoting Iv := {1, 2, . . . ,dimY ⊥v } and fixing a basis {w(v,i)}i∈Iv of Y ⊥v ⊂ Ckv , (3.15) is equivalent to

(Ke)e∈Ev · w(v,i) = 0 for all i ∈ Iv, v ∈ V. (3.16)

To write this in a global way, we first let k :=
∑

e∈E ke. Now recall that each w(v,i) is an element of Ckv , hence

it can be identified with the vector (w
(v,i)
e )e∈Ev . We denote by w̃(v,i) ∈ Ck its extension to the whole set of edges,

namely,

w̃(v,i)
e :=

{
w

(v,i)
e , if e ∈ Ev,

0 else.
(3.17)

With this notation we see that (3.16), hence also (3.14) in this case, is equivalent to,

(Ke)e∈E · w̃(v,i) = 0 for all i ∈ Iv, v ∈ V. (3.18)

In the same way each coordinate of an element of Yv, Y
⊥
v ⊂ Ckv corresponds to some e ∈ Ev and as above we

can extend these spaces to Ck by putting a 0 to the coordinate corresponding to e whenever e /∈ Ev. Denote

these extensions by Ỹv, and Ỹ ⊥v , respectively.

Lemma 3.5. The set {w̃(v,i)}i∈Iv,v∈V is a basis of Ck if and only if

dim
∑
v∈V

Ỹ ⊥v = k =
∑
v∈V

dimYv. (3.19)

Proof. By construction, {w̃(v,i)}i∈Iv is a basis of Ỹ ⊥v . Therefore, {w̃(v,i)}i∈Iv,v∈V is a basis of Ck if and only if

∑
v∈V

Ỹ ⊥v =
⊕
v∈V

Ỹ ⊥v = Ck

which is further equivalent to the dimensions condition

dim
∑
v∈V

Ỹ ⊥v =
∑
v∈V

dim Ỹ ⊥v = k. (3.20)

Now, observe that dim Ỹ ⊥v = dimY ⊥v = kv − dimYv. Moreover, by the hand-shaking lemma,
∑

v∈V kv = 2k,
hence ∑

v∈V

dim Ỹ ⊥v = 2k −
∑
v∈V

dimYv.

Plugging this into (3.20) yields (3.19).

Remark 3.6. The equivalent assertions in Lemma 3.5 mean that the number of boundary conditions in (3.14)
(that is equivalent to (3.18) in the special case) is exactly equal to k and that these boundary conditions are
linearly independent. Furthermore, as the support of the vector w̃(v,i) corresponds to the set of the edges incident

to v, the vectors w̃(v,i) and w̃(v′,i′), and hence also the subspaces Ỹ ⊥v and Ỹ ⊥v′ , are linearly independent if v and
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v′ are not adjacent. However, the first equality in (3.19) is equivalent to the mutual linear independence of all

Ỹ ⊥v , that is,

Ỹ ⊥v ∩
∑
v′ 6=v

Ỹ ⊥v′ = {0} for all v ∈ V. (3.21)

We are finally in the position to formulate a well-posedness result in terms of the transmission conditions
in (3.14).

Theorem 3.7. For all v ∈ V, let Yv be a totally isotropic subspace associated with the quadratic form qv defined
by (3.13) and assume that (3.19) holds. Then both ±A, defined as (3.1) on the domain

D(A) := {u ∈ Dmax : γv(u) ∈ Yv for all v ∈ V} , (3.22)

are quasi-m-dissipative operators. In particular, both ±A generate a strongly continuous semigroup and hence
a strongly continuous group in L2(G). The operator A has compact resolvent, hence pure point spectrum.

Proof. Under Assumptions 2.1.(2), u 7→ Nu is a bounded perturbation of A. By the Bounded Perturbation
Theorem (cf. [28], Thm. III.1.3), we may without loss of generality in this proof assume that N = 0. Under
this assumption and in view of (3.12) and the definition of D(A), we see that

< (±Au, u) = ∓1

2

∑
e∈E

∫ `e

0

(QeMe)
′
ue · ūe dx (3.23)

for all u ∈ D(A). By the assumptions made on the matrices Qe,Me, we deduce that there exists a positive
constant C such that

|< (Au, u) | ≤ 1

2

(
max
e∈E

sup
x∈(0,`e)

‖ (QeMe)
′
(x)‖2

)∑
e∈E

∫ `e

0

‖ue(x)‖22 dx ≤ C‖u‖2, (3.24)

for all u ∈ D(A) which means that ±A with domain D(A) are both quasi-dissipative. By the Lumer–Phillips
Theorem, it remains to check their maximality. To this aim, for any f ∈ L2(G), we first look for a solution
u ∈ D(A) of

Me(x)u′e(x) = fe(x) for x ∈ (0, `e) and all e ∈ E. (3.25)

Such a solution is given by

ue(x) = Ke +

∫ x

0

M−1
e (y)fe(y) dy, for all x ∈ [0, `e], for all e ∈ E, (3.26)

with Ke ∈ Cke . It then remains to fix the vectors Ke in order to enforce the condition ue ∈ D(A). Since (3.14) is
in our situation a ke× ke linear system in (Ke)e∈E, the existence of this vector is equivalent to its uniqueness. By
the previous considerations, this means that it suffices to show that system (3.18) has the sole solution Ke = 0,
which holds due to our assumption (3.19) in Lemma 3.5. This shows that the operator A is an isomorphism
from D(A) into L2(G) and proves that ±A is maximal.

To conclude, we observe that Lemma 3.2 directly implies that A has compact resolvent, since D(A) is
continuously embedded in Dmax.
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Example 3.8. Imposing Dirichlet conditions on all endpoints is a possibility allowed for by our formalism,
taking

γv(u) ∈
{

(0, . . . , 0)>
}

=: Yv, v ∈ V.

However, our dimension condition rules it out, as in this case dimYv = 0 for all v, hence (3.19) is not satisfied.

By the Lumer–Phillips Theorem and (3.11), the semigroup generated by A is isometric if and only if

<
∑
e∈E

∫ `e

0

(
QeNe −

1

2
(QeMe)

′
)
ue · ūe dx = 0 for all u ∈ D(A). (3.27)

As the next result shows, this condition is easy to characterize using Lemma B.3.

Corollary 3.9. Under the assumptions of Theorem 3.7,

QeNe + (QeNe)
∗ = (QeMe)

′
(3.28)

if and only if the system (2.1) on G with transmission conditions (3.14) is governed by a unitary group on L2(G);
in particular, the energy

E(t) :=
1

2

∑
e∈E

∫ `e

0

Qeu(t) · ū(t) dx, t ∈ R, (3.29)

is conserved.

Proof. Under the assumptions of Theorem 3.7, the identity (3.12) guarantees that

< (Au, u) = 0 for all u ∈ D(A)

if and only if (3.27) holds. But simple calculations show that (3.27) is equivalent to

∑
e∈E

∫ `e

0

(QeNe + (QeNe)
∗ − (QeMe)

′)ue · ūe dx = 0 for all u ∈ D(A). (3.30)

This obviously shows that (3.28) is a sufficient condition for the unitarity property of the semigroup generated
by A. For the necessity, let us observe that QeNe + (QeNe)

∗ − (QeMe)
′ is hermitian. Since the test functions

vanishing at each endpoint satisfy all boundary conditions,
⊕

e∈ED(0, `e)
ke is included in D(A) and we deduce

that (3.30) implies that

∫ `e

0

(QeNe + (QeNe)
∗ − (QeMe)

′)ue · ūe dx = 0 for all ue ∈ D(0, `e)
ke and all e ∈ E.

By Lemma B.3 we conclude that (3.28) holds. Finally, because

d

dt
E(t) = < (Au(t), u(t))

holds along classical solutions u of (2.1), the second assertion is valid as well.
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Note that condition (3.28) is satisfied in the special case when QeMe is spatially constant and QeNe has zero
or purely imaginary entries.

We will see, however, that the condition (3.19) is not satisfied in some relevant applications (in Sect. 5.5, for
example). Therefore, let us present an alternative approach to prove well-posedness based on the dissipativity
of A and its adjoint A∗ that is used in Appendix A of [6] for diagonal systems. The first step is to characterize
the adjoint operator.

Lemma 3.10. The adjoint of the operator A defined in (3.1)–(3.22) is given by

D(A∗) = {v ∈ Dmax : γv(v) ∈ T−1
v Y ⊥v for all v ∈ V},

(A∗v)e = −Mev
′
e −Q−1

e (QeMe)
′
ve +Q−1

e N∗e Qeve, e ∈ E.
(3.31)

Proof. The identity (3.7) is equivalent to

∑
e∈E

∫ `e

0

QeMeu
′
e · v̄e dx = −

∑
e∈E

∫ `e

0

ue ·QeMev′e dx−
∑
e∈E

∫ `e

0

ue · (QeMe)
′
ve dx

+
∑
v∈V

Tvγv(u) · γv(v̄).

(3.32)

Since

(Au, v) =
∑
e∈E

∫ `e

0

Qe (Meu
′
e +Neue) · v̄e dx for all u, v ∈ Dmax,

we get

(Au, v) =
∑
e∈E

∫ `e

0

ue ·
(
−QeMev′e − (QeMe)

′
ve +N∗e Qeve

)
dx

+
∑
v∈V

Tvγv(u) · γv(v̄) for all u, v ∈ Dmax.

(3.33)

Now, v ∈ L2(G) belongs to D(A∗) if and only if there exists g ∈ L2(G) such that

(Au, v) = (u, g) for all u ∈ D(A)

and in this case A∗v = g.
First, by taking u such that ue ∈ D(0, `e) in this identity we find

−QeMev
′
e − (QeMe)

′
ve +N∗e Qeve = Qege (3.34)

in the distributional sense. Since, under our Assumptions 2.1.(1), QeMe is invertible (with a bounded inverse),
we find that ve ∈ H1(0, `e), hence v belongs to Dmax.
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Now we can apply the identity (3.33) and get

(u, g) =
∑
e∈E

∫ `e

0

ue ·
(
−QeMev′e − (QeMe)

′
ve +N∗e Qeve

)
dx

+
∑
v∈V

Tvγv(u) · γv(v̄) for all u ∈ D(A)

(3.35)

and, by (3.34), we find ∑
v∈V

Tvγv(u) · γv(v̄) = 0 for all u ∈ D(A).

Since the trace operator γv : Dmax → Ckv is surjective, so is its restriction from D(A) to Yv. Hence we get

y · Tvγv(v̄) = 0 for all y ∈ Yv,

and therefore

Tvγv(v) ∈ Y ⊥v . (3.36)

(Here, Y ⊥v denotes the orthogonal complement of Yv in Ckv for the Euclidean inner product.) Since Tv is
invertible, (3.36) is equivalent to

γv(v) ∈ T−1
v Y ⊥v .

This concludes the proof.

Theorem 3.11. For all v ∈ V, let both Yv and T−1
v Yv be totally isotropic subspaces associated with the quadratic

form qv defined by (3.13). Then both ±A, defined on the domain

D(A) := {u ∈ Dmax : γv(u) ∈ Yv for all v ∈ V} ,

are quasi-m-dissipative operators. In particular, both ±A generate a strongly continuous semigroup and hence
a strongly continuous group in L2(G). If, additionally, (3.28) holds, then the group is unitary.

Proof. We already know that A is densely defined. By the first part of the proof of Theorem 3.7 (that does not
depend on condition (3.19)), we see that both ±A are quasi-dissipative. It is easy to verify that A is closed,
see, e.g., the proof of (A.24) in [6]. In view of Corollary II.3.17 in [28], it thus suffices to show that ±A∗ is
quasi-dissipative, too. Observe that (3.11), which is known to hold for all u ∈ Dmax, implies that

< (A∗u, u) = <
∑
e∈E

∫ `e

0

(
− (QeMe)

′
ue +N∗e Qeue

)
· ūe dx

+
1

2

∑
e∈E

∫ `e

0

(QeMe)
′
ue · ūe dx− 1

2

∑
v∈V

Tvγv(u) · γv(ū)

(3.37)

for all u ∈ D(A∗). Hence quasi-dissipativity of both ±A∗ holds if

qv(ξ) = 0, for all ξ ∈ T−1
v Y ⊥v , (3.38)
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i.e., if T−1
v Y ⊥v is a totally isotropic subspace associated with the quadratic form qv.

In the remainder of this section, we are going to comment on the possibility of an alternative way of formu-
lating transmission conditions. This is especially relevant in applications to models of theoretical physics when
the stress is on unitary well-posedness, see e.g. Section 5.5, rather than accurate description of the network
structure.

3.2. Global boundary conditions

It is natural to choose transmission conditions that reflect the connectivity of the network, that is the reason
of the local boundary condition (3.14). However, nonlocal boundary conditions can be imposed as well by
re-writing the term

∑
v∈V Tvγv(u) · γv(ū) in a global way as

Tγ(u) · γ(ū),

where

γ(u) :=
(
u(0), u(`)

)>
:=
(
(ue(0))e∈E , (ue(`e))e∈E

)>
and the 2k × 2k matrix T is given by

T :=

(
−diag (Qe(0)Me(0))e∈E 0

0 diag (Qe(`e)Me(`e))e∈E

)
, (3.39)

without any reference to the structure of the network. With this notation,

< (Au, u) = <
∑
e∈E

∫ `e

0

((
QeNe −

1

2
(QeMe)

′
)
ue · ūe

)
dx+

1

2
Tγ(u) · γ(ū),

and this suggests to replace (3.14) by

γ(u) ∈ Y, (3.40)

i.e., to consider A with domain

D(A) := {u ∈ Dmax : γ(u) ∈ Y } ,

where Y ⊂ C2k is a subspace of the null isotropic cone associated with the quadratic form

Tξ · ξ̄, for all ξ ∈ C2k. (3.41)

This corresponds to glue all vertices together, thus forming a so-called flower graph, and to impose general
transmission conditions in the only vertex of such a flower (Fig. 1).

In this setting the well-posedness conditions is different from (3.19) and sums up to

dimY ⊥ = k = dimPKY
⊥, (3.42)

where K is the k-dimensional subspace of C2k defined by

K =
{(

(Ke)e∈E , (Ke)e∈E
)>

: Ke ∈ C for all e ∈ E
}
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Figure 1. Gluing all the vertices of a graph: from a complete graph on four vertices (left) to
a flower graph on six edges (right).

and PK is the orthogonal projection on K with respect to the Euclidean inner product of C2k. To see this,
we elaborate on the proof of Theorem 3.7 and write I := {1, 2, . . . ,dimY ⊥}. Once fixed a basis {W(i)}i∈I of
Y ⊥ ⊂ C2k, using (3.26) the condition (3.40) is equivalent to

(
(Ke)e∈E , (Ke)e∈E

)> ·W(i) =

(
(0)e∈E ,

(
−
∫ `e

0

M−1
e (y)fe(y) dy

)
e∈E

)>
·W(i) for all i ∈ I.

Since the vector
(
(Ke)e∈E , (Ke)e∈E

)>
belongs to K, we have

(
(Ke)e∈E , (Ke)e∈E

)> ·W(i) =
(
(Ke)e∈E , (Ke)e∈E

)> · PKW(i),

and therefore this last condition is equivalent to

(
(Ke)e∈E , (Ke)e∈E

)> · PKW(i) =

(
(0)e∈E ,

(
−
∫ `e

0

M−1
e (y)fe(y) dy

)
e∈E

)>
·W(i) for all i ∈ I.

Our assumptions (3.42) guarantee that we are dealing with a k× k linear system for which its associated matrix
is invertible. This then proves the maximality condition.

Note that the second condition in (3.42) admits different formulations stated in the next Lemma.

Lemma 3.12. We have

dimPKY
⊥ = k ⇔ PKY

⊥ = K ⇔ Y ∩K = {0}. (3.43)

Proof. The first equivalence directly follows from the fact that K is of dimension k.
Let us now prove the implication PKY

⊥ = K ⇒ Y ∩K = {0}. Indeed, each y ∈ Y ∩K satisfies

y · z̄ = 0 for all z ∈ Y ⊥.

Since y is also in K, we have y · z̄ = y · PKz, thus the last property is equivalent to

y · PKz = 0 for all z ∈ Y ⊥.

By our assumption PKY
⊥ = K and we deduce that

y · k = 0 for all k ∈ K,
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which yields y = 0 since y is in K.
Let us show the converse implication. Take k ∈ K orthogonal to PKY

⊥, i.e.,

k · PKz = 0 for all z ∈ Y ⊥.

As k is in K, we get equivalently

k · z = 0 for all z ∈ Y ⊥.

Therefore k belongs to Y and hence to Y ∩K. Thus k = 0, due to the assumption Y ∩K = {0}, which proves
that PKY

⊥ = K.

Using dimY = 2k − dimY ⊥ we can find different equivalent conditions to (3.42). One of them is

dimY = dimPKY
⊥ = k. (3.44)

This formalism also makes possible to compare solutions of the same system under different transmission
conditions in the vertices. We will come back to this in the next section.

Remark 3.13. (Local boundary conditions versus global ones). Assume that A is defined by the local boundary
conditions (3.14), then they can be viewed as global boundary conditions with Y defined here below. Namely
for all v ∈ V, introduce the matrix operator Pv (from C2k to Ckv) defined by

γv(u) = Pvγ(u).

Then, given the basis {w(v,i)}i∈Iv of Y ⊥v ⊂ Ckv , we define

W(v,i) = P>v w(v,i).

We may notice that

γ(u) ·W(v,i) = γv(u) · w(v,i), (3.45)

hence Y ⊥ is simply the space spanned by W(v,i), for i ∈ Iv and v ∈ V. Let us also remark that

W(v,i) ·W(v′,i′) = 0, if v 6= v′. (3.46)

These two properties imply that (3.42) is equivalent to (3.19). Indeed, by (3.46), and as Pv being surjective,
P>v is injective, we deduce that

dimY ⊥ =
∑
v∈V

dimY ⊥v , (3.47)

while the first one guarantees that(
(Ke)e∈E , (Ke)e∈E

)> ·W(v,i) = (Ke)e∈Ev
· w(v,i) = (Ke)e∈E · w̃(v,i). (3.48)

Hence if (3.19), then (3.47) direclty implies that dimY ⊥ = k. Further by (3.48), one has(
(Ke)e∈E , (Ke)e∈E

)> · PKW(v,i) = (Ke)e∈E · w̃(v,i), (3.49)
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and since the vectors w̃(v,i) span the whole Ck, if the left-hand side is zero for all i, v, (Ke)e∈E will be zero, hence

the vectors PKW(v,i) span the whole K.
Conversely if (3.42) holds, then by (3.47), we have

∑
v∈V dimY ⊥v = k, that is by the hand-shaking lemma

equivalent to
∑

v∈V dimYv = k. As before, due to (3.49), if the vectors PKW(v,i) span the whole K, then the

vectors w̃(v,i) span the whole Ck.

Example 3.14. The arguably easiest application of our theory is the model of flows on networks discussed e.g.
in [42]. It consists of a system of k = |E| scalar equations

u̇e = ceu
′
e, e ∈ E,

where ce are positive constants. Hence, Me = ce, and we can take Qe = 1, for all e ∈ E. The associated matrix
Tv is diagonal and takes the form

Tv = diag (ce(v)ιve)e∈Ev
, v ∈ V,

where ιve are the entries of the incidence matrix of the graph, see (3.9).
However, in order to treat more general boundary conditions, we switch to the global setting and take

T =

(
−diag(ce)e∈E 0

0 diag(ce)e∈E

)
.

A rather general way of writing the transmission conditions in the vertices is V0u(0) = V`u(`), where V0, V` are
k × k matrices, see [24]. They can be equivalently expressed in our formalism by

γ(u) ∈ ker
(
V0 −V`

)
=: Y.

The relevant conditions in Theorem 3.7 are hence whether

(i) the space ker
(
V0 −V`

)
= {(ψ, θ) ∈ C2k : V0ψ = V`θ} has dimension k and

(ii) V0ψ = V`θ implies
∑

e∈E ce|ψe|2 =
∑

e∈E ce|θe|2 for all ψ, θ ∈ Ck.

Both conditions are e.g. satisfied if V0, V` = Id, which corresponds to transport on k disjoint loops, in which
case Theorem 3.7 confirms one’s intuition that A with

D(A) := {u ∈ Dmax : ue(0) = ue(`e), e ∈ E} (3.50)

generates a strongly continuous group on L2(G). With k = 2, condition (i) is also fulfilled for V` = Id if e.g.
V0 = ( 0 1

1 0 ), or V0 = 1
2 ( 1 1

1 1 ); condition (ii) is satisfied in the former case if ce1 = ce2 (hence we have by Theorem 3.7
a group generator on a network which can be regarded as a loop of length `e1 + `e2), but not in the latter: it will
follow from the results in the next section that this operator, which is a prototype of those considered in [42],
still generates a strongly continuous semigroup on L2(G). This example shows that our conditions on Yv are
tailored for unitary group generation, as Corollary 3.9 shows. Some remedies to avoid such a problem will be
discussed below.

We stress that the second above condition implies the invertibility of both V0, V`, which is proved
in Corollary 3.8 of [24] to be equivalent to the assertion that A with domain

D(A) := {u ∈ Dmax : γ(u) ∈ ker
(
V0 −V`

)
}

is a group generator.
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4. Contractive well-posedness and qualitative properties

Let us now discuss the more general situation in which the solutions to (2.1) are given by semigroups that
are merely contractive. In this case, the above computations show that much more general boundary conditions
can be studied. Furthermore, we are also able to describe qualitative behavior of these solutions. We refer to
Section 5 for several illustrative examples.

Recall that the nonpositive (resp. nonnegative) isotropic cone associated with a quadratic form q : Ck → R
is the set of vectors ξ ∈ Ck such that q(ξ) ≤ 0 (resp. q(ξ) ≥ 0), see Definition C.1.

Theorem 4.1. For all v ∈ V, let Yv be a subspace of the nonpositive isotropic cone associated with the quadratic
form qv given in (3.13) and assume that one of the following conditions is satisfied:

– (3.19) holds or
– for all v ∈ V, the space T−1

v Y ⊥v is a subspace of the nonnegative isotropic cone associated with qv.

Then the following assertions hold.

(1) A with domain

D(A) := {u ∈ Dmax : γv(u) ∈ Yv for all v ∈ V}

generates a strongly continuous quasi-contractive semigroup (etA)t≥0 in L2(G) and the system (2.1) on G
with transmission conditions

γv(u) ∈ Yv, v ∈ V, (4.1)

is well-posed.
(2) This semigroup is contractive if, additionally, (QeNe)(x)+(QeNe)

∗(x)−(QeMe)
′(x) is negative semi-definite

for all e ∈ E and a.e. x ∈ [0, `e].
(3) Under the assumptions of (2), the energy in (3.29) is monotonically decreasing; in this case, there exists a

projector commuting with (etA)t≥0 whose null space is the set of strong stability of the semigroup and whose
range is the closure of the set of periodic vectors under (etA)t≥0.

Proof. The proof of the assertion leading to well-posedness is exactly the same as the ones of Theorem 3.7,
Corollary 3.9, and Theorem 3.11 for operator A; the sufficient condition for contractivity of the semigroup can
be read off (3.12). The third assertion is a direct consequence of Corollary V.2.15 in [28] and Lemma 3.2.

Remark 4.2. In the previous Theorem we may replace local boundary condition by global ones and then
replacing either (3.19) by (3.42) or the second local condition by a global version. Hence Theorem 4.1 especially
applies to the setting of Appendix A in [6], since their boundary condition (A.8) can be written as γ(u) ∈ kerK for
some k×2k-matrix K. The proof of Theorem A.1 in [6] shows that kerK is contained in the nonpositive isotropic
cone of the quadratic form (3.41). Also the boundary condition (2.2) in [24] can be written as γ(u) ∈ kerK, and
(3.19) is easily seen to be satisfied. Hence, the generation result in Corollary 2.2 of [24] follows from Theorem 4.1;
this shows in particular that the well-posedness results for the transport equations in [42, 52] are special cases
of our general theory. Let us further stress that, as in Corollary 3.8 of [24], we can chose different Qe for Me

and -Me to obtain generation of a group. We will review further, more advanced examples in Section 5.

Remark 4.3. (Global boundary conditions revisited) It turns out that the global condition (3.42) may fail, see
Example 4.16 below. But if all matrices Me are diagonal or spatially constant and symmetric positive definite,
we can replace the surjectivity of A by the surjectivity of λI−A for λ > 0 large enough. Indeed, using the same
approach as in Theorem 3.7, for any f ∈ L2(G), we look for a solution u ∈ D(A) of

λu′e −Me(x)u′e(x) = fe(x) for x ∈ (0, `e) and all e ∈ E. (4.2)
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By our assumptions, such a solution is given by

ue(x) = eλP`(x)Ke −
∫ x

0

eλ(P`(x)−P`(y))M−1
e (y)fe(y) dy, for all x ∈ [0, `e], for all e ∈ E,

with Ke ∈ Cke to be fixed, where

P`(x) :=

∫ x

0

M−1
e (y) dy, x ∈ [0, `e], e ∈ E.

Obviously, P`(0) = 0 and P`(`e) =
∫ `e

0
M−1

e (y) dy is symmetric positive definite. Hence, using the notation from
Section 3.2, the boundary condition (3.40) is equivalent to

(K,EλK)
> ·W(i) =

(
(0)e∈E ,

(∫ `e

0

eλ(P`(`e)−P`(y))M−1
e (y)fe(y) dy

)
e∈E

)>
·W(i) for all i ∈ I. (4.3)

where K = (Ke)e∈E and Eλ = diag
(
eλP`(`e)

)
e∈E. Setting L = EλK, we have equivalently

(E−λL,L)
> ·W(i) =

(
(0)e∈E ,

(∫ `e

0

eλ(P`(`e)−P`(y)M−1
e (y)fe(y) dy

)
e∈E

)>
·W(i) for all i ∈ I. (4.4)

Hence if dimY ⊥ = k, we find a k × k linear system and a unique solution L and then K exists if and only if
the determinant of the associated matrix Aλ is different from zero. But if for any vectors (y, z)> ∈ C2k, with
y, z ∈ Ck we set

Π0(y, z)> = y and Π`(y, z)
> = z,

we see that

(E−λL,L)
> ·W(i) = E−λL ·Π0W(i) + L ·Π`W(i) = L · E?−λΠ0W(i) + Π`W(i),

where E?−λ = diag
(
e−λP`(`e)

?)
e∈E. From this expression we see that Aλ can be split up as

Aλ = Rλ +A∞,

where A∞ is the limit of Aλ as λ goes to infinity and is simply the matrix whose ith row is (Π`W
(i))>. Further,

since P`(`e)
? are symmetric positive definite, one can easily see that

lim
λ→∞

‖Rλ‖ = 0.

Hence, if we assume that A∞ is invertible, Aλ will be invertible as well for λ large enough, which allows to
conclude the surjectivity of λI − A for λ > 0 large enough. In conclusion, as A∞ is invertible if and only if
dim Π`Y

⊥ = k, maximality holds if

dimY ⊥ = k = dim Π`Y
⊥. (4.5)
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This actually means that maximality holds as soon as maximality holds if we replace the boundary condition
(3.40) by the one

u(`) ∈ Π`Y
⊥,

at the endpoint ` only; in particular, dropping any condition at 0. A local version of this approach can be stated,
we let the details to the reader.

Remark 4.4. Our well-posedness results can be also regarded as a first step towards applications to control
theory. For example, Proposition VI.8.5 of [28] prevents the control system{

u̇e(t) = Meu
′
e(t) +Neue(t) +Beye(t), t ≥ 0, e ∈ E,

ue(0) = fe
(Σ(A,B))

from being exactly 2-controllable for any control operator B = (Be)e∈E mapping the vertex space C|V| to L2(G),
for any finite time horizon t < ∞. However, Corollary VI.8.11 of [28] can be invoked to show that, provided
the assumptions of Theorem 4.1.(2) are satisfied and hence A generates a contractive semigroup, the control
system (Σ(A,B)) will be approximately 2-controllable if and only if

⋂
n∈N kerB∗(Id−A∗)n = 0, where A∗ is the

adjoint of A given in Lemma 3.10 and B : C|V| → L2(G) is any control operator.
Studying processes on a metric graph, boundary control problems with control imposed in the vertices are of

special interest. A semigroup approach to such problems that enables an explicit description of the associated
(even exact or positive) reachability space as presented in [25–27] could be adapted for the present situation.

Further, as in [56] in case of generation of a contraction semigroup, some stabilization results can be considered
using different approaches, like the use of observability estimates [4, 20], frequency domain approach [11, 61],
or port-Hamiltonian techniques [35].

Let us continue by studying qualitative properties of the semigroup generated by A. In particular, let C be
a closed and convex subset of C and write

L2(G;C) := {u ∈ L2(G) : ue(x) ∈ Cke for a.e. x ∈ (0, `e) and all e ∈ E} (4.6)

A semigroup (T (t))t≥0 on L2(G) is called real (resp., positive) if each operator T (t) leaves L2(G; R) (resp.,
L2(G; R+)) invariant. Moreover, for a closed and convex subset K of a Hilbert space H with inner product
〈·, ·〉H and associated norm ‖ · ‖H , the minimizing projector PK onto K assigns to each u ∈ H the unique
element PKu ∈ K satisfying

‖u− PKu‖H = min{‖u− w‖H : w ∈ K}

or, equivalently (see [14], Thm. 5.2), PKu = z ∈ K is the unique element in K such that

<〈w − z, u− z〉H ≤ 0 for all w ∈ K. (4.7)

We will use a generalization of Brezis’ classical result for invariance under the semigroup generated by a
subdifferential. In the linear case, Theorem 2.4 of [68] can be formulated as follows.

Lemma 4.5. Let H be a complex Hilbert space with inner product 〈·, ·〉H and associated norm ‖ · ‖H , K a closed
and convex subset of H and PK the minimizing projector onto K. Let A be an ω-quasi-m-dissipative operator
on H for some ω ∈ R and (T (t))t≥0 the strongly continuous semigroup generated by A. Then K is invariant
under (T (t))t≥0 if and only if

<〈Au, u− PKu〉H ≤ ω‖u− PKu‖2H for all u ∈ D(A). (4.8)
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If in particular ω = 0, i.e., A is dissipative, and PKu ∈ D(A) for all u ∈ D(A), then the invariance of K
under (T (t))t≥0 is equivalent to

<〈APKu, u− PKu〉H ≤ 0 for all u ∈ D(A).

We can thus describe further properties of the semigroup generated by A in terms of the matrices Qe,Me, Ne,
and the boundary conditions. We are interested in the convex subsets of the form K = L2(G;C) where C ⊂ C
is a closed interval, e.g., C = R or C = R+. Let us first relate the minimizing projector PQK with respect to the
inner product (3.2) on L2(G) to the minimizing projector PK with respect to the standard inner product

〈u, v〉 :=
∑
e∈E

∫ `e

0

ue(x) · v̄e(x) dx, u, v ∈ L2(G). (4.9)

Lemma 4.6. Assume Q
1
2
e (x) to be bijective for all e ∈ E and all x ∈ [0, `e] as a map on C, i.e., Q

1
2
e (x)(C) = C.

Then the minimizing projector PQK with respect to the inner product (3.2) onto K = L2(G;C) is given by

PQK = Q−
1
2PKQ

1
2 (4.10)

where Q := diag(Qe)e∈E is a block diagonal matrix and PK is the minimizing projector with respect to the
standard inner product (4.9).

Proof. By (4.7), PQKu =: z is the unique element in K such that

∑
e∈E

∫ `e

0

Qe(x)(we(x)− ze(x)) · (ūe(x)− z̄e(x)) dx ≤ 0 for all w ∈ K. (4.11)

As Qe(x) is symmetric positive definite, it admits a square root Qe(x)
1
2 which is still symmetric positive definite

(and is of class H1 as a function of x). Hence (4.11) is equivalent to

∑
e∈E

∫ `e

0

Qe(x)
1
2 (we(x)− ze(x)) ·Qe(x)

1
2 (ūe(x)− z̄e(x)) dx ≤ 0 for all w ∈ K. (4.12)

Since Q
1
2
e is bijective on C, by setting ve := Q

1
2
e ue and w̃e := Q

1
2
e we, we may equivalently re-write (4.12) as

<〈w̃ −Q 1
2 z, v −Q 1

2 z〉 ≤ 0 for all w̃ ∈ K.

By (4.7) we obtain Q
1
2 z = PKv and (4.10) follows.

In many applications Qe, and thus also Q
1
2
e and Q

− 1
2

e , are real-valued. In such a case, (4.10) for C = R and
hence K = L2(G; R) yields

PQKu = Q−
1
2<
(
Q

1
2u
)

= <u. (4.13)

Proposition 4.7. Under the assumptions of Theorem 4.1, let

<ξ ∈
⊕
v∈V

Yv for all ξ ∈
⊕
v∈V

Yv (4.14)
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and the matrix-valued mapping Qe be real-valued for all e ∈ E. Then the semigroup generated by A is real if and
only if the matrix-valued mappings Me, Ne are real-valued for all e ∈ E.

Proof. We use Lemma 4.5 for the convex subset of real-valued functions K = L2(G,R) and the projector PQKu =
<u obtained in (4.13). Also observe that we can without loss of generality assume ω = 0, since reality of a

semigroup is invariant under scalar perturbations of its generator. Now, it follows from (4.14) that PQKu ∈ D(A)
whenever u ∈ D(A). We deduce that reality of the semigroup is equivalent to

<(A<u, ı=u) ≤ 0 for all u ∈ D(A).

By applying the same trick as in the proof of Proposition 2.5 in [58], that is by plugging −<u + ı=u into the
above inequality, we obtain

(A<u,=u) =
∑
e∈E

∫ `e

0

(
(QeMe)

d<ue
dx

+ (QeNe)<ue
)
· =ue dx ∈ R for all u ∈ D(A),

which by a simple localization argument is in turn equivalent to

(QeMe)
due
dx

+ (QeNe)ue is real-valued for all real-valued u ∈ D(A) and all e ∈ E. (4.15)

The conclusion then follows from Lemma 4.8 below that yields an equivalent, but easier to check, formulation
of (4.15).

Lemma 4.8. Assume the matrix-valued mapping Qe to be real-valued for all e ∈ E. Then (4.15) holds if and
only if the matrix-valued mappings Me, Ne are real-valued for all e ∈ E.

Proof. As all Qe are real-valued, it suffices to show that (4.15) holds if and only if the matrices QeMe and QeNe

are real for all e ∈ E. As this second property is clearly sufficient for (4.15) to hold, it suffices to prove the
converse implication. For that purpose, fix a real-valued function ϕ ∈ D(R) with a support included into [−1, 1]
and such that ϕ′(0) = 1. Now fix one edge e ∈ E, one point x0 ∈ (0, `e) and one i ∈ {1, . . . , ke}. Then for all n
large enough, define un as follows: un,e′ = 0, for all edges e′ 6= e and un,e = ϕ(n(x− x0))ei, where ei = (δij)

ke
j=1

is the i-th vector of the canonical basis of Rke . The parameter n is chosen large enough so that the support of
un,e is included into (0, `e) so that un ∈ D(A) (and is real valued). Taking this function in (4.15), we find

nϕ′(n(x− x0))(QeMe)(x)ei + ϕ(n(x− x0))(QeNe)(x)ei ∈ Rke for all x ∈ (0, `e).

By evaluating this expression at x0, dividing by n and and letting n goes to infinitiy, we find that

(QeMe)(x0)ei ∈ Rke .

In other words, QeMe is real-valued. Once this property holds, (4.15) reduces to

(QeNe)ue is real-valued for all real-valued u ∈ D(A) and all e ∈ E.

This directly implies that QeNe is real-valued since
⊕

e∈E(D(0, `e))
ke is included into D(A).

Before going on let us mention that condition (4.14) can be simplified in the following way.

Lemma 4.9. The condition (4.14) holds if and only if Yv, for each v ∈ V, is spanned by vectors with real entries
only.
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Proof. Let Yv be spanned by entry-wise real vectors y1, . . . , yn and let y ∈ Yv. Then there exist α1, . . . , αn ∈ C
such that y =

∑n
i=1 αiyi. Because all entries of each yi are real, it follows that <y is again a linear combination

of these basis vectors,

<y =

n∑
i=1

(<αi)yi ∈ Yv.

For the converse first note that (4.14) implies that for any y ∈ Yv also <y,=y ∈ Yv. If now y1, . . . , yn is any basis
of Yv, then the entry-wise real vectors <yi,=yi, i = 1, . . . n, span Yv.

Let us now continue with the study of positivity of the semigroup. Here, we will without loss of generality
restrict ourselves to real Hilbert space L2(G,R). We first notice that each Qe(x)

1
2 is a lattice isomorphism if and

only if Qe(x)
1
2 and hence Qe(x) are diagonal.

Lemma 4.10. Let P be a real k× k (k ≥ 1) matrix that is symmetric and positive definite. Then P is a lattice
isomorphism, i.e., P (Rk+) = Rk+, if and only if P is diagonal.

Proof. The diagonal character of P added with its positive definiteness trivially imply that P (Rk+) = Rk+.
Hence, we only need to prove the converse implication. For that purpose denote by pij , 1 ≤ i, j ≤ k (resp.
qij , 1 ≤ i, j ≤ k) the entries of P (resp. P−1). Now notice that from our assumption directly follows pij , qij ≥ 0,
for all i, j. Moreover, for all i, j with i 6= j, we have

k∑
`=1

pi`q`j = 0,

or, equivalently,

pi`q`j = 0 for all ` = 1, . . . , k.

Taking ` = j, we find that pij = 0 since the diagonal entries of P−1 are strictly positive. This shows that P is
diagonal as requested.

We continue by applying Lemma 4.5 to the convex subset of positive-valued functions L2(G,R+). In the
following we will adopt the notation

1{u≥0} := (1{ue≥0})e∈E, 1{u≤0} := (1{ue≤0})e∈E,

for the vector-valued characteristic function of the nonnegative and nonpositive support of u, respectively. Here

each 1{ue≥0} is the diagonal ke × ke matrix associated to ue =
(
u

(1)
e , · · · , u(ke)

e

)>
,

1{ue≥0} := diag
(
1{u(1)

e ≥0}, · · · ,1{u(ke)
e ≥0}

)
.

Recall also, that for any f ∈ H1 one can write

f+ = 1{f≥0}f, −f− = 1{f≤0}f, and (f+)′ = 1{f≥0}f
′.
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Proposition 4.11. In addition to the assumptions of Theorem 4.1, let Me, Ne, Qe be real-valued for all e ∈ E,
Qe(x) be diagonal for e ∈ E and all x ∈ [0, `e], and

ξ+ ∈
⊕
v∈V

Yv for all ξ ∈
⊕
v∈V

Yv. (4.16)

Then the semigroup generated by A on L2(G,R) is positive if and only if for all e ∈ E the matrices Me(x) are
diagonal for all x ∈ [0, `e], and all off-diagonal entries of the matrices Ne(x) are nonnegative for a.e. x ∈ [0, `e].

Proof. By Lemma 4.10 we may apply Lemma 4.5 to the closed convex subset K = L2(G,R+). Therefore, by
diagonality and positivity of Qe(x), the minimizing projector PK given by (4.10) takes the simpler form

PQKu = Q−
1
2

(
Q

1
2u
)+

= u+. (4.17)

Since real scalar perturbations of the generator do not affect positivity of the semigroup, we may assume that
ω = 0. As (4.16) yields PKu ∈ D(A) for all u ∈ D(A), the semigroup is thus positive if and only if

(Au+, (u− u+)) ≤ 0 for all u ∈ D(A).

By applying (3.6) and (4.17) we obtain the equivalent condition

∑
e∈E

∫ `e

0

Qe

(
Me(u

+
e )′ +Neu

+
e

)
· (ue − u+

e ) dx ≤ 0 for all u ∈ D(A), (4.18)

which we rewrite using the characteristic functions as

∑
e∈E

∫ `e

0

(
QeMe1{ue≥0}u

′
e +QeNe1{ue≥0}ue

)
· (1{ue≤0}ue) dx ≤ 0 for all u ∈ D(A). (4.19)

The conclusion then follows from Lemma 4.13 below that furnishes an equivalent, but easier to check, formulation
of (4.19).

Remark 4.12. In the same way as in Lemma 4.9, by replacing the real and imaginary by the positive and
negative part, respectively, we can see that (4.16) holds if and only if, for each v ∈ V, Yv is spanned by vectors
with positive entries only.

Let us prove the last step that is still missing in the proof of Proposition 4.11.

Lemma 4.13. Let Qe(x) be diagonal for all e ∈ E and for all x ∈ [0, `e]. Then (4.19) holds if and only if for
all e ∈ E the matrices Me(x) are diagonal for all x ∈ [0, `e], and all off-diagonal entries of the matrices Ne(x)
are nonnegative for a.e. x ∈ [0, `e].

Proof. First observe that since Qe(x) are all diagonal matrices with strictly positive diagonal elements, Me(x)
is diagonal if and only if Qe(x)Me(x) is diagonal and Ne(x) has nonnegative off-diagonal entries if and only if
the same holds for Qe(x)Ne(x). Obviously, these properties imply that

∑
e∈E

∫ `e

0

(
QeMe1{ue≥0}u

′
e

)
· (1{ue≤0}ue) dx =0 and

∑
e∈E

∫ `e

0

(
QeNe1{ue≥0}ue

)
· (1{ue≤0}ue) dx ≤0.
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yielding (4.19).
Conversely, assume that (4.19) holds. Introduce function ϕ : R→ R+,

ϕ(y) :=


y + 1 if y ∈ [−1, 0],

1− y if y ∈ [0, 1],

0 else,

and define

ψ− : R→ R+, y 7→ ϕ(2y + 1), ψ+ : R→ R+, y 7→ ϕ(2y − 1).

Notice that ∫ 1

−1

ϕ′(y)ψ−(y) dy > 0,

∫ 1

−1

ϕ′(y)ψ+(y) dy < 0. (4.20)

Now fix one edge e ∈ E, one point x0 ∈ (0, `e) and 1 ≤ i, j ≤ ke, i 6= j. Then for all n large enough, define vn,±

as follows: vn,±,e′ = 0, for all edges e′ 6= e and vn,±,e = (v
(1)
n , · · · , v(ke)

n )> with only two nonzero entries: v(i), v(j)

defined by

v(i)
n (x) = ϕ(n(x− x0)) and v(j)

n (x) = −ψ±(n(x− x0)).

The parameter n is chosen large enough so that the support of v
(i)
n , v

(j)
n is included into (0, `e) and un,± ∈ D(A),

as it vanishes in a neighborhood of each vertex. Plugging this test-function into (4.19), dividing the expression
by n and letting n goes to infinitiy, we find that

(Qe(x0)Me(x0))ji

∫ 1

−1

ϕ′(y)ψ±(y) dy ≥ 0.

With the help of (4.20), we deduce that Qe(x0)Me(x0) is diagonal.
Taking this into account, (4.19) reduces to

∑
e∈E

∫ `e

0

(
QeNe1{ue≥0}ue

)
· (1{ue≤0}ue) dx ≤ 0. (4.21)

Now fix one edge e ∈ E, and 1 ≤ i < j ≤ ke. Define v as follows: ve′ = 0, for all edges e′ 6= e and

ve = (v(1), · · · , v(ke))> ∈ D(0, `e)
ke with only two nonzero entries: v

(i)
n , v

(j)
n defined by

v(i)(x) = −|χ(x)| and v(j)(x) = |χ(x)|,

with χ ∈ D(0, `e). As before this function belongs to D(A), and with this choice of v in (4.21) we find that

∫ `e

0

(QeNe)ijχ
2 dx ≥ 0.

Since this holds for all χ ∈ D(0, `e), by Lemma B.2, we conclude that (Qe(x)Ne(x))ij ≥ 0 for all i 6= j and all
x ∈ [0, `e].
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Remark 4.14. As a simple corollary, if Qe(x), Me(x), and Ne(x) are all diagonal, (4.19) is automatically
satisfied and we are left with (4.16), a condition depending on the boundary conditions only, a result reminiscent
of Proposition 5.1 in [15] in the case of parabolic systems.

Example 4.15. If Dirichlet conditions are imposed on all endpoints `e (resp., on all endpoints 0) andQe(0)Me(0)
is positive semidefinite (resp. Qe(`)Me(`) is negative semidefinite) for all e, then the corresponding nonpositive
isotropic subspaces Yv are isomorphic to a direct product of kv blocks of size ke that are either zero or Cke . The
same holds for subspaces Y ⊥v but with the opposite pattern. Since each edge e has exactly one initial endpoint

0 and one terminal endpoint `e, we get exactly one corresponding nonzero block (≡ Cke) in all the spaces Ỹ ⊥v ,
v ∈ V. Hence,

dim
∑
v∈V

Ỹ ⊥v =
∑
v∈V

dimYv =
∑
e∈E

ke = k.

Since also γv(u) ∈ Yv for all v ∈ V, by Theorem 4.1, A generates a strongly continuous quasi-contractive
semigroup.

Example 4.16. The boundary conditions considered in Example 4.15 do de facto turn the network into a
collection of decoupled intervals. Instead, we now use the setting described in Section 3.2 and impose conservation
of mass conditions, which result in a global boundary condition u(`) = Wu(0) for some column stochastic block
diagonal matrix W with |E| blocks of sizes ke × ke. We have

Y =


(
αe1 , αe2 , . . . , αe|E| ,

∑
e∈E

w1eαe, . . . ,
∑
e∈E

w|E|eαe

)>
: αei ∈ Cke , ei ∈ E


=
{

(α,Wα)
>

: α ∈ Ck
}

= ker
(
−W I

)
,

hence condition (3.42) is not satisfied: indeed, 1 is an eigenvalue of W and therefore its associated eigenvector

α0 yields a non trivial element (α0, α0)
>

in Y ∩K, hence (3.42) cannot hold due to Lemma 3.12. But if M
is diagonal or spatially constant and positive definite, then we can use condition (4.5) that in the case of our
choice of Y reduces to the invertibility of the matrix W , which agrees with Proposition 2.1 in [40]. Then, under
these additional assumptions, A generates a contractive semigroup provided(

−Q(0)M(0) +W>Q(`)M(`)W
)
α · α ≤ 0 for all α ∈ Ck.

where Q(0) := diag (Qe(0))e∈E (resp. Q(`) := diag (Qe(`e))e∈E) and M(0) := diag (Me(0))e∈E (resp. M(`) :=
diag (Me(`e))e∈E).

If the matrices Qe,Me are diagonal and real-valued, and if moreover the diagonal and off-diagonal entries of
Ne(x) are for all e ∈ E and a.e. x ∈ [0, `e] real and nonpositive, respectively, then the semigroup generated by A
is positive. The case of spatially constant, and diagonal matrices with positive entries on L1(G) corresponds to
flows in networks as studied in [42], see also [40] and the references there. There, W is the generalized adjacency
matrix of the line graph.

We conclude this section by elaborating on a comparison principle between semigroups. Let A1, A2 be two
operators, each generating a positive semigroup – say, (T1(t))t≥0, (T2(t))t≥0. Then (T2(t))t≥0 is said to dominate
(T1(t))t≥0 if

T1(t)f ≤ T2(t)f for all f ≥ 0 and all t ≥ 0.

We can now formulate the following.
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Proposition 4.17. Let two operators A1, A2 with domain

D(A1) := {u ∈ Dmax : γ(u) ∈ Y1},
D(A2) := {u ∈ Dmax : γ(u) ∈ Y2}

satisfy our standing assumptions as well as the assumptions of Theorem 4.1. Let the semigroups generated by
A1, A2, say, (T1(t))t≥0, (T2(t))t≥0, be both real and positive. Then (T2(t))t≥0 dominates (T1(t))t≥0 if Y1 is an
ideal of Y2, i.e., Y1 ⊂ Y2 and

0 ≤ ξ ≤ χ with ξ ∈ Y2 and χ ∈ Y1 implies ξ ∈ Y1.

and additionally

(A1u, v) ≤ (A2u, v) for all u, v ∈ D(A1) s.t. u, v ≥ 0.

Proof. First of all, observe that domination is not affected if A1, A2 are rescaled by the same real scalar ω;
hence, we can without loss of generality assume both A1, A2 to be dissipative. The proof can then be performed
combining Lemma 4.5 and Theorem 2.24 of [58].

An interesting case arises when A1, A2 are defined by means of the same matrices M,Q,N , and only the
boundary conditions are different, i.e., Y1 6= Y2. This is e.g. the case if Y1 is the space spanned by Πv1, . . . ,Πvm,
where v1, . . . , vm are the vectors spanning Y2 and the projector Π is a block diagonal operator matrix whose
diagonal blocks are a zero matrix (of any size ≥ 1) and an identity matrix (of any size ≤ 2|E|). In the case of
the transport equation on a network studied in [42], this corresponds to comparing a given network with a new
network with additional Dirichlet conditions in some vertices.

We may discuss in a similar way the issue of L∞-contractivity, i.e., the invariance of L2(G;C) for C := [−1, 1]
under the semigroup generated by A. We omit the details.

5. Examples

5.1. Linearized Saint-Venant models

Here we study a system where the linearized Saint-Venant model (2.6) is considered on all the J edges of
a network, and hence the unknown (h, u)> is replaced by (he, ue)

>
e∈E. While our approach applies to arbitrary

networks and variable functions H,V that may differ across the edges, for the sake of simplicity we here restrict
to the case of constant (real) coefficients H,V that are independent of the edges, to H > 0 (which is physically
reasonable), and to a star-shaped network with J edges, for some integer J ≥ 2, see Figure 2. More precisely,
we let E := {e1, . . . , eJ}, and identify each edge ej with (0, `j) (the parametrization of ej is determined by the
arrow in Fig. 2): v0 will correspond to the endpoint `1 for e1 and to the initial point 0 for all other edges. The
external vertex of ej will be denoted by vj , j = 1, . . . , J .

Now we need to fix the boundary conditions at all vertices. According to our approach they are related to
the operators Tv defined in (3.9). In our case we have (see (2.8))

QeMe = −
(
gV gH
gH HV

)
≡: −B.

Because the matrix B is independent of e, and also symmetric and invertible due to condition (2.7), we thus
have

Tv1 = B, and Tvi = −B for all i ≥ 2
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Figure 2. A star-shaped network with one incoming and J − 1 outgoing edges.

at the external vertices vi, i ≥ 1, while at the interior vertex v0 Tv0 is a block diagonal matrix:

Tv0 = diag(B,−B, . . . ,−B).

Now, let us notice that the two eigenvalues λ± of B satisfy

λ+λ− = gH(V 2 − gH).

Hence, under the subcritical flow condition gH − V 2 > 0 (see [6], p. 14), λ+ and λ− are of opposite sign.
On the contrary, under the supercritical flow condition gH − V 2 < 0, λ+ and λ− have the same sign; but as
λ+ + λ− = (g +H)V > 0, in this case they are both strictly positive.

Now, we distinguish between these two flow conditions.

1) If gH − V 2 < 0, then at the external vertices the only choice for a totally isotropic subspace Yvi associated
with Tvi is 〈(0, 0)>〉. This already yields 2J boundary conditions and there is no more freedom to manage
the internal vertex v0. In other words, under this choice of boundary conditions the associated operator A
cannot generate a group.
But we may hope for the generation of a semigroup. Hence as Tv1 = B has two positive eigenvalues we surely
need to impose that Yv1 = {(0, 0)>}, i.e.,

h(v1) = u(v1) = 0, (5.1)

while we are free to impose boundary conditions or not at vj , for all j ≥ 2. Since Tv0 has 2 positive eigenvalues
and 2(J−1) negative eigenvalues, by Lemma C.3, the maximal dimension of a subspace Yv0 of the nonpositive
isotropic cone associated with Tv0 is 2(J − 1). Choosing Yv0 as the subspace associated with the negative
eigenvalues leads to a decoupled system and is of less interest. Letting instead

Yv0 = span{(1, 0, 1, 0, . . . , 1, 0)>, (0, 1, 0, 1, . . . , 0, 1)>},

we observe that

Tv0ξ · ξ̄ = (2− J)B(x, y)> · (x̄, ȳ)> ≤ 0,
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for all ξ ∈ Yv0 , i.e., ξ = x(1, 0, 1, 0, . . . , 1, 0)> + y(0, 1, 0, 1, . . . , 0, 1)> for some x, y ∈ C, since B is positive
definite. This choice corresponds to the continuity of the water depth and the velocity at v0, namely

hj(0) = h1(`1), vj(0) = v1(`1) for all j ≥ 2

and yields 2(J − 1) boundary conditions. They are complemented by the two conditions (5.1) at v1, and by
no conditions at vi for i ≥ 2. This leads to k = 2J boundary conditions for which

Tvξ · ξ̄ ≤ 0, for all ξ ∈ Yv, v ∈ V.

To conclude the generation of a semigroup by Theorem 4.1 it suffices to notice that (3.19) is valid because

Ỹ ⊥v1 = C2 × {(0, 0)}J−1 is clearly independent of Ỹ ⊥v0 , while Ỹ ⊥vj are trivial for all j ≥ 2, so (3.21) holds, and

dimYv0 = 2, dimYv1 = 0, and dimYvj = 2 for all j ≥ 2.

Furthermore, by Lemma 4.8 and Proposition 4.7, the semigroup is real. Finally, by Lemma 4.13 condition
(4.19) does not hold, hence the semigroup is not positive.

2) If we are in the subcritical case gH − V 2 > 0, then the eigenvalue λ+ (resp. λ− ) is positive (resp. negative).
Let us first analyze the possibility to have a group. In that case, by Lemma C.2, at any external vertex v
a totally isotropic subspace of qv is of dimension at most one, while at the interior vertex v0 it is at most
J . Let us present the following example. If U± is the normalized eigenvector of B associated with λ±, then
according to (C.8),

U = U− + ı

√
λ−
λ+

U+

is an isotropic vector of the sesquilinear form associated with B. Therefore for all j = 1, . . . , J , we take Yvj
as the vector space spanned by U . We proceed similarly at v0 by fixing J isotropic vectors constructed in
the proof of Lemma C.2. To have a coupling system, one possibility is the following one. We notice that the
eigenvectors of Tv0 associated with positive eigenvalues are

U+
1 = (U>+ , 0, . . . , 0)>

for the eigenvalue λ+ and

U+
2 = (0, U>− , 0, . . . , 0)>, . . . , U+

J = (0, 0, . . . , 0, U>− )>

for the eigenvalue −λ−. Similarly, the eigenvectors of Tv0 associated with negative eigenvalues are

U−1 = (U>− , 0, . . . , 0)>

for the eigenvalue λ− and

U−2 = (0, U>+ , 0, . . . , 0)>, . . . , U−J = (0, 0, . . . , 0, U>+ )>

for the eigenvalue −λ+. We can now take Yv0 as the vector space spanned by U−J + U+
1 and by vectors

U−j + U+
j+1 for all j = 1, · · · , J − 1. Then Ỹ ⊥v0 is clearly independent of

{
Ỹ ⊥vi : i = 1, . . . , J

}
which is also

an independent set itself, and (3.19) holds since
∑

v∈V dimYv = 2J . Furthermore, each Yv is by construction
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a totally isotropic subspace associated with the quadratic form qv, hence we are in the position to apply
Theorem 3.7 and deduce that the associated operator A generates a group, which is by Corollary 3.9 is
unitary if and only if V = 0. As before the (forward) semigroup is real and does not preserve positivity.
In the subcritical case gH − V 2 > 0, examples of boundary conditions leading to a semigroup can be easily
built as before.

5.2. Wave type equations

Wave-type equations on graphs have been intensively studied in the literature, let us mention [2, 38, 45, 48,
54, 57]. Here we focus on extending these results to rather general elastic systems modeled as

üe(t, x) = u′′e (t, x) + αeu̇
′
e(t, x) + βeu̇e(t, x) + γeu

′
e(t, x), t ≥ 0, x ∈ (0, `e), (5.2)

where αe ∈ C1([0, `e]) and βe, γe ∈ L∞(0, `e) are real-valued functions. For the sake of simplicity, we hence
restrict to stars as in Figure 2, which can be regarded as building blocks of more general networks. It turns out
that (5.2) is equivalent to

U̇e = MeU
′
e +NeUe,

for the vector function Ue = (u′e, u̇e)
>, where

Me =

(
0 1
1 αe

)
, Ne =

(
0 0
γe βe

)
.

As Me is symmetric, Assumptions 2.1 are automatically satisfied by choosing Qe as the identity matrix. As
usual, the boundary conditions at the vertices are related to the values of Me at the endpoints of the edge e,
that generically are given by

Me(v) =

(
0 1
1 αe(v)

)
,

when v is one of the endpoints of e; hence Me(v) has two real eigenvalues of opposite sign,

λ± =
1

2

(
αe(v)±

√
αe(v)2 + 4

)
.

We are thus in the same situation as in the Saint-Venant model with the subcritical condition: we thus do not
give any further details about the choice of boundary conditions at the interior vertices, since all ideas presented
there carry over to the present case. Note that for an exterior vertex v, Neumann condition

u′e(v) = 0,

can be equivalently described by means of the totally isotropic subspace Yv spanned by (0, 1)>. In this case,
(0, 1)> will be an isotropic vector if and only if αe(v) = 0. On the contrary, Dirichlet boundary condition at an
exterior vertex v

ue(v) = 0,
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leads to u̇e(v) = 0, and corresponds to the choice Yv spanned by (1, 0)>. Our approach also allows us to discuss
absorbing boundary condition (see [19] for instance))

u′e(`e) = −κu̇e(`e)

with κ ∈ (0,∞): indeed it then corresponds to the space spanned by U = (−κ, 1)>, hence

Me(v)U · Ū = αe(v)− 2κ ≤ 0,

that will be nonpositive as soon as κ ≥ αe(v)/2.
Let us finally notice that provided the boundary conditions are nice enough to generate a group, it will be

unitary group if and only if γe = 0 and βe =
α′e
2 , for every edge e. In case of a generation of a semigroup, it will

be real provided (4.14) holds, while if all γe are nonpositive, it will be never positive (this is in particular the
case for the wave equation, as αe = βe = γe = 0).

5.3. Hybrid transport/string equations

Network-like systems described by equations which are partially of diffusive and partially of transport type
have been studied by Hussein and one of the authors in [32]; characterization of the right transmission conditions
leading to well-posedness has proved a difficult task. In the following we turn to the different but related task
of connecting transport and wave equations; this can suggest natural ways of coupling first and second order
differential operators.

The simplest toy model is to consider a scalar wave equation set in an interval (0, `2) and a scalar transport
equation in (0, `1) coupled via their common endpoint that is assumed to be 0. This means that we consider
the system {

ü(t, x) = u′′(t, x), t ≥ 0, x ∈ (0, `2),
ṗ(t, x) = −p′(t, x), t ≥ 0, x ∈ (0, `1),

(5.3)

with Dirichlet boundary condition at `2

u(t, `2) = 0, (5.4)

and the transmission condition at 0

u′(t, 0) = αp(t, 0), u̇(t, 0) = βp(t, 0), (5.5)

where α, β are two real numbers fixed below in order to guarantee well-posedness of our system.
As in Section 5.2, by identifying the interval (0, `i) with ei, i = 1, 2, introducing ue1 = (u′, u̇)> =

(ue1,1, ue1,2)>, and setting ue2 = p, we can transform our system into a first order system of the form (2.1)
with

Me1 =

(
0 1
1 0

)
and therefore Qe1 =

(
1 0
0 1

)
and Me2 = −1 (hence Qe2 = 1).

Notice that our network possesses three vertices, v0, corresponding to 0 (with Ev0 = {e1, e2}),
v1,corresponding to the endpoint `1 of e1 (with Ev1 = {e1}), and v2, corresponding to the endpoint `2 of
e2 (with Ev2 = {e2}). Since there is no boundary condition at v1, we set Yv1 = C2, to take into account (5.4),
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we set Yv2 = C× {0}, and (5.5) requires to take

Yv0 = span
{

(α, β, 1)>
}
.

With this notation, we see that

qv1(x) = −|x|2, x ∈ C2,

qv2(ξ) = 0, ξ ∈ Yv2 ,

while

qv0(ξ) = (1− 2αβ)|x3|2 for all ξ = (x1, x2, x3)> ∈ Yv0 .

This means that Yv0 is a subspace of the nonpositive isotropic cone associated with qv0 if and only if 2αβ ≥ 1.
Finally, as

Ỹ ⊥v1 = {0} × {0} × {0}, Ỹ ⊥v2 = {0} × C× {0}, Ỹ ⊥v0 = span{(1, 0,−α)>, (0, 1,−β)>},

condition (3.19) is fulfilled if β 6= 0. Therefore, system (5.3) with the boundary/transmission conditions (5.4)–
(5.5) is governed by a strongly continuous semigroup if 2αβ ≥ 1. The semigroup is real but not positive.

A toy model of a transport process sandwiched between two diffusive ones, all three taking place on intervals
of length 1, was proposed in Section 2 of [32] (we refer to that paper for an interpretation of such a model in
terms of delayed equations and for a possible biologic motivation). If diffusion is replaced by a wave equation,
the corresponding hyperbolic system satisfies the Assumptions 2.1 with

M :=


0 1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 1 0

 and N ≡ 0, hence Q :=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 :

where the unknown is

u := (u′, u̇, p, v′, v̇)>.

Here we have two interior vertices v1, v2: the former corresponds to the endpoint 0 of both (0, `1) and (0, `2),
while the latter corresponds to the endpoint 0 of (0, `3) and the endpoint `1 of (0, `1). Hence imposing conditions
(5.4)–(5.5) as before along with Dirichlet boundary condition at `3

v(t, `3) = 0, (5.6)

and the transmission condition at v2

v′(t, 0) = γp(t, `1), v̇(t, 0) = δp(t, `1), (5.7)

with two real numbers γ, δ, one can show well-posedness of this problem if 2αβ ≥ 1, 2γδ ≥ −1 and γ 6= 0. The
semigroup is, again, real but not positive.
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5.4. Hybrid string/beam equations

Ammari et al. [3, 5] have proposed models that consist of several combinations of strings and beams. In
particular, in [3] a collection of 1 wave and N beam equations is considered on a star graph. The necessary
4N + 2 conditions consist of the following;

– N + 1 transmission conditions: continuity of all solutions at the star’s center along with a Kirchhoff-type
condition on the beams’ shear forces (third derivative of solutions) and the strings’ flux (first derivative);

– 3N + 1 boundary conditions: zero conditions on the beams’ slopes and bending moments (first and second
derivatives, respectively) along with closed feedbacks on the beams’ shear forces and the strings’ fluxes.

This model trivially satisfies Assumptions 2.1 with

Me =

(
0 1
1 0

)
and Me =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


in the case of the string-like and beam-like edges, respectively. In this case, Theorem 4.1 applies and we deduce
that the hyperbolic system is governed by a strongly continuous semigroup. Indeed, arguing as in Section 3.2
we deduce that this semigroup is contractive, hence the energy of solutions is decreasing.

The aim in [3] was to discuss the stabilization of an elastic system: the reason why it makes sense to consider
closed feedbacks is that if they are replaced by zero conditions, then in view of the duality between continuity
and Kirchhoff conditions, a direct computation shows the assumptions of Corollary 3.9 are satisfied and we
conclude that the system is governed by a unitary group.

5.5. The Dirac equation

The 1D Dirac equation is briefly discussed in Section 1.1 of [66]: it was later extended to the case of networks
and thoroughly studied by Bolte and his coauthors [9, 10], who also observed that it then takes on each edge
the form

ı~
∂

∂t
ψ =

(
~c
(

0 −1
1 0

)
∂

∂x
+mc2

(
1 0
0 −1

))
ψ in (−∞,∞)× (−∞,∞)

for a C2-valued unknown ψ = (ψ(1), ψ(2)). A parametrization of skew-adjoint realizations on a network has been
presented in [9]; we are going to study the more general problem of finding boundary conditions that lead to a
group or merely a semigroup, which still yields forward well-posedness of the Dirac equation.

To begin with, observe that Assumptions 2.1 are especially satisfied by taking

Me =

(
0 ıc
−ıc 0

)
, Qe =

(
1 0
0 1

)
, and Ne =

(
−ımc

2

~ 0

0 ımc
2

~

)
, e ∈ E.

We hence deduce from Lemma 4.8 that, no matter what the boundary/transmission conditions look like, a
semigroup governing the Dirac equation cannot be real, let alone positive.

Let us now study the quadratic form qv. We observe that by (3.9), Tv is kv × kv block-diagonal matrix whose
diagonal blocks equal ±Me, according to the appropriate value ιve of the incidence matrix. Hence, if we write

γv(ψ) = (ψ(1)
e (v), ψ(2)

e (v))>e∈Ev
=: (ξe, ηe)

>
e∈Ev
∈ Ckv ,
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then this vector is an isotropic vector for the associated quadratic form qv if and only if

∑
e∈E

ιve=(ξe · η̄e) = 0. (5.8)

Any set of vector spaces Yv ⊆ Ckv , consisting of vectors (ξe, ηe)
>
e∈Ev

that satisfy (5.8) possibly induces boundary
conditions that determine a realization of A generating a group; in fact, necessarily a unitary group, since (3.28)
is clearly satisfied. A well-known example is that of vectors ξ being scalar multipliers of the “characteristic
function” 1Ev := 1{e∈Ev} and η with the same support Ev and orthogonal to ξ, where Ev ⊂ E is the set of edges
incident with any given vertex v. Recalling the notation ιEv from Example 3.4, this gives rise to

Yv := span{1Ev} ⊕ span {ιEv}
⊥
,

corresponding to continuity of the first coordinate of ψ across all vertices, and a Kirchhoff condition on the
second coordinate, (clearly, swapping the transmission conditions in vertices satisfied by the two coordinates
yields again a group generator); in this case, the condition (3.19) need not be satisfied. However, we can apply
Theorem 3.11, since this choice of Yv implies that T−1

v Y ⊥v = Yv. Another possibility is e.g. given by letting

Yv := {(α1, α1, . . . , α|Ev|, α|Ev|)
> : α ∈ Ckv}, corresponding to ψ

(1)
e (v) = ψ

(2)
e (v).

If we turn to the issue of mere contractive well-posedness, then we observe that any non positive isotropic
cone consists of vectors such that ∑

e∈E

ιve=(ξeη̄e) ≥ 0; (5.9)

accordingly, any Yv all of whose elements satisfy (5.9) is a candidate for generation of a semigroup. Indeed, by
Theorem 4.1 such a choice of Yv induces a realization of the operator A that generates a strongly continuous
contractive semigroup if additionally (3.19) holds or all elements of T−1

v Y ⊥v satisfiy (5.9). A somewhat trivial
example is given by Yv := {0}⊕C|Ev|, corresponding to decoupled case of Dirichlet boundary conditions imposed
at an endpoint of each interval on both coordinates of the unknown; or, more generally (and interestingly) of
Yv = {(ıBη, ιEv � η) : η ∈ Ckv} for some matrix B of size kv with only purely imaginary eigenvalues (implying
that B and B∗ are accretive and dissipative) since Y ⊥v = {(η, ıιEv � B∗η) : η ∈ Ckv}, where for two vectors
a = (ae)e∈E and b = (be)e∈E, we recall that a� b means the Hadamard product of a and b defined by

a� b = (aebe)e∈E.

5.6. Second sound in networks

So-called “second sound” is an exotic, wave-like phenomenon of heat diffusion that was first proposed by
Landau to explain unusual behaviors in ultracold helium. Second sound has ever since been observed in sev-
eral materials – most recently by Huberman et al. [31] also in graphite around cozy 130◦K. As thoroughly
discussed in [62], one classical model going back to Lord and Shulman [49] boils down to the linear equations
of thermoelasticity 

z̈ − αz′′ + βθ′ = 0 in (0, `)× (0,+∞),

θ̇ + γq′ + δż′ = 0 in (0, `)× (0,+∞),
τ0q̇ + q + κθ′ = 0 in (0, `)× (0,+∞),

(5.10)
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where z, θ, and q represent the displacement, the temperature difference to a fixed reference temperature, and
the heat flux, respectively, and α, β, γ, δ, τ0, κ are positive constants. Racke has discussed in [62] the asymptotic
stability of this system under three classes of boundary conditions:

(i) z(0) = z(`) = q(0) = q(`) = 0,
(ii) z(0) = z(`) = θ(0) = θ(`) = 0,
(iii) αz′(0) = βθ(0), θ′(0) = 0, z(`) = θ(`) = 0,

proving in detail well-posedness in the case of (i) and suggesting to use a similar strategy to study (ii) and (iii).
In fact, the boundary conditions (iii) actually represents a dynamic condition for the unknown q at 0, and hence
seem to require a subtler analysis: we will consider them along with further hyperbolic systems with dynamic
boundary conditions in a forthcoming paper [41]. We rewrite (5.10) as (2.1) by letting ue := (z′e, że, θe, qe); then
the Assumptions 2.1 are satisfied taking

Me :=


0 1 0 0
α 0 −β 0
0 −δ 0 −γ
0 0 − κ

τ0
0

 , Qe :=


αδ 0 0 0
0 δ 0 0
0 0 β 0

0 0 0 βγτ0
κ

 , and Ne :=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − 1

τ0

 .

The choice of Qe is rather natural and indeed a similar term was also used to regularize the inner product by
Racke, see (18) of [62]. A direct computation shows that

QeMe =


0 αδ 0 0
αδ 0 −βδ 0
0 −βδ 0 −βγ
0 0 −βγ 0



with four eigenvalues of the form ±
√

H±2
√
K

2 , where H := α2δ2 + β2δ2 + β2γ2 and K := H2 − 4α2β2γ2δ2.

Because H2 > K whenever α, β, γ, δ > 0, QeMe has two positive and two negative eigenvalues.
This is coherent with both above choices of boundary conditions (in the purely hyperbolic case of τ0 6= 0).

For the sake of simplicity, let us focus for a while on the case of an individual interval that can be expressed in
our formalism taking as Y at each endpoint the spaces

C× {0} × C× {0} and C× {0} × {0} × C,

respectively. A further possible choice for a subspace of the null isotropic cone is e.g.

{0} × C× {0} × C,

corresponding to

– z′(0) = z′(`) = θ(0) = θ(`) = 0.

If we however regard an interval as a loop (a network with one edge and one vertex), all these boundary
conditions turn out to be only special cases of a more general setting. Indeed, a direct computation shows that
a necessary condition for the vector

γ(u) :=
(
z′(0), ż(0), θ(0), q(0), z′(`), ż(`), θ(`), q(`)

)>
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to lie in the null isotropic cone of T defined as in (3.39) is that

<(Z1 · Z̄2 −Q · Θ̄− Z2 · Θ̄) = 0 (5.11)

where

Z1 :=

(
−αz′(0)
αz′(`)

)
, Z2 :=

(
δż(0)
δż(`)

)
, Θ :=

(
−βθ(0)
βθ(`)

)
, Q :=

(
γq(0)
γq(`)

)
.

This is for instance the case if

Z1 ⊥ Z2 and (Z2 +Q) ⊥ Θ;

this condition can e.g. be enforced by imposing

Z1,Θ ∈ span{1C2}⊥, Z2, Q ∈ span{1C2},

where span{1C2} is the subspace of C2 spanned by the vector (1, 1)>. This is a hardly surprising choice for the
reader familiar with evolution equations on networks which corresponds to periodic-type conditions

– ż(0) = ż(`), z′(0) = z′(`), θ(0) = θ(`), and q(0) = q(`)

and in turn to

γ(u) ∈ Y := span{1C2} ⊕ span{1C2} ⊕ span{1C2} ⊕ span{1C2}.

Indeed, dim(Y ) = 4, hence condition (3.42) is satisfied.
This paves the way to the study of second sound on collection of intervals with coupled boundary conditions,

an especially interesting issue, as second sound has been conjectured in [31] to take place in graphene – a
network: more precisely, hexagonal lattice of carbon atoms –, already at room temperature.

Indeed, one can apply our general theory in order to describe transmission conditions leading to well-
posedness; an easy computation shows that the relevant equation is a higher dimensional counterpart of (5.11).
An educated guess suggests to study conditions of continuity (across the ramification nodes) on both displace-
ment and temperature, i.e., on z – hence ż – and θ, along with a Kirchhoff-type condition on z′ and q. It is
remarkable that this choice does not satisfy (5.11). However, it is not difficult to see that all boundary values
that satisfy either

– continuity on z – hence ż – as well as q, along with
– Kirchhoff-type conditions ∑

e∈Ev

ιvez
′
e(v) = 0 and

∑
e∈Ev

ιveθe(v) = 0

on z′ and θ; or else

– continuity on z′ and θ, along with
– Kirchhoff-type conditions ∑

e∈Ev

ιveże(v) = 0 and
∑
e∈Ev

ιveqe(v) = 0
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on z – hence ż – as well as q define a totally isotropic subspace of the null isotropic cone. (If the vertex v has
degree 1, then in both cases the first conditions become void, whereas the second reduce to Dirichlet conditions.)
Again, we see that (3.19) is satisfied and conclude that the system is governed by a strongly continuous group
on L2(G).

All above spaces Y are invariant under taking both the real and the positive part. Furthermore, Q,M,N are
real valued and Q,N are diagonal, but M is not, hence by Proposition 4.7 and Proposition 4.11 the semigroup
generated by A with any of these transmission conditions is real but not positive.

Furthermore, A generates merely a semigroup whenever the space Y defining the boundary conditions is a
subspace of the nonpositive isotropic cone of T : this can e.g. enforced by assuming that

Z1 = BZ2 and (Z2 +Q) = −CΘ

for some dissipative matrices B,C, provided Y has the correct dimension. Because

QeNe =


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −βγκ


is dissipative and Qe,Me are spatially constant, this semigroup is then automatically contractive.

Appendix A. Hyberbolicity revisited

Lemma A.1. Let [0, `e] 3 x 7→ Me(x) ∈ Mke(C) be a Lipschitz continuous matrix-valued function such that
Me(x) is invertible for each x ∈ [0, `e]. Then matrix Me(x) is Lipschitz-diagonalizable, i.e., there exist two
Lipschitz continuous matrix-valued functions [0, `e] 3 x 7→ Se(x) ∈ Mke(C) and [0, `e] 3 x 7→ De(x) ∈ Mke(C)
such that for all x ∈ [0, `e] both Se(x), De(x) are invertible, De(x) is diagonal and real, and furthermore

Me(x) = S−1
e (x)De(x)Se(x), (A.1)

if only if Assumptions 2.1.(3) holds for some Lipschitz continuous, uniformly positive definite matrix-valued
function [0, `e] 3 x 7→ Qe(x) ∈Mke(C).

Proof. If the matrix Me can be diagonalized as above, then we readily check that Assumptions 2.1.(3i) holds
with the Hermitian matrices

Qe(x) := S∗e (x)D2n
e (x)Se(x), x ∈ [0, `e],

for any n ∈ N0 := {0, 1, 2, . . .}. This matrix is indeed uniformly positive definite, because for any ξ ∈ Cke , one
has

Qe(x)ξ · ξ̄ = D2n
e (x)Y (x) · Y (x), (A.2)

where Y (x) := Se(x)ξ. Since the mappings

[0, `e]→ [0,∞) : x→ ‖D−2n
e (x)‖ and [0, `e]→ [0,∞) : x→ ‖S−1

e (x)‖

are continuous and positive, there exists a positive constant α such that

0 < ‖D−2n
e (x)‖ ≤ α and 0 < ‖S−1

e (x)‖ ≤ α for all x ∈ [0, `e].
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These estimates in (A.2) lead to

Qe(x)ξ · ξ̄ ≥ α−1‖Y (x)‖2 ≥α−3‖ξ‖2 for all x ∈ [0, `e].

Finally as a composition of Lipschitz continuous mappings, Qe(·) is Lipschitz continuous, too.
Conversely, let us assume that Assumptions 2.1.(3) holds. First, as each Qe(x) is Hermitian and positive

definite, Q
1
2
e (x) is well-defined. Now we notice that Assumptions 2.1.(3i) is equivalent to

Q
1
2
e (x)Me(x)Q

− 1
2

e (x) = Q
− 1

2
e (x)M∗e (x)Q

1
2
e (x) for all x ∈ [0, `e].

Since this right-hand side is the adjoint of the left-hand side, each matrix Q
1
2
e (x)Me(x)Q

− 1
2

e (x), x ∈ [0, `e], is
Hermitian, hence it is diagonalizable by a family of unitary matrices S0,e(x) and real diagonal matrices De(x)
such that

S0,e(x)
(
Q

1
2
e (x)Me(x)Q

− 1
2

e (x)
)
S∗0,e(x) = De(x) for all x ∈ [0, `e],

which yields (A.1) with Se(x) := S0,e(x)Q
1
2
e (x). By assumptions on Me and Qe, both Se(·), De(·) are Lipschitz

continuous functions and Se(x), De(x) are invertible matrices for all x ∈ [0, `e].

Appendix B. Three versions of the fundamental lemma of
calculus of variations

We first prove a density result in the subset of positive integrable functions; we recall the notation in (4.6)
and write likewise D(0, `; R) for the set of real-valued test functions.

Lemma B.1. Let ` > 0. The set

{ϕ2 : ϕ ∈ D(0, `; R)}

is dense in L1(0, `; R+).

Proof. Indeed let us fix u ∈ L1(0, `; R+), then
√
u belongs to L2(0, `; R) and therefore there exists a sequence

(ϕn)n∈N of functions in D(0, `; R) such that

ϕn →
√
u in L2(0, `; R) as n→∞. (B.1)

Therefore by Cauchy–Schwarz’s inequality we have

∫ `

0

|u− ϕ2
n|dx =

∫ `

0

|(
√
u− ϕn)(

√
u+ ϕn)|dx

≤ ‖
√
u− ϕn‖L2(0,`)‖

√
u+ ϕn‖L2(0,`)

≤ ‖
√
u− ϕn‖L2(0,`)(‖

√
u‖L2(0,`) + ‖ϕn‖L2(0,`).

By (B.1), we conclude that this right-hand side tends to zero.

Now we prove two variants of the fundamental lemma of the calculus of variations (or “du Bois–Reymond’s
lemma”).
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Lemma B.2. Let h ∈ L∞(0, `; R) satisfy∫ `

0

hϕ2 dx ≥ 0 for all ϕ ∈ D(0, `; R), (B.2)

then h ≥ 0. If in particular ∫ `

0

hϕ2 dx = 0 for all ϕ ∈ D(0, `; R), (B.3)

then h = 0.

Proof. As the second assertion is a direct consequence of the first one, it remains to check the first one. Let
h ∈ L∞(0, `; R) satisfy (B.2), then as it is in L1(0, `; R), it can be split up as

h = h+ − h−,

where h+, h− ∈ L1(0, `; R+) is the positive and negative part of h respectively. According to (B.3) and
Lemma B.1 we have ∫ `

0

hh− dx ≥ 0,

which in turn leads to ∫ `

0

(h−)2 dx = 0,

and proves that h = h+ is nonnegative.

This Lemma allows to prove a matrix-valued version of the fundamental lemma of the calculus of variations.

Lemma B.3. Let k be a positive integer and let A ∈ L∞(0, `; Ck×k) be such that

A∗(x) = A(x) for a.e. x ∈ (0, `).

If A satisfies ∫ `

0

Au · ūdx = 0 for all u ∈ D(0, `)k, (B.4)

then A = 0.

Proof. First we show that the diagonal entries of A = (Ai,j)1≤i,j≤k are zero. Indeed let us fix i ∈ {1, · · · , k} and
in (B.4) take test functions u in the form u = ϕei, where ϕ ∈ D(0, `; R) is abitrary and ei is the ith element of
the canonical basis of Ck. Then we get∫ `

0

Aiiϕ
2 dx = 0 for all ϕ ∈ D(0, `; R),

and Lemma B.2 yields Aii = 0 because Aii is real-valued.
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Let us now manage the off-diagonal entries of A. Fix i, j ∈ {1, · · · , k} with i < j. Now we chose two family
of test-functions in (B.4):
(1) First take test functions u in the form

u = ϕ(ei + ej),

where ϕ ∈ D(0, `; R) is arbitrary. Then (B.4) reduces to∫ `

0

(Aij +Aji)ϕ
2 dx = 0 for all ϕ ∈ D(0, `; R).

Again Aij +Aji = 2<Aij is real-valued because A is hermitian, and Lemma B.2 yields <Aij = 0.
(2) Second take test functions u in the form

u = ϕ(ei + ıej),

where ϕ ∈ D(0, `; R) is arbitrary to obtain∫ `

0

(Aij −Aji)ϕ2 dx = 0 for all ϕ ∈ D(0, `; R).

Since Aij −Aji = 2ı=Aij , this means that∫ `

0

=Aijϕ2 dx = 0 for all ϕ ∈ D(0, `; R),

and therefore =Aij = 0 due to Lemma B.2.

Appendix C. On subspaces of isotropic cones associated with a
quadratic form

In this section we fix a positive integer k and a hermitian and invertible matrix P ∈ Ck×k. Its associated
quadratic form q is defined by

q(ξ) = Pξ · ξ̄, ξ ∈ Ck.

Now we introduce some cones associated with q, see Definition 3.1 of [46].

Definition C.1. (1) The null isotropic cone associated with the quadratic form q is defined as the set of
isotropic vectors associated with q, namely the set of vectors ξ ∈ Ck such that

q(ξ) = 0. (C.1)

A subspace of the null isotropic cone associated with q is called a totally isotropic subspace and the isotropy
index (of the quadratic space associated with q), denoted here by i(q), is the maximum of the dimensions
of the totally isotropic subspaces.

(2) The nonpositive (resp. nonnegative) isotropic cone associated with the quadratic form q is defined as the
set of vectors ξ ∈ Ck such that

q(ξ) ≤ 0 (resp. ≥ 0). (C.2)
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From Lemma 1.2 of [53] we know that i(q) ≤ k/2 but, surprisingly, we could not find in the literature a
reference that yields a characterization of i(q). Hence the goal of this appendix is to characterize this isotropic
index as well as the maximal dimension of any subspace of nonpositive isotropic cones.

Let {λi}ki=1 be the set of eigenvalues of P , repeated according to their multiplicities and enumerated in an
increasing order, and denote by {ui}ki=1 the set of the associated normalized eigenvectors, i.e.,

Pui = λiui and ui · ūj = δij for all i ∈ {1, . . . , k}.

Denote by k− (resp. k+) the number of negative (resp. positive) eigenvalues of P . Without loss of generality,
we may assume that λi < 0 for i ≤ k− and λi > 0 for i > k−. We will see that the isotropic index i(q) agrees
with min{k−, k+}.

Lemma C.2. Any subspace of the null isotropic cone associated with the form q has dimension at most κ :=
min{k−, k+}. Furthermore if κ ≥ 1, there exist at least 2κ subspaces of the null anisotropic cone associated with
q of dimension κ.

Proof. If κ = 0, this means that P is either positive definite or negative definite and therefore the associated
isotropic cone is reduced to {0}. So the only case of interest is the case κ ≥ 1. By symmetry, we can assume
that κ = k−. So let us now fix a subspace I of the isotropic cone associated with q. Every nonzero u ∈ I can be
written as

u =

k∑
i=1

αiui, (C.3)

for some αi ∈ C which are not all zero. Since (C.1) is equivalent to

k∑
i=k−+1

|αi|2λi = −
k−∑
i=1

|αi|2λi, (C.4)

we find that there exists at least one i ≤ k− such that αi 6= 0.
Assume that K := dim I > k− and let {Ui}Ki=1 be a basis of I. Let us write

Ui =

k∑
j=1

αijuj , (C.5)

for some αij ∈ C. By the previous remark, for all i ≤ K, there exists j ≤ k− such that αij 6= 0.
Now we use a sort of Gram–Schmidt procedure: Starting with i = 1 and without loss of generality (else we

change the enumeration) we can assume that α11 6= 0 and, consequently, we have

u1 = δ1Ũ1 −
k∑
j=2

α1j

α11
uj .

where we have set Ũ1 := U1 and δ1 := 1
α11

. Plugging this expression into (C.5) with i = 2, we find that

U2 =
α21

α11
U1 +

k∑
j=2

α̃2juj , (C.6)
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with some α̃2j ∈ C. This means that the new vector Ũ2 := U2 − α21

α11
U1, that is still in I, has at least one

coefficient α̃2j different from zero for j ∈ {2, . . . , k−}. Again, after a possible change of enumeration, we can
assume that α̃22 6= 0, hence we have

u2 = δ2Ũ2 −
k∑
j=3

α2j

α̃22
uj .

where δ2 = 1
α̃22

. Note that the new set {Ũ1, Ũ2} ∪ {Ui}Ki=3 forms a basis of I. By iterating this procedure, after

k− steps, we will find a basis {Ũi}k−i=1 ∪ {Ui}Ki=k−+1 of I such that

ui = δiŨi −
k∑

j=k−+1

βijuj for all i = 1, . . . , k−, (C.7)

for some δj ∈ C\{0} and some βij ∈ C.
By using the expansion (C.5) of Uk−+1 and (C.7), we find

Uk−+1 =

k−∑
j=1

αijδjŨj +

k∑
j=k−+1

γijuj ,

for some γij ∈ C∗. We then arrive to a contradiction because on one hand the vector V := Uk−+1−
∑k−
j=1 αijδjŨj

is in I, hence q(V ) = 0, while on the other hand V 6= 0 is a linear combination of the uj ’s for j ≥ k− + 1, hence
q(V ) > 0.

For the last assertion, if in (C.3), for all i = 1, . . . , k−, we chose

αi = 1 and αi′ = 0 for all i′ /∈ {i, k− + i},

condition (C.4) will hold if and only if

|αk−+i|2 = − λi
λk−+i

,

or equivalently

αk−+i = ±ı

√
λi

λk−+i
.

This yields the isotropic vectors

U±i = ui ± ı

√
λi

λk−+i
uk−+i. (C.8)

And, since the U+
i ’s and the U−i ’s are linearly independent, we find 2k− possibilities.

A similar assertion holds for subspaces of the nonpositive isotropic cone associated with the quadratic form

q – one such subspace is spanned by the first k− eigenvectors {ui}k−i=1 of P .
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Lemma C.3. Any subspace of the nonpositive isotropic subspace associated with the form q has dimension at
most k−.

Proof. If k− = 0, this means that P is positive definite and therefore the only possible choice for such a subspace
is {0}. So the only case of interest is the case k− ≥ 1. Now the proof is exactly the same as the one of the
previous Lemma. Indeed let I be such a subspace and let u ∈ I different from zero, then it admits the splitting
(C.3) with some αi ∈ C not all zeroes. Since the constraint

Pu · ū ≤ 0,

is equivalent to

k∑
i=k−+1

|αi|2λi +

k−∑
i=1

|αi|2λi ≤ 0, (C.9)

we again find that there exists at least one i ≤ k− such that αi 6= 0. The previous argument then leads to
dim I ≤ k−.
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[58] E. Ouhabaz, Analysis of Heat Equations on domains. Vol. 30 of Lond. Math. Soc. Monograph Series. Princeton Univ. Press,
Princeton, NJ (2005).

[59] B. Pavlov and M.D. Faddeev, Model of free electrons and the scattering problem. Theor. Math. Phys. 55 (1983) 485–492.

[60] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44 of Appl. Math. Sci. Springer-
Verlag, New York (1983).

[61] J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857.

[62] R. Racke, Thermoelasticity with second sound – exponential stability in linear and nonlinear 1D. Math. Methods Appl. Sci.
25 (2002) 409–441.

[63] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Am. Math. Soc. 291 (1985)
167–187.

[64] J. Rauch, Hyperbolic partial differential equations and geometric optics. Vol. 133 of Graduate Studies in Mathematics. Amer.
Math. Soc., Providence, RI (2012).

[65] C. Schubert, C. Seifert, J. Voigt and M. Waurick, Boundary systems and (skew-) self-adjoint operators on infinite metric
graphs. Math. Nachr. 288 (2015) 1776–1785.

[66] B. Thaller, The Dirac Equation. Springer-Verlag, New York (1992).
[67] M. Waurick and S.-A. Wegner, Dissipative extensions and port-hamiltonian operators on network (2019).

[68] T. Yokota, Invariance of closed convex sets under semigroups of nonlinear operators in complex Hilbert spaces. SUT J. Math.
37 (2001) 91–104.

[69] H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems
on a one-dimensional spatial domain. ESAIM: COCV 16 (2010) 1077–1093.


	Linear hyperbolic systems on networks: well-posedness and qualitative properties
	1 Introduction
	2 General setting and main examples
	3 Parametrization of the realizations: the isometric case
	3.1 Transmission conditions in the vertices
	3.2 Global boundary conditions

	4 Contractive well-posedness and qualitative properties
	5 Examples
	5.1 Linearized Saint-Venant models
	5.2 Wave type equations
	5.3 Hybrid transport/string equations
	5.4 Hybrid string/beam equations
	5.5 The Dirac equation
	5.6 Second sound in networks

	Appendix A Hyberbolicity revisited
	Appendix B Three versions of the fundamental lemma of calculus of variations
	Appendix C On subspaces of isotropic cones associated with a quadratic form

	References

