
HAL Id: hal-03158479
https://hal.science/hal-03158479

Submitted on 22 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Procedural Textures Using Point Process Texture
Basis Functions

Pascal Guehl, Rémi Allègre, Jean-Michel Dischler, Bedrich Benes, Eric Galin

To cite this version:
Pascal Guehl, Rémi Allègre, Jean-Michel Dischler, Bedrich Benes, Eric Galin. Semi-Procedural Tex-
tures Using Point Process Texture Basis Functions. Computer Graphics Forum, 2020, 39 (4), pp.159-
171. �10.1111/cgf.14061�. �hal-03158479�

https://hal.science/hal-03158479
https://hal.archives-ouvertes.fr

Eurographics Symposium on Rendering 2020
C. Dachsbacher and M. Pharr
(Guest Editors)

Volume 39 (2020), Number 4

Semi-Procedural Textures Using
Point Process Texture Basis Functions

P. Guehl1 , R. Allègre1 , J.-M. Dischler1, B. Benes2 , and E. Galin3

1ICube, Université de Strasbourg, CNRS, France 2Purdue University, USA 3LIRIS, Université de Lyon, CNRS, France

Jittering

Weighting
function type

...

Degree of smoothing

Jittering

Weighting
function type

...

Degree of smoothing

Input binary structure

Input material maps (albedo,
normals, roughness, etc.)

Rendered synthesized material

Rendered input material

Semi-procedural
synthesis

Semi-procedural
editing

(a)

(c)
(d)

(b) Parameter set #1 Parameter set #2

Procedural
interpolation

Figure 1: Input data, a single texture or multiple texture maps (a), and a binary structure (b) are used to generate a semi-procedural
output (d). It is a novel texture representation where structure is procedural (d, top) and details are data-driven (d, bottom). Generated
textures have procedural properties: infinity, no repetition, self-consistency, and genericity. The structure can be edited by using parameters
(only three of them are shown here). Morphing is implicitly obtained by interpolating these parameters. The data-driven details guarantee a
good visual match with the exemplar. We call Semi-procedural synthesis the synthesis from a structure that matches the input exemplar, and
Semi-procedural editing the synthesis from a user edited structure. A rendered view of the input material is shown for comparison (c).

Abstract
We introduce a novel semi-procedural approach that avoids drawbacks of procedural textures and leverages advantages of data-
driven texture synthesis. We split synthesis in two parts: 1) structure synthesis, based on a procedural parametric model and
2) color details synthesis, being data-driven. The procedural model consists of a generic Point Process Texture Basis Function
(PPTBF), which extends sparse convolution noises by defining rich convolution kernels. They consist of a window function
multiplied with a correlated statistical mixture of Gabor functions, both designed to encapsulate a large span of common
spatial stochastic structures, including cells, cracks, grains, scratches, spots, stains, and waves. Parameters can be prescribed
automatically by supplying binary structure exemplars. As for noise-based Gaussian textures, the PPTBF is used as stand-alone
function, avoiding classification tasks that occur when handling multiple procedural assets. Because the PPTBF is based on
a single set of parameters it allows for continuous transitions between different visual structures and an easy control over
its visual characteristics. Color is consistently synthesized from the exemplar using a multiscale parallel texture synthesis by
numbers, constrained by the PPTBF. The generated textures are parametric, infinite and avoid repetition. The data-driven part
is automatic and guarantees strong visual resemblance with inputs.

1. Introduction

Texture authoring is an important part of creating virtual 3D worlds.
The constant increase of complexity requires to set up automatic,

scalable, controllable, and efficient texture synthesis techniques.
Different approaches have been proposed, with the two prominent
approaches being procedural modeling and data-driven.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14061

https://orcid.org/0000-0002-6387-6355
https://orcid.org/0000-0002-7780-9284
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0002-5946-4112

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

P
P
T
B

F
e
v
a
lu

a
ti

o
n

T
h
re

sh
o
ld

in
g

Output semi-procedural material

P

F

w

Point process

Feature function

Window function

P
P
T
B

F
p

a
ra

m
e
te

rs
se

tt
in

g

Parameter fitting + Appearance space exploration Editing and interpolation

Procedural structure

Input material maps and label mapInput binary structure

R
u
n
ti

m
e
 d

a
ta

-d
ri

v
e
n

 t
e
x
tu

re
 s

y
n
th

e
si

s

Procedural guidance map

On-the-fly rendering or texture maps generation

Figure 2: The pipeline of our method. PPTBF is controlled by parameters that can be estimated from an input, edited by hand, or interactively
explored via database browsing and/or latent appearance space inspection. Structure is obtained by thresholding. It can be further edited
and spatially interpolated with other procedural structures. Then, data-driven synthesis is applied to generate semi-procedural textures.

Procedural textures provide data compression and generic-
ity. They are defined by sets of parameters and by generative
rules [EMP*02] and many procedural texture assets, based on
handcrafted node graphs, are available [Ado19]. However, the
creation of procedural textures is a tedious task requiring expert
knowledge and trial and error authoring. So called inverse procedu-
ral texture modeling methods attempt to encode textures procedu-
rally, but they fail to generate novel assets. Modeling all color de-
tails to reach a realistic appearance is difficult because prohibitively
complex graphs are generally required. Subsequently, in addition
to classification issues, a perfect match is almost never found even
in very large databases. HU, DORSEY, and RUSHMEIER [HDR19]
circumvent this limitation by augmenting textures with style trans-
fer [GEB16].Unfortunately, style transfer cannot recover all visual
properties.

Data-driven texture synthesis supplies an input exemplar that
is automatically extended, while preserving visual properties. Most
methods assume the exemplar is the realization of a statistical pro-
cess and synthesis consists in creating new realizations by preserv-
ing the statistics. However, this inherently raises two issues: (1) the
ability of the statistical estimators to match visual criteria and, as
for any statistical estimation, (2) the quality of the input. If the input
is small, which is the most common practical case, a bias is intro-
duced in estimators, bringing visual artifacts such as repetition, or
structural inconsistencies. In addition, control and editing of visual
variants is difficult, because, unlike procedural models, there are no
parameters controlling specific visual properties.

We introduce a novel complementary approach that merges pro-
cedural and data-driven texture synthesis. It uses a generative pro-
cedural model for the global structure of the texture, thus guaran-
teeing structural consistency, genericity and a high degree of user
control, in combination with an example-based technique, thus im-
proving visual resemblance.

The procedural part is addressed by defining a new generic Pro-
cedural Point Process Texture Basis Function (PPTBF), inspired
by sparse convolution noise [LLDD09; LLD11] and Worley’s cel-
lular texture basis function [Wor96]. We avoid the use of existing

asset databases, basically designed for color textures, and prefer
drawing our approach on noise-by-example [GLLD12]. Using col-
lections of assets has several limitations: it requires 1) to classify
texture structures to find out which asset to use, 2) to modify manu-
ally all assets to synthesize only structures instead of full colors and
materials, 3) to empirically set up specific transitions between all
possible combinations of assets to be able to smoothly, and spatially
morph structures. Noise-by-example is much simpler as 1) it re-
quires no database at all, 2) structure can be obtained by threshold-
ing and 3) transitions by parameter interpolation. However, noise
is limited to unstructured, so called Gaussian textures, and even
phase fixing [GSV*14] provides only limited structures. Driven by
the structure database we built, we designed our PPTBF to cover a
large span of most common stochastic structures, including cells,
stripes, stains, dots, grains, etc.

The data-driven part provides visual match with input exem-
plars. This step inherently avoids the aforementioned inverse pro-
cedural modeling issues: a perfect procedural match is not required,
since details can be transferred from the exemplar. We procedu-
rally generate a guidance function over R2, based on the PPTBF.
The key challenges are to devise a one-to-one mapping that asso-
ciates resolution independent procedural PPTBF values directly to
patches taken from the exemplar. The user controls with a single
scalar value how much structure is brought by the PPTBF and how
much details by the exemplar.

Our contributions are: 1) a novel generic texture basis function,
defined by sparse convolution with a kernel function, that can be
easily controlled by intuitive parameters and is GPU compliant,
1) a database of frequently observed 2D structures representing
various natural texture structures obtained by segmenting images
from other texture databases, and 3) a novel texture generation that
decouples structure and details.

Figure 1 illustrates our method on an input binary structure and
material maps. Note how the corresponding estimated procedural
structure smoothly varies when it is interpolated with another struc-
ture. We performed a comparative study with noise by example,
state-of-the-art texture synthesis and inverse procedural modeling,

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

160

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

Figure 3: Many natural textures (top) embed spatial stochastic structures (bottom) such as cells, cracks, grains, scratches, spots, stains or
waves. While intricate color patterns are complex to model through procedural texture graphs, structures are simpler to manage. Our PPTBF
extends sparse convolution noise and is designed to procedurally produce similar spatial structures. This figure is a subset of our database
of 2D visual structures, that we make publicly available.

which is developed in the supplemental materials. It demonstrates
that our method offers a novel complementary alternative to these
works by unifying their advantages.

2. Related work

Sparse convolution noises. [Lew89]uses Poisson point distribu-
tions to randomly sum weighted clamped Gaussian kernels. Gabor
noise [LLDD09] distributes phase-augmented kernels to improve
spectral control. Phasor Noise [TEZ*19] replaces the single cosine
by a a more complex function to maintain an optimal contrast along
wave fronts. For these models, structure is missing, because no cor-
relations among the kernels are considered.

LRP noise [GSV*14] uses a Fourier series to define local pat-
terns. By fixing some phases, the approach is able to represent some
weak structures. But strong edges, as for cellular structures, cannot
be processed because of blending. Local spot-noise [CGG19] uses
anisotropic Gaussians. Spatial control is easier but spectral control
is lost. Cellular texture basis function [Wor96] is a linear combina-
tion of n-th closest distances, strictly speaking they are not noises,
but noise-similar functions. It creates discontinuities at equidistant
locations from the points, i.e., Voronoi cells. However, the shapes
of cells are limited because only isotropic distances are considered.

All these models are limited in the range of structures they can
represent. Our PPTBF can be seen as a mathematical extension of-
fering more versatility by relying on more advanced convolution
kernel functions.

Procedural textures by example. Noise by example [GLLD12]
unifies advantages of procedural and by-example texture synthesis.
However, noise by example is not texture by example, noise con-
tains no structure. GILET, SAUVAGE, VANHOEY, et al. [GSV*14]
fix phases in spectral domain. Fixing a unique set of phases en-
forces structure to be repeated. Faster noise models have been pro-
posed in [GLM17; HN18]. They directly use discrete example im-
ages, that may contain some structures. But blending degrades vi-
sual quality when structure is dominant. GUINGO, SAUVAGE, DIS-
CHLER, and CANI [GSDC17] sees textures as a combination of
two layers: structure and noise. All of these discrete image-based
approaches lack control. Our approach models random structures
in a fully procedural way.

Inverse procedural texture modeling seeks to find a pro-
cedural model and its parameters using a procedural texture

database [BD04; GKHF14; LGD*18; ZWW18]. Recently, HU,
DORSEY, and RUSHMEIER [HDR19] perform a supervised clas-
sification of a collection of procedural assets by training a CNN for
parameter regression. Results strongly depend on the database and
the quality of classification. An appropriate asset might not exist.
Our approach does neither require a pre-defined database of as-
sets, nor classification as it directly fits the parameters of a unique
generic model.

Data-driven texture synthesis has been extensively studied in lit-
erature and we refer to surveys [WLKT09; RDDM17]. We may dis-
tinguish region matching and parametric methods. Region match-
ing methods search best matching regions between the input and
output textures, e.g., trying to maximize spatial coherence [LH05;
HRRG08], or to minimize a global energy [KEBK05; KNL*15]. If
the input exemplar contains structures, these methods require tex-
ton maps, which are provided as contours extracted from the input
enriched with a distance transform. When the input contains sub-
patterns, the “texture-by-numbers” algorithms [HJO*01; PELS10]
can synthesize textures with control over spatial distributions of
patterns. This is achieved by providing input and output label maps
as extra data to guide synthesis. As an alternative, synthesis can
be guided by texture exemplars, e.g. to perform reflectance trans-
port [AWL15]. We adopt a parallel method inspired by [LH06].
The core issue is to device an one-to-one mapping between PPTBF
values and local neighborhoods for synthesis.

Parametric methods generate textures that match global image
statistics by iteratively refining an initial noise image, so that it
progressively matches a set of statistical constraints. These con-
straints are computed from the responses of multi-scale and multi-
orientation filters [PS00]. Texture synthesis using CNNs [GEB15;
AAL16; SC17] rely on a statistical description learned from train-
ing datasets. Recent approaches generate textures at realtime rates
after a long and costly training process [ZZB*18; FAW19]. As for
region matching methods, texton maps are required to preserve
structures, as well as label maps to control feature distributions.
They are not suitable for our approach because they operate on
bound domains.

Point sampling and point distributions have been intensively ex-
plored. Some methods generate point distributions from exemplars
[ÖG12; RÖG17], others control spectral properties [ZHWW12].
They are not suitable for our case 1) because of performance is-
sues and 2) because they use global statistics, such as the Fourier
transform, thus operating on bound domains only.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

161

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

3. Point Process Texture Basis Function

Observation of texture databases, e.g., the well-known Brodatz al-
bum [Bro66], reveals that for many textures, their structure can be
characterized by a binary map, also called texton map (see Fig.3).
These structures often embed individual stochastic components like
cells, cracks, grains, scratches, spots, stains or waves, characterized
by only three components: 1) their distribution (which can be mod-
eled as a spatial point process), 2) their local visual shapes (mod-
eled as a feature function) and 3) their mutual interaction, i.e., how
they blend with each others or stay localized in isolated regions
(modeled as a window function).

The previous observation has already been considered to de-
velop procedural noise models. Moving further along this line,
we introduce a Point Process Texture Basis Function (PPTBF), a
generic procedural texture basis function that increases the amount
of stochastic structures that can be reached compared to existing
noise models. Our PPTBF encompasses several of them like Gabor
noise [LLDD09], Worley’s cellular texture basis function [Wor96]
and local spot noise [CGG19]. The larger span of reachable tex-
ture features allows us to get rid of construction graphs and to use
the PPTBF as a stand-alone function to define visual structures by
thresholding. Using this structure, we synthesize corresponding in-
finite textures by transferring colors from input exemplars.

We designed our PPTBF according to database observations:
it consists in using 1) arbitrary tessellations to generate clustered
point distributions, which are more frequent in nature than the
uniform Poisson point distributions used to define sparse convo-
lution noise [LLDD09], 2) anisotropic distance functions instead
of isotropic distances, which improves the reachable range of cel-
lular structures compared to [Wor96], and 3) a feature function,
being itself a random field described by a statistical mixture of Ga-
bor functions. Unlike local spot noise [CGG19], it permits to unify
spatial and spectral control, and allows a direct modeling of fea-
tures like grains, scratches, stains and flakes. Although our model
increases the number of parameters compared to basic sparse con-
volution noises and Worley’s texture basis functions, this number
remains sufficiently low to keep automatic parameter estimations
tractable.

3.1. PPTBF definition

Noise with arbitrary power spectral density (PSD) can be defined
by filtering white noise with a filter kernel function. In spatial do-
main, filtering is obtained by convolution. Sparse convolution con-
sists in approximating white noise by sets of discrete points (Dirac
impulses) with associated random weights. Let us consider an ar-
bitrary distribution P of elements, expressed by a sum of Dirac
impulses located at feature points. We define our PPTBF by the
convolution of P with a kernel being the product between a visual
feature f and a window w. P is a sum of Dirac impulses. Convolu-
tion can be computed as a discrete sum, limited to k closest regions
for computational reasons:

PPT BFk(x) = ∑
i|xi∈Nk(x)

f (x−xi) w(x−xi) , (1)

where Nk(x) = {x1, ...,xk} is the set of k closest points xi to x, xi
resulting from a spatial point process. The value of k defines the

trade-off between speed and accuracy (we use k = 18 in our im-
plementation). The value of w decreases to zero so as to guarantee
finite spatial extend. It models the interaction among features. The
term f defines the features, i.e., some local patterns.

We now describe our practical choices for xi, w and f . We
present continuous, analytic, computationally efficient functions,
whose evaluation can be performed independently for every point
of R2, leading to implicit parallelism and easy implementation on
graphics hardware. We exclude heavy computations based on nu-
merical solvers requiring bound domains.

3.1.1. Non-Uniform procedural point distributions

We are interested in generating point processes X whose realiza-
tions, denoted as xi, are locally finite subsets of R2. They are mea-
surable mappings defined on some probability space inducing a dis-
tribution probability PX . In practice, the measurability of X is the
numberN (S) of points xi in a sub-part S of R2,N being a random
variable. The intensity of a point process is defined as a mean over
S. We distinguish four types of point processes, described below.

Poisson point processes define complete spatial randomness, i.e.,
the intensity is constant over R2. The points do not interact with
each others. Procedural approximations on infinite domains can be
computed efficiently using an integer lattice consisting of square
cells with constant area 1. By generating κ random independent
positions inside each cell, using pseudo-random number generation
(PRNG), the intensity over R2 is constant.

Cox point processes, also called doubly stochastic Poisson pro-
cesses, consider the intensity function of a Poisson point process as
a realization of a random field, i.e., the intensity varies and it is it-
self a noise. Subsequently, points are non-uniformly distributed and
form clusters. Various techniques have been proposed to generate
different types of Cox processes. The Neyman-Scott process is a
straight approach that uses the Poisson point process to define clus-
ter centers. Around these centers, points are distributed according
to some PDF. A special case, the Matern process, uniformly draws
the points inside disks. Procedural point clusters can be generated
over an infinite domain using random tessellations of R2, where
cells consist of rectangles Ri of varying sizes. By drawing κ points
inside the Ri, the intensity of points varies w.r.t to the cell sizes.

Gibbs point processes consider interactions among points. An
example is the Lennard-Jones process yielding attraction at long
scales and repulsion at short scales. In computer graphics, Poisson
disk point distributions (blue noise), e.g., distributions where points
are never too close nor too far from each other, have given rise to
extensive research. The Lloyd algorithm allows to create procedu-
ral approximations by iteratively generating centroidal Voronoi tes-
sellations. It allows for fast parallel implementations on unbound
domains.

Arbitrary point processes require complex iterative schemes and
are not suitable in our case (see Section 2).

By applying various generative rules, an almost endless number
of unbound tessellations of R2 can be imagined in order to gener-
ate the most diverse point distributions. Procedural modeling tools
implement many different techniques, often depending on a large
number of parameters. Their inherent complexity makes automatic

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

162

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

(a) (b) (c) (d)

Figure 4: We procedurally generate following point processes on
unbound domains: uniform Poisson distributions (a), clustered dis-
tributions (b) and approximations of Poisson-disk (c) point distri-
butions. Jittering amplitude controls randomness: a low value is
able to model some near-regular distributions (d). Building on tex-
ture databases observations, we experienced these types of distri-
butions to be the most relevant. The first row is procedurally gen-
erated with our approach. The second row shows real-world seg-
mented structures depicting similar distributions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5: Practical tilings used to generate point distributions
(uniform and clustered). Tilings (b), (c), (g), (i), (k), (m) and (o) use
a simple random recursive subdivision (at a single level). Tilings
(a) and (b) have additional Lloyd relaxation variants.

generation from exemplars hardly tractable. We experienced that
mainly artificial structures, such as building facades and city lay-
outs require complex schemes, for example grammar-based. Con-
versely, by looking at texture databases, we observed that uniform,
clustered and Poisson-disk point distributions already well cover a
large span of natural stochastic patterns. Figure 4 illustrates this.
Since these are our target structures, we only implemented a low
number of tessellations, in practice 15 (see Fig. 5). A unique pa-
rameter for our point distribution is given by a distribution label
called νT . The tessellations are based on few fixed and simple prob-
abilistic subdivision rules, in addition to a parallel Lloyd algorithm
(only applied to tessellations (a) and (b)). Thus, the integer param-
eter νT varies from 1 to 17.

Each of our tessellations defines an infinite set of rectangular
cells Ri over R2. Points (xi) are randomly drawn inside the Ri us-
ing the jittering technique, according to a jitter amplitude jit. The
latter defines the maximal accepted difference between the point
and the center of Ri. When jit is low and the tessellation peri-
odic, we also get a near-periodic point distribution, which allows
our PPTBF to marginally cover some near-regular structures (see
Figure 4(d)). The use of only two parameters makes automatic es-
timations highly efficient.

3.1.2. Window Function

The function w defines how neighboring features interact. In signal
processing, many window functions have been proposed, like the
truncated Gaussian, Kaiser-Bessel or tapered cosine windows. We
use the PPTBF to define the spatial structure of stochastic patterns.
In this context, the window profile does not much influence struc-
tural characteristics. Conversely, its spatial footprint (2D shape)
turns out to be of primary importance. We distinguish two main
families of window shapes:

Non-overlapping windows can be generated from point processes
using Voronoi cells or directly from procedural tessellations, since
both define a partitioning of R2 (i.e., without overlaps). They rep-
resent visually appealing cellular structures which appear for ex-
ample in some crack patterns. The distance measurement used to
define the Voronoi cells determines their shapes.

Overlapping windows. Overlapping regions can be handled in dif-
ferent ways: added, averaged, stacked or blended. The distance
measurement also defines their shape.

We unify these different characteristics by defining a generic
window function that is a weighted sum of collections of non-
overlapping and overlapping basis windows with Gaussian profile:

w(x) =
nw

∑
j=1

ω j

N j
w j (x) , w j = be−σ jD j(x−xi)cd j , (2)

where nw is the number of basis windows, ω j their weights, and
N j a normalization term. The value D j is the distance measure ac-
counting for the shape of the window, b cd j is the clamping opera-
tion, s.t. if D(x−xi) > d j then w j = 0. d j thus defines the spatial
extent. xi is the centroid of the window (Equation 1). It results from
the previous procedural point process (see Section 3.1.1).

Figure 6: Our window is defined by a linear combination of basis
windows. For practical reasons, we use only two basis windows, but
more of them can be used. From left to right, we show the influence
of ω ∈ [0,1] on the appearance of w.

The functions w j are understood as basis functions for a win-
dow function space, in which a variety of different windows are

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

163

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

expressed by linear combinations. For practical and computational
reasons, we implemented only a limited number of basis windows
nw and corresponding distance measures: a single non-overlapping
window, w1 (we call it cellular window) and a single overlapping
window, i.e., nw = 2 (see Figure 6). The motivation is to keep pa-
rameter estimation tractable. We have selected two basis functions,
as described next, because they match common texture structures.
In order to further reduce parameters, we normalize their weights,
∑ j ω j = 1 so that, in practice, there remains a single parameter ω.

Non-overlapping window w1. An isotropic cellular window is de-
fined by computing a distance D(x−xi) = ‖x−xi‖c and by apply-
ing a min operator to define corresponding Voronoi cells. Unlike
Worley’s cellular function, we enforce our w1(x) to have a con-
stant iso-value exactly on the border of the Voronoi cells, because
it allows a better control of visual characteristics when thresholds
are applied (recall that we apply thresholds to characterize struc-
ture). We thus define |x− xi|c = ||x− xi||p/||x− ri||p, where ri is
the intersection of the line (xxi) with the Voronoi cell and || ||p
represents a p-norm. In practice, ri is quickly computed using a
binary search. By construction, D takes the value 1 exactly on the
Voronoi cell border. Corresponding cellular patterns are generated
by setting d1 = 1, which avoids window overlaps.

In spite of using various point distributions and p-norms, we ex-
perimentally found that an isotropic distance still has a too limited
expressiveness w.r.t. to observed real-world cellular patterns. To
better fit observations of texture databases, we increase the range
of cell shapes. Many specialized generative rules exist for the most
various cellular patterns, like mosaics and stone walls. Their inher-
ent complexity makes them unsuitable for our context. A more ap-
propriate way for extending Voronoi cells shapes, consists in mak-
ing D anisotropic. The challenge is to keep the amount of parame-
ters as low as possible. Exploiting the rectangular cells Ri of the tes-
sellations (that inherently hold an anisotropy information) offers an
good opportunity. We thus introduce a single anisotropy coefficient
λ to weight the previous isotropic p-norm against an anisotropic
ρ–norm linked to Ri: ‖x−xi‖c = λ‖x−xi‖c +(1− λ)‖x−xi‖ρ

,
with ‖(x,y)‖ρ = ‖(x/dx,y/dy)‖p, and where (dx,dy) is the closest
distance to the border of Ri. From a visual point of view, λ per-
mits a smooth morphing between the tessellation cell shape and the
polygonal Voronoi cell shape.

Natural cellular patterns often depict curved cell shapes, as op-
posed to straight polygonal shapes (see Figure 3 left. Bézier curves
permit the modeling of arbitrary curved shapes, while the amount
of parameters remains low. To smooth our window shapes, we put
inside each Voronoi cell a polygon composed of nv vertices used
as control points. The vertices are distributed on the Voronoi cell
border in an equiangular way, i.e., by fixing a constant angular step
2π/nv. A coefficient lc ∈ [0,1] then allows to control the degree of
smoothness (0 means straight lines, 1 means curved). This simple
approach for smoothing Voronoi cells was motivated by two prac-
tical advantages: 1) it requires only two parameters and 2) compu-
tations are highly efficient, because it avoids the costly computation
of complete Voronoi cell shapes.

Our w1 is eventually controlled by following parameters: p-
norm, σ1, λ, lc and the number nv of control points. Its normal-
ization term N is always set to 1.

Worley uses n-th closest distances, based on an isotropic p-norm
to define collections of Fn functions, that are linearly combined.
Our window extends this principle by using anisotropic distance
measures. Experimentally, we found that using the first-closest dis-
tance for w1 in association with different tessellations, anisotropy
and smoothing already allows to cover well the variety of cellular
structures present in our structure database: from round stone walls
to crack patterns. We therefore did not consider additional second
(or more) closest distance functions.

Overlapping window allows to merge neighboring features. We
define our single overlapping basis window w2 by an isotropic dis-
tance D2 = ||x− xi||p. Its normalization term is given by N2 =
ς+(1− ς)×∑w2 (x). ς takes values between 0 and 1, so that the
normalization results in adding features when ς = 1, and in av-
eraging features when ς = 0. For overlapping windows, isotropic
distances are sufficient, because the shape of the window does not
have a significant visual impact when merging features.

A procedural vector field would be a more general way to control
anisotropy (orientations and directional scales), but it would also
add more parameters to the model and make the search of closest
points less easy and efficient. Conversely, a grid made of rectan-
gles, which also inherently hold anisotropy information according
to their length and their width, is simple, permits to avoid adding
parameters and guarantees fast processing.

3.1.3. Feature Function

The feature term f models visual features, i.e., local patterns, like
stripes, grains, dots or stains. For texture synthesis, this term is gen-
erally of primary importance, because it strongly influences the vi-
sual characteristics of the textures. Here, the objective is to pro-
duce the overall structure of a texture. Precise modeling of high
frequency components or specific shapes, such as daisy flowers,
maple leaves, etc., is not required.

Different representations are possible: 1) An image, as used
in [GLM17; HN18] is fast, but not suitable in our case, because
“extraction” from an exemplar is not easy (trivially taking a crop
is not adequate, as a crop may contain a cellular structure, that we
do not want to be part of the feature function) and it is not generic
(editable). 2) Local Fourier series as in [GSV*14] permit spectral
control. Phases can be fixed for given frequencies to model some
types of weak structures. However, phase fixing is problematic and
freezing a single set of phases generates strong repetitions. 3) Sums
of shifted anisotropic Gaussians as in [CGG19] avoid repetitions by
making parameters random (positions, orientations, etc.). Design-
ing structures is easier in spatial domain than using phase fixing in
spectral domain. But spectral control is lost.

We argue that a sum of multiple anisotropic Gabor functions is
more versatile. It is inherently able to unify both, spectral and spa-
tial control. We randomly generate Gabor kernel positions, orienta-
tions, etc. according to some given PDFs. A strength of our model
is that our PDF can include correlations with the previous window
function. We also extend Gabor functions to be able to bend the
cosine stripes and to make them either thinner or thicker. This has
proven useful for modeling common stringy structures like grains
and scratches, that would otherwise require complicated phase cor-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

164

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

relations in spectral domain. We call this extended anisotropic Ga-
bor function, stringed Gabor function, denoted as G̃. Our feature
function is defined by :

f (x) =
J

∑
j=1

ω j(x)G̃ j(x), (3)

G̃ j(x) = A j

(
e−σ j|i‖Ξ(x−µj|i)‖ f

)(
.5+ .5 cos

(
φ

∥∥∥Ξ(x−µj|i)
∥∥∥

f

))τ

.

The index notation j|i means that the corresponding value is corre-
lated to the tessellation cell Ri (see section 3.1.1) and corresponding
window centroid xi (Equation 1). The term ω j determines how G̃ j

contributes to the sum on position x ∈R2. Because of the latter, we
call our feature function a mixture, rather than a sum. σ j|i is ran-
domly drawn proportionally to the size of the corresponding cell
Ri. J is bound by [Jmin,Jmax], these two parameters controlling the
amount of stringed Gabor functions in the mixture. A j represent
weights. µj|i are positions selected around the window centroids xi.
Ξ is a matrix that allows to orient the cosine stripes according to an
angle θ j ∈ [0,θ]. The matrix includes a scaling factor η accounting
for anisotropy:

Ξ =

(
cos(θ j) −ηsin(θ j)
sin(θ j) ηcos(θ j)

)
(4)

The distance ‖·‖ f =
√

(x′)2κ2 +(y′)2 with x′ = Ξ(x− µj|i) in-
cludes a curvature parameter κ that controls curliness of stripes:
when κ = 0 the stripes are rectilinear, when κ = 1 the stripes form
concentric circles around µ j|i. φ represents the frequency of the co-
sine and τ controls the thickness of the stripes.

The previous formulation (Equation 3) is versatile: by defin-
ing different mixtures and PDFs for generating the J, µ j|i, θ j, A j,
etc., it theoretically permits the creation of wide varieties of spa-
tial and spectral structures. However, automatic estimation from
exemplars becomes difficult when non-uniform distribution func-
tions and mixture models are not known beforehand. Since we only
want to produce rough stochastic structures, we implemented a lim-
ited number of mixtures (functions ω j) with few fixed PDFs. A
label parameter νG̃ for f defines this (see supplemental materials
for implementation details). The PDFs use a correlation coefficient
correl ∈ [0,1], similar to the Matern point process disk radius for
µ j|i, such that µj|i = correl× xi +(1− correl)× ξj|i, ξj|i being a
uniformly drawn random position inside Ri. σ j|i is also correlated
to Ri, by setting it proportional to the area of Ri. This generates
clusters around window centroids. We experienced that correlat-
ing positions µ j|i and variance σ j|i with the window function has
a significant visual impact. Conversely, correlations have less vi-
sual impact for the remaining parameters, which we draw therefore
independently. Figure 7 shows examples of obtained feature func-
tions.

4. By-example PPTBF parameters estimation

PPTBF generates continuous scalar fields over R2. We do not use
it to build procedural textures, but only procedural structures (by
applying a threshold, converting floating points into binary values).
A random subset of structures that can be reached with PPTBF is

(a) (b) (c) (d) (e)

(f) (f) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7: Comparison of noise patterns generated by sparse con-
volution with isotropic Gaussians (a) and Gabor functions (b). (c)–
(o) illustrate our mixture of stringed Gabor functions, introducing
additional parameters: anisotropy η, thickness τ and curliness κ. It
allows a more efficient modeling of anisotropic features like grains,
stripes and folds.

shown in Figure 8. As opposed to structures obtained by segment-
ing texture images, procedurally generated structures are resolution
independent, defined over an infinite domain and editable.

Figure 8: A subset of structures generated with PPTBF. Structures
are defined by thresholding. In spite of a low number of param-
eters, by construction, PPTBFs cover a large variety of different
structural appearances, that are similar to the natural structures
shown in Figure 3.

PPTBF parameters can be edited to tune and control structural
characteristics. Here, we only briefly describe automatic example-
based parameter recovery, since this is not a contribution. Given
a structure exemplar I, encoded as a binary image, we determine
the parameters pPPT BF = {p0, p1, ...pk−1} of the PPTBF so that,
when a threshold is applied, we obtain a similar look. We use an
iterative scheme to retrieve optimal parameters, based on a similar-
ity measure. A database of pre-computed, sampled and thresholded,
PPTBFs is used for initializing a Monte Carlo random search.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

165

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

To generate the database, we sample the parameter space of the
PPTBF and compute a texture feature vector for each image, as pre-
sented e.g., in [GKHF14; LGD*18]. We interactively explored the
parameter space to devise an empirical sampling scheme, avoiding
redundancy as well as large gaps between visual structures. Based
on this non-regular sampling scheme, we generated a database of
450k images by applying three different thresholds to the PPTBF
fields (20%, 50%, and 80%). In practice, these are sufficient, be-
cause input exemplars can be normalized to one of these thresholds
by applying morphological erosion and dilatation. The visual ex-
ploration and subsequent generation of the database required sev-
eral days. We note that this is not an unusual approach: most com-
puter graphics and vision techniques that apply deep learning, like-
wise require a pre-process based on a “manual” generation of train-
ing datasets. This is often the most painstaking task.

We apply geometrical transforms to normalize PPTBF generated
images. We considered following transforms: scaling, stretching
along the X axis, rotation and stochastic Brownian distortions. The
latter is motivated by the observation that many natural structures
are resulting from complex physical processes well described by
fractal Brownian motion. Such a deformation can be easily simu-
lated by applying spatial distortions using fractal noise character-
ized by a 1/ f n spectrum. Our spatial Brownian distortion depends
on three parameters: amplitude, frequency and the exponent of the
spectrum. We excluded more complex deformations, for example
resulting from surface curvatures and perspective distortions. We
also assume the structure exemplar is stationary.

Once the database has been augmented with deformations, we
use a descriptor to evaluate similarities by computing distances on
feature vectors. Defining novel texture descriptors is out of our
scope. Many different descriptors have been proposed during the
past decades [LCF*18]: we implemented and tested several com-
mon ones, including multiscale LPB, Gabor Binary Patterns, his-
tograms of Gabor filters and CNN-based (VGG19). For each de-
scriptor, we precomputed the corresponding set of feature vectors
that are then used to query the database by applying a closest dis-
tance using the L2 norm and the FLANN library [ML09]. The query
provides instant initial results. We generate more results by Monte
Carlo sampling, that are further iteratively refined using either au-
tomatic Metropolis search or a visual selection by the user.

5. Semi-Procedural Textures

5.1. Data-driven details

The PPTBF may be directly converted into textures by using color
tables or specific color spaces as in [GLLD12; GSV*14]. The prob-
lem is that results look unrealistic because they are too “simple”
(rich visual details are missing) and because color processing is
inherently problematic. We therefore use a data-driven approach.
The PPTBF is used to define only the global structure. The latter
is obtained by applying a threshold thresh. Using a binary image
has two advantages: 1) the same PPTBF scalar field can generate
different structures with different topologies depending on thresh
and 2) it avoids over–constraining data-driven texture synthesis.

We aim to consistently transfer color details from an input exem-
plar to the structure generated by the PPTBF. It consists in applying
constrained example-based texture synthesis (textures by numbers

or texture transfer [HJO*01; EF01]). Optimization-based texture
synthesis consists in minimizing an energy made of two terms: the
standard mean square difference energy and a regularization term,
so as to balance local details with the given constraint:

argmin

{
∑
πi

‖I(πi)−S(πi)‖2 +χ
∥∥I(πi)−S(πi)

∥∥2
}
, (5)

where I is the exemplar, S the synthesized texture and πi a set of
overlapping patches. χ is a constant that controls the constraint. ·
represents the external information, i.e., the guidance map.

In our semi-procedural context, such an approach raises several
issues: 1) by sampling the PPTBF, its inherent infinite procedu-
ral nature gets lost. 2) A binary structure may not be sufficient
to capture some subtle structural details that a texture image can
contain: multiple labels are generally used in label maps, not bi-
nary images. The labels allow to classify and identify sub-patterns
(Fig. 10). 3) The mixing of two energies with a constant constraint
might generate visual inconsistencies, especially at the transition
regions between sub-textures. The reason is that PPTBF generate
novel, non-repetitive variants that may not be present in exemplars.

Our solution is based on an appropriate operator ·, to be applied
to both the input exemplar and our PPTBF. In practice, this operator
converts the PPTBF into a guidance map. Our choice is as follows:

• the user may not want to make the synthesized texture exactly
match the PPTBF structure everywhere. Therefore, we define a
range [thresh− ε, thresh+ ε], thresh being the threshold used to
define the binary structure, such that χ falls down to zero when
the PPTBF has a value within this range. Since thresh defines
the contours of PPTBF structures, it allows to release the PPTBF
constraint around features during synthesis. In an extreme, case
χ can be zero everywhere: in this case, only standard data-driven
texture synthesis is applied. Figure 9 illustrates an example: ε is
progressively increased from left to right.
• We generate a distance field from the binary structure images

to guarantee a consistent synthesis on feature borders: it cre-
ates smooth transitions on borders. But using a border smoothing
may not be sufficient to control synthesis. Label maps are more
appropriate, because they allow one to distinguish different types
of features. This is obtained by extending our PPTBF, so that it
also generates a random label directly at the positions xi. Fig-
ure 2 illustrates an example of guidance map generation from
the PPTBF: it shows the smoothed feature borders in the binary
structure image overlapped by labels shown as false colors.

For optimization (Equation 5), we use a parallel approach, with a
block-based initialization. We also apply padding, i.e., block over-
lapping, to guarantee continuity over R2. We start from a coarse
resolution. Then we refine using upscaling and correction passes,
as in [LH05]. Our correction pass uses a nearest neighbor search
algorithm based on a random walk. It applies a L2 norm on tex-
els to compute errors by mean square differences over patches of
size 5× 5. To address material synthesis, we use multiple maps
(albedo, normal, roughness, height, and ambient occlusion). These
maps are superimposed so that each texel is composed of a higher
dimensioned vector instead of only RGB vectors. Upscaling and
correction passes remain unchanged: we apply the L2 norm on 9-D
vectors instead of 3-D vectors.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

166

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

Input texture Output texture
S
tr

o
n
g
 P

P
T
B

F
st

ru
ct

u
re

S
tro

n
g
 e

xe
m

p
la

r d
e
ta

ils

Procedural structure

Input structure

100% 85% 50% 25% 0%

Figure 9: Semi-Procedural texture synthesis combines the use of
PPTBF with texture transfer. The PPTBF is used to constrain syn-
thesis. The user controls the synthesis by defining a function χ. The
green regions around features correspond to zero values of χ. It
relaxes the PPTBF constraint to preserve the original structural
characteristics of the input in these regions.

Figure 10: Textures with non homogeneous features are processed
using label maps, e.g. using the unsupervised texture classification
method by LOCKERMAN, SAUVAGE, ALLÈGRE, et al. [LSA*16].
Our method automatically assigns labels to feature components in
a random fashion during semi-procedural texture synthesis (small
squares show exemplar).

5.2. Smooth transitions

A key advantage of using a single PPTBF model is that texture
structure morphing is straightforward. In contrast, when using dif-
ferent assets, new specific “transition” nodes have to be build man-
ually, which is an extremely painstaking task because trivial blend-
ing generally does not work.

All floating-point parameters are linearly interpolated. There are
however, three integer parameters, νT , ft and J that need a special
processing. νT corresponds to the underlying tiling: it is used to de-
fine the xi ∈Nk(x). These are used to compute distances D j. Their
number is fixed by constant k. The points being ordered accord-
ing to increasing Euclidian distance, we propose to interpolate the
values of D j of first closest, second closest, ... k-closest distances
D j. In practice, this works very well as distance fields represent a
common solution for shape morphing. ft is the mixture model. It
determines how the A j and the function ω j(x) are computed for
G̃ j. But these are all floating-point values that can be interpolated.
Finally, J is the number of G̃ j. To interpolate between Ja and Jb,
we take the maximum Jmax = max{Ja,Jb} and linearly fade out
the amplitudes A j, j > Jmax of the kernels that are too much. This
makes the surplus of kernels simply vanish during interpolation.

6. Results, Comparisons, and Discussion

The pseudo-code of the PPTBF is available in the supplemental
materials. A full GPU implementation of the PPTBF is available
on our website †, enabling the reproduction of our full database for
parameter estimation. We also provide a software implementation
of our semi-procedural texture synthesis method.

Structure modeling. We set up a database of 150 structures
(see supplemental material) obtained by segmenting other texture
databases to evaluate the ability of our PPTBF to reproduce these
structures. Figure 11 shows a subset of this database. We experi-
enced that the PPTBF is able to cover a large span of different
structures (PPTBF is on the right). It succeeds as long as struc-
tural components do not have too complex spatial organization and
shapes. We show examples of cells, dots, stains, cracks, waves,
grains and scratches. We also compared our results to noise by ex-
ample (Gabor noise [GLLD12] and LRP noise [GSV*14]). Not sur-
prisingly these methods, designed for Gaussian and weakly struc-
tured textures, often fail to correctly reproduce structures. The en-
tire database with these comparisons can be found in the supple-
mental material.

Input binary Procedural Input binary Procedural Input binary Procedural
structure structure structure structure structure structure

Figure 11: Evaluation of the capability of PPTBF to produce nat-
ural structures (we use segmented images on left): parameters were
estimated by querying a collection of 450k samples and by applying
refinement.

Material synthesis. Our approach synthesizes textures that match
input exemplars. PPTBF provides a consistent structure, and data-
driven synthesis provides visual details. Extensions to layered ma-
terials are shown in Figure 14. The top shows the exemplar, the
bottom our semi-procedural texture.

Comparisons with example-based synthesis. Our semi-
procedural synthesis can be compared with by–example texture
synthesis, provided input structures match the input exemplars
(typically when exemplars have been segmented). Figure 13
illustrates a comparison with state-of-the-art methods. These
methods focus on quality but are not generative procedural ap-
proaches: textures cannot be modified and edited in realtime. Our
semi-procedural approach transfers the structure of the PPTBF to
the resulting texture. It generates varied, i.e., novel and random

† https://github.com/ASTex-ICube/semiproctex

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

167

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

Input Semi-procedural texture
texture synthesis with structure transition

Figure 12: Some semi-procedural texture synthesis results with
varying PPTBF parameters.

content, yet maintaining an overall consistent aspect with the
input. Note that we are able to address some types of regular
structures, which is related to the jitter parameter: when it is set
to 0, randomness of point positions disappears and the underlying
regularity of the tiling is revealed. However, our method does not
address tilings or regular textures in general. Its main focus is on
stochastic textures.

Comparisons with inverse procedural texture modeling. Inverse
procedural texture modeling [HDR19] uses databases of procedural
texture assets, combined with classification and parameter estima-
tion. In spite of rich databases, there is no guarantee, as opposed to
data-driven techniques, that a good visual match is obtained. Post-
processing is necessary. Even the latter is not able to recover all
details. Conversely, our approach uses a data-driven technique for
synthesis: details are transferred from the exemplar, which guaran-
tees a visual resemblance, even if the structure does not perfectly
match. Moreover, the user can balance how much details are taken
from the exemplar and how much structure is kept from the PPTBF.
Figure 16 illustrates this: (a) is the input, (b) is result of [HDR19]
(top: predicted, bottom: style transfer), (c) is our result. Though
randomness is added, local leaf structures are better preserved.

Genericity. Our approach generates procedural textures, meaning
that its parameters can be edited to control the creation of textures,
and to easily create visual variants. Genericity is a key advantage
of procedural modeling. The teaser illustrates a manual editing of
some parameters. Figure 12 illustrates that users may alternatively
provide two sets of parameters as input leading to two different
structures (shown on the left and right side). The two distinct sets
of PPTBF parameters can be then interpolated to provide smooth
transitions. This is also possible for materials, as shown in Fig-
ure 15. Note that unlike inverse procedural modeling with style

transfer, where the quality degrades when the procedural models
are modified away from the original predicted results (as stated
by [HDR19]), our approach conversely keeps a good visual match,
even when the structure is strongly modified.

Performance. As shown in the accompanying video, the PPTBF
can be edited interactively, including the use of details synthesis.
In particular, we measured 9 ms for a 2562 image, 37 ms for 5122,
153 ms for 10242, and 606 ms for 20482 on a GeForce GTX 1060
with 6 GB of RAM.

Discussion. Our approach preserves some procedural generative
properties, yet maintaining a visual match with an input exemplar.
However, several natural structures are not covered by our PPTBF.
Figure 17 illustrates a branching (tree) structure that cannot be rep-
resented by the point processes and tilings we used. Such struc-
tures are generally modeled using L-systems and grammars. Mul-
tiple labels (shown on the right) with specific spatial organizations
also cannot be modeled with our PPTBF. Finally, while our semi-
procedural approach inherits advantages of data-driven techniques,
it also inherits their drawbacks: in some cases, because of the ran-
dom search of best matching neighbors, results can become noisy.
Smooth (low gradient) details can also not be well reproduced.

7. Conclusions

We introduced semi-procedural texture generation, a novel method
that can be seen as a complementary approach between pure inverse
procedural texture modeling and pure example-based texture syn-
thesis. The procedural part is addressed with a point process texture
basis function, that avoids the use of databases of procedural assets
as well as classification. Yet, it permits to reach a wide range of
structures.

We believe semi-procedural texture generation can be a starting
point for many extensions to further improve controllable texture
synthesis and content creation. First, the model lets itself well ex-
tend to more advanced generative algorithms, such as grammars for
defining more complex tilings, point distributions and structures.
Using feature functions with more elaborate PDFs can be imag-
ined to further extend the range of reachable textures. Texture basis
functions inherently let themselves well extend to higher dimen-
sions, so that solid and volumetric texture synthesis from 2D ex-
emplars could be addressed in future. Finally, the approach could
be combined with procedural 3D object modeling augmented with
scanned data, object shape being procedural and surface details be-
ing data-driven.

Devising a robust method for estimating PPTBF parameters
from exemplars is another interesting topic for further research.
Currently we use a technique based on a pre-computed database.
It has limitations as it depends on the sampling of the PPTBF
and the descriptors that are used. A learning-based approach could
lead to more robust matching, e.g. via Gaussian Process Re-
gression [ZWW18] or perceptual feature regression as proposed
in [LGD*18].

Acknowledgments This work is supported by the HDWorlds
project funded by the French National Research Agency
(project ID: ANR-16-CE33-0001). Image courtesy: Textures.com,
Mayang’s free texture library (formerly available online at
http://www.mayang.com/textures, now spread out on the web).

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

168

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

Input Semi-procedural Adversarial Deep Self-tuning
texture texture synthesis Expansion Correlations Texture Optimization

Figure 13: Comparison of Semi-Procedural Texture Synthesis with state-of-the-art example-based texture synthesis methods. We show:
our method; Adversarial Expansion [ZZB*18]; Deep Correlations [SC17]; Self-tuning Texture Optimization [KNL*15]. Note that Deep
Correlations has been run on downsampled inputs (max. 256×256).

References
[AAL16] AITTALA, M., AILA, T., and LEHTINEN, J. “Reflectance Mod-

eling by Neural Texture Synthesis”. ACM Trans. Graph. 35.4 (July
2016) 3.

[Ado19] ADOBE. Substance Share. https : / / share .
substance3d.com/. 2019 2.

[AWL15] AITTALA, M., WEYRICH, T., and LEHTINEN, J. “Two-Shot
SVBRDF Capture for Stationary Materials”. ACM Trans. Graph. 34.4
(July 2015) 3.

[BD04] BOURQUE, E. and DUDEK, G. “Procedural Texture Matching and
Transformation”. Comput. Graph. Forum 23 (2004), 461–468 3.

[Bro66] BRODATZ, P. Textures: A Photographic Album for Artists and De-
signers. Dover photography collections. New York, NY, USA: Dover
Publications, 1966 4.

[CGG19] CAVALIER, A., GILET, G., and GHAZANFARPOUR, D. “Lo-
cal spot noise for procedural surface details synthesis”. Computers &
Graphics 85 (2019), 92–99 3, 4, 6.

[EF01] EFROS, A. A. and FREEMAN, W. T. “Image Quilting for Texture
Synthesis and Transfer”. Proc. of SIGGRAPH’01. ACM Siggraph. New
York, NY, USA: ACM, 2001, 341–346 8.

[EMP*02] EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., et al. Tex-
turing and Modeling: A Procedural Approach. 3rd. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2002 2.

[FAW19] FRÜHSTÜCK, A., ALHASHIM, I., and WONKA, P. “TileGAN:
Synthesis of Large-scale Non-homogeneous Textures”. ACM Trans.
Graph. 38.4 (July 2019), 58:1–58:11 3.

[GEB15] GATYS, L. A., ECKER, A. S., and BETHGE, M. “Texture Syn-
thesis Using Convolutional Neural Networks”. Proceedings of the 28th
International Conference on Neural Information Processing Systems.
NIPS’15. Montreal, Canada: MIT Press, 2015, 262–270 3.

[GEB16] GATYS, L. A., ECKER, A. S., and BETHGE, M. “Image Style
Transfer Using Convolutional Neural Networks”. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2016, 2414–
2423 2.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

169

https://share.substance3d.com/
https://share.substance3d.com/

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

Figure 14: Semi-procedural material synthesis for nine datasets. For each dataset, input exemplars are at the top and generated semi-
procedural materials at the bottom. The right column shows corresponding renderings using albedo, roughness, and normal maps. Small
insets exhibit closeup views of renderings for generated semi-procedural materials.

[GKHF14] GIESEKE, L., KOCH, S., HAHN, J.-U., and FUCHS, M. “In-
teractive Parameter Retrieval for Two-tone Procedural Textures”. Pro-
ceedings of the 25th Eurographics Symposium on Rendering. EGSR ’14.
Lyon, France: Eurographics Association, 2014, 71–79 3, 8.

[GLLD12] GALERNE, B., LAGAE, A., LEFEBVRE, S., and DRETTAKIS,
G. “Gabor Noise by Example”. ACM Trans. Graph. 31.4 (July 2012),
73:1–73:9 2, 3, 8, 9.

[GLM17] GALERNE, B., LECLAIRE, A., and MOISAN, L. “Texton
Noise”. Computer Graphics Forum (2017) 3, 6.

[GSDC17] GUINGO, G., SAUVAGE, B., DISCHLER, J.-M., and CANI,
M.-P. “Bi-Layer Textures: A Model for Synthesis and Deformation of
Composite Textures”. Comput. Graph. Forum 36.4 (July 2017), 111–
122 3.

[GSV*14] GILET, G., SAUVAGE, B., VANHOEY, K., et al. “Local
Random-phase Noise for Procedural Texturing”. ACM Trans. Graph.
33.6 (Nov. 2014), 195:1–195:11 2, 3, 6, 8, 9.

[HDR19] HU, Y., DORSEY, J., and RUSHMEIER, H. “A Novel Frame-
work For Inverse Procedural Texture Modeling”. ACM Trans. Graph.
38.6 (Nov. 2019) 2, 3, 10, 13.

[HJO*01] HERTZMANN, A., JACOBS, C. E., OLIVER, N., et al. “Image
Analogies”. Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. New York, NY,
USA: ACM, 2001, 327–340 3, 8.

[HN18] HEITZ, E. and NEYRET, F. “High-Performance By-Example
Noise Using a Histogram-Preserving Blending Operator”. Proc. ACM
Comput. Graph. Interact. Tech. 1.2 (Aug. 2018), 31:1–31:25 3, 6.

[HRRG08] HAN, C., RISSER, E., RAMAMOORTHI, R., and GRINSPUN,
E. “Multiscale Texture Synthesis”. ACM Trans. Graph. 27.3 (Aug.
2008), 51:1–51:8 3.

[KEBK05] KWATRA, V., ESSA, I., BOBICK, A., and KWATRA, N. “Tex-
ture Optimization for Example-based Synthesis”. ACM Trans. Graph.
24.3 (July 2005), 795–802 3.

[KNL*15] KASPAR, A., NEUBERT, B., LISCHINSKI, D., et al. “Self
Tuning Texture Optimization”. Comput. Graph. Forum 34.2 (May
2015), 349–359 3, 11.

[LCF*18] LIU, L., CHEN, J., FIEGUTH, P., et al. “From BoW to CNN:
Two Decades of Texture Representation for Texture Classification”. In-
ternational Journal of Computer Vision (Nov. 2018) 8.

[Lew89] LEWIS, J. P. “Algorithms for Solid Noise Synthesis”. SIG-
GRAPH Comput. Graph. 23.3 (July 1989), 263–270 3.

[LGD*18] LIU, J., GAN, Y., DONG, J., et al. “Perception-driven procedu-
ral texture generation from examples”. Neurocomputing 291 (2018), 21–
34 3, 8, 10.

[LH05] LEFEBVRE, S. and HOPPE, H. “Parallel Controllable Texture Syn-
thesis”. ACM Trans. Graph. 24.3 (July 2005), 777–786 3, 8.

[LH06] LEFEBVRE, S. and HOPPE, H. “Appearance-Space Texture Syn-
thesis”. ACM Trans. Graph. 25.3 (July 2006), 541–548 3.

[LLD11] LAGAE, A., LEFEBVRE, S., and DUTRE, P. “Improving Gabor
Noise”. IEEE Transactions on Visualization and Computer Graphics
17.8 (Aug. 2011), 1096–1107 2.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

170

P. Guehl, R. Allègre, J.-M. Dischler, B. Benes & E. Galin / Semi-Procedural Textures Using Point Process Texture Basis Functions

Figure 15: Semi-procedural material transitions: input scanned
material exemplars are on top. Renderings of variations with
smooth transitions are shown on below (semi-procedural extrap-
olation).

[LLDD09] LAGAE, A., LEFEBVRE, S., DRETTAKIS, G., and DUTRÉ,
P. “Procedural Noise Using Sparse Gabor Convolution”. ACM Trans.
Graph. 28.3 (July 2009), 54:1–54:10 2–4.

[LSA*16] LOCKERMAN, Y. D., SAUVAGE, B., ALLÈGRE, R., et al.
“Multi-Scale Label-Map Extraction for Texture Synthesis”. ACM Trans.
Graph. 35.4 (July 2016) 9.

[ML09] MUJA, M. and LOWE, D. G. “Fast Approximate Nearest Neigh-
bors with Automatic Algorithm Configuration”. International Confer-
ence on Computer Vision Theory and Application VISSAPP’09). IN-
STICC Press, 2009, 331–340 8.

[ÖG12] ÖZTIRELI, A. C. and GROSS, M. “Analysis and Synthesis of
Point Distributions Based on Pair Correlation”. ACM Trans. Graph. 31.6
(Nov. 2012), 170:1–170:10 3.

[PELS10] PANAREDA BUSTO, P., EISENACHER, C., LEFEBVRE, S., and
STAMMINGER, M. “Instant Texture Synthesis by Numbers”. Proc. Vi-
sion, Modeling & Visualization 2010. 2010, 81–85 3.

[PS00] PORTILLA, J. and SIMONCELLI, E. P. “A Parametric Texture
Model Based on Joint Statistics of Complex Wavelet Coefficients”. In-
ternational Journal of Computer Vision 40.1 (2000), 49–70 3.

[RDDM17] RAAD, L., DAVY, A., DESOLNEUX, A., and MOREL, J.-M.
“A survey of exemplar-based texture synthesis”. Annals of Mathematical
Sciences and Applications 3 (July 2017) 3.

[RÖG17] ROVERI, R., ÖZTIRELI, A. C., and GROSS, M. “General Point
Sampling with Adaptive Density and Correlations”. Comput. Graph. Fo-
rum 36.2 (May 2017), 107–117 3.

[SC17] SENDIK, O. and COHEN-OR, D. “Deep Correlations for Texture
Synthesis”. ACM Trans. Graph. 36.4 (July 2017) 3, 11.

(a) (b) (c)

Figure 16: Comparison with inverse procedural modeling
[HDR19]: (a) is input, (b) inverse procedural modeling [HDR19]
and (c) our result.

Figure 17: Our PPTBF does not cover some types of structures,
such as branching structures (top-left: input exemplar; bottom-left:
estimated PPTBF after thresholding) or textures containing mul-
tiple labels with specific arrangements (top-right: input exemplar;
bottom-right: semi-procedural synthesis result).

[TEZ*19] TRICARD, T., EFREMOV, S., ZANNI, C., et al. “Procedural Pha-
sor Noise”. ACM Transactions on Graphics (2019) 3.

[WLKT09] WEI, L.-Y., LEFEBVRE, S., KWATRA, V., and TURK, G.
“State of the Art in Example-based Texture Synthesis”. Eurograph-
ics 2009, State of the Art Report, EG-STAR. Eurographics Association,
2009 3.

[Wor96] WORLEY, S. “A Cellular Texture Basis Function”. Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996, 291–
294 2–4.

[ZHWW12] ZHOU, Y., HUANG, H., WEI, L.-Y., and WANG, R. “Point
Sampling with General Noise Spectrum”. ACM Trans. Graph. 31.4 (July
2012), 76:1–76:11 3.

[ZWW18] ZSOLNAI-FEHÉR, K., WONKA, P., and WIMMER, M. “Gaus-
sian Material Synthesis”. ACM Trans. Graph. 37.4 (July 2018), 76:1–
76:14 3, 10.

[ZZB*18] ZHOU, Y., ZHU, Z., BAI, X., et al. “Non-stationary Texture
Synthesis by Adversarial Expansion”. ACM Transactions on Graphics
(Proc. SIGGRAPH) 37.4 (2018), 49:1–49:13 3, 11.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

171

