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An hourly initialized numerical weather prediction model, AROME-NWC, optimized for nowcasting purposes was used in this study to predict the probabilities of occurrence of convective aviation risks by generating an ensemble of time-lagged forecasts. The objective is the prediction of echotop and reflectivity maximum based on simulated 3D radar reflectivity columns. Forecasts were postprocessed using an upscaling of the model output fields in order to account for uncertainties in horizontal positions. Simulated radar reflectivities were bias corrected using a quantile-to-quantile mapping resulting in an improvement of the ensemble performance. A lagged-average-forecast ensemble was then constructed in order to blend mesoscale deterministic and ensemble forecasts, using numerical weather prediction systems that will soon be available in real time. The probabilities of reflectivities predicted by the ensemble are shown to have objective value at thresholds that are meaningful for air traffic control. Possible applications for aviation management purposes are discussed.

Introduction

Despite technological progress in the aviation sector, weather can still strongly influence flight safety and air traffic management. In the European area, the airspace is operating close to saturation and capacities can only be increased by reformling air traffic management practice, for which purpose the Single European Sky (http://ec.europa.eu/ transport/modes/air/single_european_sky/) initiative was launched. An aim of this initiative is to increase the capacities and the efficiency of the air traffic in Europe, while increasing security and reducing environmental impacts.

The meteorological phenomena that most strongly affect aviation are, amongst others, thunderstorms, turbulence, icing, snow and tropical thunderstorms (IATA, 2015). Meteorological factors contributed to 30% of aircraft accidents during the period 2010-2014 (IATA, 2015). Adverse weather also reduces the airspace capacity, because the horizontal and vertical separations of aircraft need to be increased for security reasons. This affects airports that operate near the capacity limit, and there can be consequences over air traffic in a whole region, for example when there is a thunderstorm next to a hub.

In this study, a method is presented to generate probabilistic forecasts of convective hazards for the very short range (up to 6 h). Here, convection is identified by high values of radar reflectivities, which correlate well with the occurrence of thunderstorms and related high impact phenomena: strong winds (e.g. downbursts, wind shear), turbulence, lightning and hail. Turbulence, for example, can lead to passenger injury, mechanical damage to the airplane or loss of control. A description of the effects of thunderstorms and associated phenomena on aircraft can be found in NATS (2010). Pilots have some on-board equipment to anticipate convective risks, but its detection range is limited. The provision of appropriately presented real-time forecast guidance for en route use would help pilots to avoid hazardous regions [START_REF] Eca | Pilots' vision on weather[END_REF]IATA, 2015). Reliable pre-dictions of convective hazards several hours in advance may also reduce the workload of air traffic controllers. Forecasts of relevant meteorological parameters can be used to optimize fuel consumption, flight duration and flight safety. If flight routes are flexible, aircraft trajectories can also be fine-tuned with respect to weather influences. This is especially important for congested airspace in the presence of a thunderstorm as it strongly influences airspace and airport capacities [START_REF] Evans | Corridor integrated weather system[END_REF]. For trajectory prediction, a standard procedure is the use of a single deterministic forecast without uncertainty information of the meteorological variables [START_REF] Cheung | Quantification of spatial spread in track-based applications[END_REF]. The SESAR-IMET project investigated the use of ensemble forecasts for the optimization of flight trajectories focusing on timescales longer than 6h [START_REF] Cheung | Sensitivity of flight durations to uncertainties in numerical weather prediction[END_REF][START_REF] Cheung | Recommendations on trajectory selection in flight planning based on weather uncertainty. 5th SESAR Innovation Days[END_REF]. In this study, techniques that could be used on shorter forecast horizons were investigated.

The aim of the study was to demonstrate that a lagged-average-forecast (LAF) ensemble based on nowcasts and blended with deterministic and probabilistic forecasts is capable of giving reliable probabilistic information on the occurrence of convective hazards affecting aviation. Approaches for probabilistic nowcasting can be found in, for example, Atencia andZawadzki (2014, 2015), [START_REF] Berenguer | SBMcast -an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation[END_REF] and [START_REF] Foresti | Retrieval of analogue radar images for ensemble nowcasting of orographic rainfall[END_REF]. They focus on rainfall estimates for hydrological applications. Traditional nowcasting is often based on the extrapolation of radar observations that do not include any dynamic evolution. Instead, the approach presented here uses a deterministic numerical model designed for the very short range and has its focus on aviation. A similar model also optimized for the very short range, the numerical forecast model called the NOAA Rapid Update Cycle with hourly cycled data assimilation, was described by [START_REF] Benjamin | An hourly assimilation-forecast cycle: the RUC[END_REF]. It was used to produce probability forecasts for convective aviation hazards [START_REF] Weygandt | RUC model-based convective prob-ability forecasts[END_REF]. The forecast products used here are in the operational or pre-operational stage. Probabilistic forecast products can be used in several ways for practical purposes; here, the focus is on the ability to predict point occurrences of a significant weather event, defined by the radar reflectivity exceeding a predefined threshold. The value at which reflectivity starts to affect air traffic operations depends on several factors such as the aircraft type; ideally, the definition of a 'significant' convective intensity threshold event should reflect the fact that a competent pilot will decide whether or not to divert his/her flight to avoid it. Surveys in the aviation community have demonstrated that pilots tend to avoid regions with radar reflectivities above 37 dBZ, which corresponds to a precipitation intensity of about 7.5 mm h -1 [START_REF] Sauer | On the identification of weather avoidance routes in the terminal maneuvering area of Hong Kong international airport[END_REF].

Although it is not perfect, radar reflectivity is a very convenient parameter to use to characterize convection intensity because (1) it is familiar to pilots, airport operators and controllers, (2) it can be simulated with reasonable accuracy from modern convection permitting numerical weather prediction (NWP) models and (3) it is rather well observed over regions equipped with ground weather radars, which provide the large data volumes required for objective verification of NWP model output.

Data

In this study, data from real-time NWP systems were combined to cover forecast ranges from 30 min to 6 h. The models cover the region from 8W to 12E and from 38N to 53N (Figure 1). The focus is on probabilistic prediction of modelled 3D radar reflectivities, characterized in each column by the reflectivity maximum and echotop. The echotop parameter is defined as the maximum height at which a certain reflectivity value is present. This information is important for aviation as it says something about the height of the cloud tops. The reflectivity maximum gives information about thunderstorm severity when high values are encountered. The period of study was 6 May 2016 until 6 June 2016, which includes some severe flash flood events over metropolitan France and southwestern Germany. September 2015 data were used for the training of the bias correction method described below, which ensures independence between the training and validation period.

The AROME-France forecasts

AROME-France [START_REF] Seity | The AROME-France convective-scale operational model[END_REF] is the operational deterministic mesoscale weather forecast model of Météo-France. It is a spectral, non-hydrostatic, convection-permitting model. In 2016, its horizontal resolution was 1.3 km [START_REF] Brousseau | Improvement of the forecast of convective activity from the AROME-France system[END_REF], but model output on a 2.5 km resolution grid was used here. Runs were initiated every 3 h with forecast durations between +7 and +42h.

The AROME-NWC forecasts

AROME-NWC (in French this system is called AROME-PI for 'prévision immédiate') [START_REF] Auger | AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system[END_REF]) is an NWP system that targets forecast horizons between 30 min and 6h. It is based on the operational AROME-France deterministic NWP system of Météo-France, as it uses the same 1.3km resolution and 3D-Var data assimilation method [START_REF] Brousseau | Background-error covariances for a convectivescale data-assimilation system: AROME-France 3D-Var[END_REF]. The main differences are that the AROME-NWC assimilation window is 30 min only (vs 1 h in AROME-France), the observation cut-off is 10min (vs 30 min) and the assimilation is not cycled, i.e. AROME-NWC background fields are taken from the AROME-France data assimilation suite. This means that fewer observations are assimilated compared with the deterministic AROME-France runs, but AROME-NWC uses more recent radar data. The 6h AROME-NWC forecasts are available 30 min after analysis time. Its output is available every 15 min. The model output on a 2.5km resolution grid was used, which is the resolution at which the radar observations are processed. Nowcasts archived from pre-operational experiments are available since the end of August 2015, which limited this study with regard to the available sample of events. An AROME version called AROME-Airport based on AROME-NWC for application for airport operations with the major purpose to provide turbulencerelated fields for a wake vortex prediction system tested for Paris Charles de Gaulle Airport is described in [START_REF] Hagelin | Nowcasting with the AROME model: first results from the high-resolution AROME airport[END_REF], but was not applied in this study. AROME-NWC has been operational since the end of 2016.

The AROME-EPS forecasts

AROME-EPS (in French this system is called PE-AROME for 'prévision d'ensemble') [START_REF] Bouttier | Impact of stochastic physics in a convectionpermitting ensemble[END_REF][START_REF] Bouttier | Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX[END_REF] is an ensemble prediction system, also based on the AROME-France NWP system except for a lower horizontal resolution of 2.5km. The ensemble comprises 12 members. It is scheduled for operational production for April 2017. In the experimental dataset used here, forecasts are initialized at 2100UTC covering a forecast hori-zon of 45h. Initial and lateral boundary conditions originate from the PEARP global ensemble model [START_REF] Nuissier | Uncertainty of lateral boundary conditions in a convection-permitting ensemble: a strategy of selection for Mediterranean heavy precipitation events[END_REF][START_REF] Bouttier | Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX[END_REF], and model uncertainties are represented by stochastic physics [START_REF] Bouttier | Impact of stochastic physics in a convectionpermitting ensemble[END_REF] and surface perturbations [START_REF] Bouttier | Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX[END_REF].

Simulation of radar reflectivities (the radar forward operator)

The simulation of radar reflectivities is used to compare NWP forecasts with radar observations. AROME reflectivities are simulated using the contents of the model prognostic hydrometeors. Four hydrometeor classes are used (rain, snow, graupel and pristine ice). More details on the ICE3 microphysics scheme of AROME are given by [START_REF] Pinty | A mixed-phase cloud parameterization for use in a mesoscale nonhydrostatic model: simulations of a squall line of orographic precipitation[END_REF]. In particular, the droplet size distribution is parameterized. In the operational setting, which was used in this study, the backscattering of the radar beam is described analytically by the law of Rayleigh scattering used for C-and S-band radars [START_REF] Wattrelot | Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model[END_REF]. The dielectric constants are determined by different methods depending on the hydrometeor type [START_REF] Caumont | A radar simulator for high-resolution nonhydrostatic models[END_REF]. The equivalent reflectivity factor (in dBZ) is calculated and transformed into an equivalent rain rate (in mm h -1 ) using a law of the Marshall-Palmer type: Z = 200R 1.6 [START_REF] Marshall | Measurement of rainfall by radar[END_REF][START_REF] Marshall | The distribution of raindrops with size[END_REF]. This last transformation can introduce specific errors as it is not optimal for convective events, but their impact was not expected to be serious because it was merely used as a postprocessing step to convert reflectivities from both observations and the forecasts.

A more complex description of the scattering using different methods (Rayleigh, Mie, Rayleigh-Gans and T matrix) depending on the ratio between particle size and radar wavelength (X-, C-or S-band radar) and the hydrometeor shape is described by [START_REF] Caumont | A radar simulator for high-resolution nonhydrostatic models[END_REF] and [START_REF] Augros | Comparisons between S-, C-and X-band polarimetric radar observations and convective-scale simulations of the HyMeX first special observing period[END_REF]. In this reflectivity simulation, rain, snow and graupel particles are assumed to be spheroids whereas ice particles are considered to be spherical. These methods were tested for implementation in the operational set-up.

In a future version of AROME, the ICE3 microphysics scheme will be replaced by a more elaborate two-moment scheme called LIMA [START_REF] Vié | LIMA (v1.0): a quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei[END_REF], which should improve the simulation of radar reflectivity.

The radar observations

Radar observations were taken from the ARAMIS dataset of Météo-France [START_REF] Tabary | Le réseau et les produits radars de Météo-France[END_REF][START_REF] Bousquet | Development of a nationwide real-time 3-D wind and reflectivity radar composite in France[END_REF]. ARAMIS is a national radar network of 30 ground-based scanning radars over mainland France and the island of Corsica, including S-, C-and X-band instruments. Radar scans are subject to quality control and local raingauge-based corrections, and then are interpolated in space and time to a grid of 2.5 km horizontal resolution. In the vertical, the observations are presented on a regular grid from altitudes of 500 m to 12 km above sea level. The reflectivity maximum and echotop are calculated based on the 3D radar data. The network covers about 1000×1000 km so that there are approximately (1000/2.5) 2 = 160000 2D observation points for a single field of the reflectivity maximum and echotop per hour, which are used for training of the bias correction and running the model verification described next.

Methodology

This section describes the different steps for the generation and verification of the LAF ensemble. To take the uncertainties of the predicted location, size and intensity of the convective systems into account, the forecasts were specifically postprocessed for application in aviation. This included an upscaling, a smoothing and a bias correction. The treatment would not be suitable for other applications such as hydrology for example for which an accumulated amount of precipitation for a catchment area is needed. The upscaling would lead in this case to an overestimation. A blending of the LAF ensemble with AROME-EPS and AROME-France, preprocessed in the same way as described, was used to achieve additional forecast skill.

Upscaling and smoothing

The prediction of convective events includes timing and location errors, so that it is not optimal to use raw model output as a forecasting tool. This is an instance of the so-called double penalty effect which has been well documented in the verification of high resolution deterministic forecasts; see for example [START_REF] Mass | Does increasing horizontal resolution produce more skilful forecasts ? Bull[END_REF]. This effect results in a forecast of a convective system at a location where nothing can be found in the observation, and no prediction by the forecast at the location where the event takes place in the observation. Therefore, the skill of the forecast is penalized twice. The double penalty effect is also experienced when calculating probabilities from a high resolution ensemble. For instance, in convective situations over plains, timing and location errors can lead to systematically low point probabilities of convection-related weather parameters, because convective cells tend to be predicted at different locations in each forecast member. Point probabilities seem ill-suited to users' requirements for convection warnings; for instance aircraft will tend to stay at a certain security distance from areas with high radar reflectivities, because intense convection can have hazardous consequences (such as lightning) in the vicinity of convective towers. In practice, recommended safety distances from high reflectivity areas are between 10 and 20 NM (i.e. 18.52 and 37.04 km) in the horizontal and 5000ft (i.e. 1524m) in the vertical (NATS, 2010).

To get an idea of the spatial uncertainty of the forecasts in our dataset to use it as a criterion for the upscaling, the model domain of AROME-EPS was shifted several grid cells in all directions with respect to observations, and verification was conducted for each of these displacements. Shifts of about four grid cells, which is equivalent to about 10km, do not entail a significant degradation of verification scores. For this reason, the forecasts were upscaled using a so-called focal maximum algorithm using a rectangular running window of 9 × 9 grid cells. This algorithm creates a new output field of the same size and dimension as the original forecast field, but the value of the processed centre cell in the running window is assigned to the maximum value of all the values inside it. The result is an enlargement of regions with high reflectivities of the order of the spatial uncertainty. The upscaling is also applied to the radar data, because for this specific application fine scale structures are not necessary because the pilot would keep a security distance away from areas with high reflectivity values. This is comparable to the use of polygons to delineate areas of potential risk including uncertainty information, which is based on the verification. Such an approach can be found in [START_REF] Sauer | Uncertainty analysis of thunderstorm nowcasts for utilization in aircraft routing[END_REF] and [START_REF] Sauer | On the impact of adverse weather uncertainty on aircraft routing: identification and mitigation[END_REF]. A slightly different approach is used by [START_REF] Steiner | Translation of ensemble weather forecasts into probabilistic air traffic capacity impact[END_REF]. They use ensemble forecasts for the prediction of convective storms by overlaying a coarser grid network on each ensemble forecast member for en route purposes to achieve a better predictive accuracy. In this approach, the probability of the occurrence of convective aviation hazards can be estimated based on the upscaled ensemble members. In this study, the radar data and the forecasts were smoothed using a convolution kernel smoothing with a Gaussian kernel with bandwith 2 [START_REF] Gilleland | Two-dimensional kernel smoothing: using the R package smoothie[END_REF]. Smoothing is one tool used in forecast verification to remove fine scale features and noise from the observations that the forecast model is not able to reproduce. The smoothing reduces the maxima slightly; for this reason a reduction of the threshold is reasonable. A threshold of 7 mm h -1 is used, which is slightly below the value of 37dBZ that is mentioned in the literature to affect aviation [START_REF] Sauer | On the identification of weather avoidance routes in the terminal maneuvering area of Hong Kong international airport[END_REF].

In the current approach, the processing was independent of the lead time. At forecast horizons much longer than 6h, location errors are likely to be larger and diurnal or seasonal effects could also play a role, so a time-varying upscaling and smoothing could be better, but it was not tested in this work. Location errors probably also depend on orographic features, e.g. if convection occurs close to mountainous regions or happens over plains, but the upscaling was also not space-varying in this study. Figure 1 shows an example of the upscaling and smoothing of an echotop 18dBZ field. A typical cruising altitude is between 250 and 200hPa. Thus, regions exceeding a height of about 250hPa are potentially hazardous for en route air traffic. The raw model output includes fine scale features, which lead to spatial variations in echotop. It is not reasonable to penetrate a region where areas of high echotop or high reflectivity values lie close to each other separated by small areas which do not exceed the threshold, as the effects of convection are recognizable in the vicinity of the event and the predicted location is subject to uncer-tainty. Areas with relevant echotop values get more homogeneous after upscaling and smoothing. The observed echotop 18 dBZ field is visible in Figure 1(c). It can be seen that most of the areas with high reaching clouds in the observation are also covered by the upscaled forecast. The corresponding field of the reflectivity maximum can be found later in Figure 8(a).

Generation of the LAF ensemble

An LAF ensemble was built by combining the most recent deterministic forecast with older ones. Such an approach was suggested by [START_REF] Hoffman | Lagged average forecasting, an alternative to Monte Carlo forecasting[END_REF] and is a cheap alternative to perturbed ensembles. A comparable approach has been presented by for example [START_REF] Lee | Performance of trajectory models with wind uncertainty[END_REF] to model the uncertainties in the wind forecasts, by constructing an LAF ensemble based on hourly Rapid Update Cycle (RUC) forecasts [START_REF] Benjamin | An hourly assimilation-forecast cycle: the RUC[END_REF]. The longer a forecast lasts, the further away it tends to deviate from the real atmospheric situation, which was represented at the beginning of the forecast by the initial conditions. During the data assimilation cycle, observations will be used to remove some, but not all, of these forecast errors in subsequent forecasts. In the LAF approach, it is assumed that the distributions of short-range forecast errors and forecast differences are similar. This variability of forecasts, valid for the same time but initialized at different dates, was used here for the con- struction of the ensemble. The AROME-NWC system provides hourly initialized forecasts, each one lasting 6h. For a 1h ensemble forecast, six recent forecasts are available; they are combined to produce a six member ensemble. With each additional hour to be forecasted, the ensemble size is reduced by one member. These forecasts, which are getting excluded from the LAF ensemble for the longer ensemble forecast horizons, tend to be the more skilful ones, as they are closer to the initialization so that they should contain smaller forecast errors. This neglects a possible spin-up, but the nowcasting system was constructed so that spin-up effects were reduced to a minimum [START_REF] Auger | AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system[END_REF], which is an essential feature of a numerical model-based nowcasting system. [START_REF] Lu | Short-range numerical weather prediction using time-lagged ensembles[END_REF] argue that the reason for the improvement of forecast skill by using a time-lagged ensemble compared to the deterministic counterpart lies in the fact that initial model shocks are smoothed out. No indication was found that a possible spin-up in a single AROME-NWC nowcast during the first two forecast hours of the reflectivity values impacts the LAF ensemble.

To enlarge the ensemble size and to account for temporal uncertainty, a temporal tolerance of 15min is applied: at each exact hour, forecasted fields available 15 min before and after this time are used as additional members as if they were valid for the same time. Additionally, the use of forecast fields was tested with a 5min tolerance, interpolated linearly from the 15min model output. This means that the forecast fields 10 and 5min before and after the hour of interest are added as additional members to the ensemble with 15min time tolerance.

The use of temporal tolerance is motivated by the fact that approaches such as, for instance, the 'neighbourhood method' from [START_REF] Theis | Probabilistic precipitation forecasts from a deterministic model: a pragmatic approach[END_REF], show the benefits of using a spatiotemporal tolerance. One argument against this procedure lies in the fact that the forecasts with temporal tolerance are not really independent from the forecast for the valid time. As a consequence, the step size of the temporal tolerance should be adapted depending on whether stationary or fast propagating phenomena are predicted. For the prediction of fast propagating events like a derecho, a shorter time tolerance might be beneficial. In the following, the 15min tolerance was used, as the benefit from using the interpolated fields was found to be negligible, which is consistent with the fact that the storms are relatively stationary for the period being considered. The construction of a 17-member LAF ensemble for a 1h forecast with 15min time tolerance is shown in Figure 2. Table 1 shows the number of ensemble members of the LAF ensemble depending on the forecast horizon and the use of temporal tolerance.

The fact that the ensemble size diminishes with longer forecast horizons is no restriction for the application as long as the ensemble represents the forecast probability density function well.

Forecast verification

For an objective verification, the frequency bias index (FBI), the Talagrand diagram, the receiver operating characteristic (ROC) diagram and the reliability diagram were used (Jolliffe and Stephenson, 2003). These diagnostics, which are widely used for ensemble verification, were chosen to investigate the behaviour of the LAF ensemble. The FBI shows whether there is an underrepresentation or overrepresentation of certain ranges of reflectivity values by comparing the frequency of the observed and forecasted events for different thresholds. A perfect forecast would have values of 1 everywhere. The Talagrand diagram is constructed by ordering the ensemble member values at each observed point and considering the rank of the observed value in this set; the Talagrand diagram is a frequency histogram of these ranks. Under the assumption of negligible observation error, a perfect ensemble shows a flat diagram, because all members are assumed to be equally likely; thus each rank is equally often populated by the observation. If the diagram has a U-shape, the observation exceeds the extreme members too often. This is called underdispersion. In contrast, a maximum near the centre of the diagram demonstrates an overdispersion. The range spanned by the ensemble is in this case too large and the uncertainty is overestimated. To be able to compare ensembles with different ensemble sizes, a normalized frequency is shown in the Talagrand diagram. The ROC diagram is constructed by plotting the probability of detection against the false alarm rate for different decision thresholds. It shows whether the ensemble is able to discriminate between events with low and with high probability. The larger the area below the ROC curve (ROCA), the better is the skill of the ensemble. The reliability diagram shows whether events with a certain forecasted probability appear during a longer observed period with the same probability. Events which were predicted with a probability of 10%, for example, should occur in 10% of cases.

Bias correction

A first test of the LAF ensemble was done by using 1 h accumulated precipitation. Simulated radar reflectivities were based on the modelled drop size distribution of the hydrometeors. For this reason, Figure 3 gives a first impression of what is achievable from the ensemble. The prediction of instantaneous values tends to be smaller scale than time-accumulated values and thus their verification is more likely to be complicated by double penalty effects. The radar simulator can introduce (additional) biases, especially due to the parameterization of the drop size distribution. For this reason, the model can satisfactorily represent the total amount of precipitation, but it may at the same time produce biased reflectivity fields.

The Talagrand diagram for the precipitation shows a weak underdispersion and a bias. According to the FBI, the frequency of weak precipitation is too large and for severe precipitation too low. The underestimation of the frequency of severe precipitation is stronger for member 1 (the most recent one) than for the others. This might be an indication of a spin-up during the first forecast hour. The ROC and the reliability diagrams are improved by the combination of time-lagged forecasts into the ensemble. A bootstrap to test the score differences in ROCA showed that the improvement obtained from the time-lagged ensemble is significant at the 95% confidence level. This is also the case, for example, for the reliability component derived from the decomposed Brier score. Figures 3(c) and (d) also show that the quality of the single deterministic nowcasts diminishes with lead time. [START_REF] Mittermaier | Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles[END_REF] showed the benefit of a time-lagged ensemble for short-range high resolution precipitation forecasts against a single deterministic forecast despite a bias and concluded that a bias correction should improve the ensemble performance. [START_REF] Stoelinga | Verification and calibration of simulated reflectivity products[END_REF] proposed a bias correction of the reflectivity values by applying a calibration function which compares pairs of forecast and observation to adjust the frequency distribution leading to significant improvements of the modelled radar reflectivity. A similar approach was used in this study, which was originally developed to correct modelled precipitation, a non-parametric quantile-to-quantile mapping after [START_REF] Boé | Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies[END_REF]. Quantile-to-quantile mapping is a method widely applied for bias correction of precipitation forecasts. The implementation from [START_REF] Gudmundsson | Package 'qmap[END_REF] was used. It is based on robust empirical quantiles using local linear least squares regression for the estimation of equidistant quantiles. A local regression line is fitted for each quantile of the forecast for the 10 nearest data points in the quantile-toquantile plot to estimate the value of the observation, which is then calculated from the mean of 10 bootstrapped samples. The quantile mapping is done by interpolating between these quantiles. Upscaled forecasts and observations are used. The latter are interpolated onto the forecast grid using nearest-neighbour interpolation. The bias correction is applied on each individual grid cell. To calculate the statistical relations between forecast and observation, neighbouring grid cells which lie inside a rectangular area of 5 × 5 grid cells are also taken into account. The best results were obtained by smoothing the radar data but not the forecasts for the training. Probably the inclusion of neighbouring grid cells acts already like a smoothing, but a smoothing for the observations is still necessary to remove noise. This should also lead to a smoother transition between neighbouring grid cells after the correction.

In the observations, values of up to about 500 mm h -1 can be found, which originate probably from bright banding and hail contamination. These two phenomena appear if melting snow or hail is present, leading to a significant amplification of the radar retrodiffusion. The model does not produce such high reflectivity values. For this reason the observations were truncated at 103.9mm h -1 , which is called a 'hail cap' in the radar literature (see [START_REF] Baeck | Rainfall estimation by the WSR-88D for heavy rainfall events[END_REF]. Larger values than 103.9 mm h -1 can nevertheless be found in the bias corrected nowcasts, as the method can extrapolate if the forecast value in the application period is larger than the maximum forecast value in the training period. In some cases, polarimetric radar information could be used to improve the observation filtering. In particular, the differential reflectivity Zdr [START_REF] Fukao | Radar for Meteorological and Atmospheric Observations[END_REF] gives an indication of the presence of hail if the values are low, and the correlation co-efficient rho hv [START_REF] Fukao | Radar for Meteorological and Atmospheric Observations[END_REF] says something about the homogeneity of the hydrometeor types. This information could then be used to remove events containing hail from the time series before training to avoid a fixed truncation. In this study, polarimetric information was not used.

It has been shown above that the model predicts low precipitation too often. To correct the frequencies of precipitation events, a so-called wet-day correction was used, following [START_REF] Piani | Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models[END_REF]. It uses the empirical probability of non-zero observations to set all modelled values below the corresponding value in the forecasts to zero.

To investigate the spatiotemporal properties of the predicted convective cells, the SAL object-based verification method proposed by [START_REF] Wernli | SAL -a novel quality measure for the verification of quantitative precipitation forecasts[END_REF] was used. This method identifies objects in the observation and forecast and compares them to determine a structure, amplitude and location component. It indicates (figure not shown) that the spatial error is relatively low, but a bias of the reflectivity values is present, which is lead time dependent. Therefore, statistical relations were calculated for each individual hour of the 6h AROME-NWC forecast horizon. The 15min shifted fields were corrected with the relationship estimated for the closest full hour. This was done because the training of the bias correction method is computationally expensive. The fact that location errors increase with increasing lead time makes a correction for the AROME-France and AROME-EPS difficult for long lead times, which for AROME-EPS in this study reach +29 h, especially if the error is not systematic. In the case of a systematic location error, e.g. a model drift, one could try to displace the forecast field about this error before calculating the statistical relations. The SAL method also shows a diurnal cycle in the structure, amplitude and location components. Thus, a daytime dependent correction could be beneficial, but was not applied. It would divide the dataset, which is already sparse, into daytime dependent subsets. The sample size for the training of each of them would be reduced significantly.

Blending with deterministic and probabilistic forecasts

The ensemble size of the LAF ensemble based only on nowcasts is limited and may be too small to estimate the forecast probability density function accurately, especially for longer forecast horizons. Furthermore, the spread of the LAF ensemble cannot easily be optimized, as is generally possible in a perturbed ensemble by adapting the perturbations. One idea is to combine the LAF ensemble with deterministic and ensemble forecast members, resulting in a larger ensemble. These forecast products are (or will soon be) operationally available. The demonstrated procedure to produce probabilistic short-range forecasts is for this reason computationally cheap, as no additional forecasts have to be produced.

A blending of nowcasts based on extrapolated radar data with probabilistic high resolution forecasts for precipitation forecasts has already been used by, for example, [START_REF] Kober | Probabilistic forecasting of convective precipitation by combining a nowcasting method with several interpretations of a high resolution ensemble[END_REF], [START_REF] Kober | Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts[END_REF][START_REF] Kober | Aspects of short-term probabilistic blending in different weather regimes[END_REF] and [START_REF] Scheufele | Combining probabilistic precipitation forecasts from a nowcasting technique with a time-lagged ensemble[END_REF]. The UK Met Office combines extrapolated radar data with downscaled NWPs to their nowcasting tool called STEPS [START_REF] Bowler | STEPS: a probabilistic precipi-tation forecasting scheme which merges an extrapolation nowcast with downscaled NWP[END_REF]. The skill of a nowcast, which is based on extrapolated radar data, is higher during the first forecasted hours than the skill of a numerical forecast model, but quickly decreases with lead time. A system that combines nowcasts with numerical model output can outperform the skills of both contributing systems [START_REF] Golding | Nimrod: a system for generating automated very short range forecasts[END_REF][START_REF] Lin | Precipitation forecast skill of numerical weather prediction models and radar nowcasts[END_REF]. In this work, the AROME-NWC nowcasts were based on a numerical model, and it has been shown that these nowcasts have more skill during the first forecast hours than the AROME-France deterministic counterpart [START_REF] Auger | AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system[END_REF]. This study investigated whether a blending with other available forecast products was able to improve the skill even further. The AROME ensemble and deterministic systems tested here are not designed to be used for nowcasting for two reasons. One reason is that the cut-off, the waiting time for the observations to be available at the forecast centre, in the data assimilation for both systems is too long to use in the very short range. The other reason is that the AROME-EPS system currently has a lack of spread at short ranges and up to 6 h. The lack of spread will be improved in the future by the application of an ensemble data assimilation technique. For longer lead times, the spread of the AROME-EPS system is better. The forecasted time instances between +6 and +29 h are therefore added from the 2100 UTC initialized AROME-EPS runs to the LAF ensemble to add a forecast at each hour of the day. In a similar way, from the deterministic runs, lead times from +6 to +11h, initialized every 6h, are used as additional ensemble members. This means that, depending on the hour to be forecast, the closest initialization of the AROME-France model is used for which one of the lead times between +6 and +11 h matches the instant of time to be forecasted. As shown in Figure 4, for a forecast at 0100 UTC for any day, the forecast with an initialization on the previous day at 1800 UTC with lead time +7 h is added as an additional member. These time intervals from +6 to +11 from AROME-France and +6 to +29h from AROME-EPS are added to all AROME-NWC LAF ensembles for forecast horizons from 1 to 6h in order to produce blended forecasts for forecast horizons from 1 to 6h.

As the spread of the AROME-EPS forecasts increases with increasing forecast horizon, the spread of the combined forecast product can be daytime dependent. As 2100 UTC initializations were used from AROME-EPS starting with a lead time of +6 h, the spread of the blended ensemble is less influenced by AROME-EPS at 0300 UTC and the following hours than forecasts at 0200 UTC (lead time +29h) and the previous hours. In AROME-EPS operational service, initializations at 0900 and 2100UTC are planned and in a further step 6 h runs as for AROME-France. This will allow shorter forecast horizons to be used between +6 and +17 (+11)h from both (four) initializations instead of the forecast horizons from +6 to +29 h used in this study. A possible time-varying spread due to the long AROME-EPS lead times can be reduced in this way, and the ensemble may also benefit from lower forecast errors in the earlier lead times, impacting potentially also the spread of the blended ensemble. Therefore, several time lags from AROME-EPS and AROME-France can be added to the ensemble. An AROME-EPS forecast for +6 h can be combined for instance with +12, +18 and +24 h forecasts from the different 6 h initializations.

Discussion about a weighting of ensemble members

Figure 3 shows how the quality of an AROME-NWC precipitation forecast diminishes with increasing forecast horizon. A non-uniform weighting of the ensemble members could there-Figure 5: As in Figure 3, this time for the 850 hPa reflectivity with a threshold of 1 mm h -1 for a 1 h forecast of the 6, 17 and 39 member lagged-average-forecast ensembles, from 6 May to 6 June 2016; the quantile-to-quantile mapping bias correction was calibrated over Sept 2015 data; ROC, receiver operating characteristic; POD, probability of detection; FAR, false alarm ratio. fore be beneficial. [START_REF] Raynaud | Application of a Bayesian weighting for short-range lagged ensemble forecasting at the convective scale[END_REF] investigated the use of an objective method to determine weights for the members of a time-lagged ensemble, based on 6 h initialized AROME-EPS ensemble forecasts. The impact of the weighting was found to be relatively small, as the estimated weights were close to an equal weighting of the ensemble members. Here, the time lag between the nowcasts used for the ensemble lies between 1 and 6h. The forecast horizon is also much shorter than that used by [START_REF] Raynaud | Application of a Bayesian weighting for short-range lagged ensemble forecasting at the convective scale[END_REF]. A difference in the weights of the ensemble members can therefore be assumed to be even smaller in the current study regarding the AROME-NWC LAF ensemble. More important tant could be a weighting when blending the AROME-NWC LAF ensemble with the AROME-EPS and AROME-France forecasts. This concerns especially the AROME-EPS forecast horizons used in this study between +6 and +29 h, which are much longer than the 1-6 h used from the nowcasts to create the ensemble. Due to the limited predictability on a convective scale, the skill of the AROME-NWC members should be higher than for AROME-EPS with long lead times. A weighting should therefore be daytime dependent, as the quality of the AROME-EPS forecasts from the 2100UTC initialization for 0300UTC can be expected to be better than for 0200UTC using the +29h lead time from the previous run. This was not investigated further, as in the operational implementation more initializations of AROME-EPS will be available, resulting in a comparable situation as in the study from [START_REF] Raynaud | Application of a Bayesian weighting for short-range lagged ensemble forecasting at the convective scale[END_REF]. Another issue is the members based on the temporal tolerance used in this study. They get the same weight as the members based on the valid time, even though a significant benefit from equal weighting is demonstrated in this work.

Optimal probability threshold

The optimal probability threshold for a specific user of a weather forecast to take an action depends on the vulnerability of its application. One can express this application dependence in terms of a cost-loss ratio s = C/L, which is defined as the ratio between the cost C of a false alarm and a non-detection L. For high impact events, which are very costly especially without adequate preparedness, the user expects more false alarms because their cost C is lower than if the event really happens without taking any measures. Typical cost-loss ratios used for high impact weather warnings are typically between 0.1 and 0.3. A cost-loss ratio of 0.2 was used in this study. This means that the user tolerates five times more false alarms than non-detections. The ROC is used to estimate an optimal threshold for a user with this specific cost-loss ratio. As discussed by Jolliffe and Stephenson (2003), the optimal probability threshold is where the ROC slope β is dH/dF , where H is the hit rate and F the false alarm rate. It can be shown that this value can be determined on the basis of the cost-loss ratio and the base rate, resulting in β = s(1 -o)/o, with s the cost-loss ratio and o the frequency at which the event is observed.

Results

AROME-NWC LAF ensemble

Figure 5 shows ensemble scores of reflectivity at 850 hPa for the AROME-NWC LAF ensemble. The plot layout is the same as in Figure 3 except that the parameter being verified is different. The lead time is 1 h, and the ensemble size varies between a 6, 17 and 39 member LAF ensemble, constructed on the basis of the AROME-NWC. The figure also compares the scores of raw versus bias-corrected reflectivity nowcasts (not for the 39 members as the benefit is negligible against 17 members). The effect of the temporal tolerance used to create additional members and the effect of the bias correction can be recognized. The FBI shows that, in raw reflectivities, the frequency of moderate and severe reflectivity values is too high compared to the observations, whereas the frequency of extreme values is underestimated. The bias correction successfully reduces this conditional forecast bias. After the correction, the FBI is of the order of 1 for a broad range, meaning that the frequencies of the forecast and observed values are nearly identical. High values are still underrepresented. Based on the available data, the statistical relationships between forecasts and observations were calculated for a period in autumn and applied on a dataset in spring. If longer time series are available, the training should be tested for the same season using independent years. The Talagrand diagram shows an underdispersion of the ensemble, represented by the U-shape, as well as a bias, represented by the asymmetry. The bias correction reduces both. As mentioned in Section 3.4, a daily cycle in the bias of the reflectivity can be seen using the SAL method. The correction is done independently of the daytime and removes a daily average bias. The remaining bias of the ensemble could be a result of too weak a correction of a more strongly biased daytime and too strong a correction of the daytime where the bias is smaller than the average. The area under the ROC curve is slightly increased by using the members generated by temporal tolerance from 0.81 for 6 members to 0.83 for 17 and 39 members. The score differences are significant at the 95% confidence level. Other scores do not degrade by using the temporal tolerance, whereas the bias correction reduces the probability of detection slightly. However, the false alarm rate is lower in the bias corrected case as the curves are closer to the y-axis. The ROCA for the bias corrected ensemble with 15 min time tolerance is at 0.82 slightly lower than that from the raw ensemble with the same time toler-ance. This difference is statistically significant. The reliability is improved by the bias correction as well as by the time tolerance used to generate the 17 and 39 member ensembles. The score differences between the latter are small, so only the 17 member configuration (i.e. the 15min tolerance) will be used in the rest of the paper.

Blended ensemble

Figure 6 shows the forecast scores for 1-6h forecasts for the reflectivity maximum. Twelve AROME-EPS members, the deterministic run and the AROME-NWC LAF ensemble based on the 15 min time tolerance were combined. As the ensemble size of the LAF ensemble with 15min tolerance decreases for longer forecast horizons in accordance with Table 1, the resulting ensemble size for forecast horizons from 1 to 6h diminishes from 30 to 27, 24, 21, 18 to 15 members, because 12 AROME-EPS members and AROME-France are always added to the LAF members. The proportion of AROME-EPS members in the blended ensemble increases with increasing forecast horizon as an effect of the varying number of members based on AROME-NWC, whereas more weight is given to the LAF ensemble near initialization. This is desirable as those models which are most beneficial for the specific forecast horizon get more weight. In a future setting, similar lead times from AROME-France and AROME-EPS are used and the models are based on a similar set-up. AROME-NWC includes newer observations and assimilates data in a slightly different way. The weighting, which is a result in this study of the decreasing ensemble size of the LAF ensemble against AROME-EPS and AROME-France, can be changed using for example a brute-force-like methodology by testing different weights to determine a pair of weights (AROME-NWC against AROME-EPS and AROME-France) which maximize, for example, the ROCA.

The ROCA values for the blended forecasts for 1-6h forecasts are 0.73, 0.72, 0.70, 0.69, 0.68 and 0.66. These score differences are significant between consecutive forecasts at a 95% confidence level. The blending of the AROME-NWC LAF with AROME-EPS and AROME-France augments the ROCA by about 0.04, 0.05, 0.05, 0.06, 0.08 and 0.10 respec-tively. The ROCA values for the 13 member AROME-EPS and AROME-France are lower than for the AROME-NWC LAF ensemble. The reliability of the blended ensemble is better than for the AROME-NWC LAF ensemble (not shown), but for high probabilities the number of events is very low. AROME-EPS and AROME-France were not bias corrected for the blending. The statistical relation for the quantile-to-quantile mapping estimated for the 6 h lead time for the AROME-NWC was tested. The effect is negligible. This might be because long lead times are used from AROME-EPS, for which the statistical relations for the short lead time of 6h are not adequate. For this reason, the use of more AROME-EPS initializations and shorter lead times can be ben-eficial for the bias correction of AROME-EPS. Further benefit for a 1h forecast was achieved by blending with extrapolated radar data.

Optimal probability threshold

To estimate the optimal probability threshold to indicate regions that should be avoided by air traffic, the described method based on the ROC diagram was applied. Figure 7 shows the cost of missed forecasts weighted by the cost of false alarms and non-detections against the probability threshold for 1, 3 and 5h forecasts; this weighted cost is defined as m = bC + cL where b and c are the numbers of false alarms and non-detections, respectively. In Figure 7, m is normalized by its values for a trivial forecast where the event is never predicted, so that this trivial forecast scores 1 and a perfect forecast scores 0.

The optimal probability threshold (for which m is minimum) lies at about 20% for all forecast horizons. The benefit from the ensemble can be seen, for example, for a 1h forecast as its cost of misses is at 0.82 lower than for the single 1h nowcast with a value of 0.86 . The 2h ensemble forecast (not shown) has a value of 0.84 and the 3h forecast 0.86 . The gain measured by the cost of misses is of the order of a 2h lead time for a specific user with a cost-loss ratio of 0.2 . The relative improvement increases until a lead time of 5h and decreases again at a lead time of 6h. For the blending, always the same time instances from AROME-France and AROME-EPS are added to the AROME-NWC LAF ensemble. The reduction of the cost of misses by the blended ensemble should therefore be mainly influenced by the degradation of the forecast quality of the AROME-NWC LAF ensemble for different lead times. Another influence is the reduction of the ensemble size. For very short forecast horizons, the nowcasts are very close to the initialization, but can be influenced by a spin-up. Their quality expressed in the cost of misses is the highest at this time. The absolute benefit from adding much older forecasts from AROME-EPS and AROME-France is therefore smaller than for larger lead times. For a 6h forecast with the blended ensemble, there are 15 members including only two AROME-NWC runs from which one is based on the temporal tolerance. Regions exceeding the optimal threshold of about 20% are indicated by contour lines and areas with an exceedence of 7 mm h -1 in the observations are shown in the colour (online version) of the second largest level. The most hazardous areas are well captured, such as the convective line in southwestern France for example. The event affecting the northern part of France entering the Normandy region is well represented, but shows a slight displacement southwestwards. The large region in central France in the observations going from southwest to northeast is divided by a gap with probabilities below the optimal probability threshold of 20%. For forecasts longer than 3h, the main regions are still indicated, but for example the northern part of the convective line in southwestern France includes areas below the optimal probability threshold. For a cost-loss ratio of 0.1 the optimal probability threshold reduces to about 10-12% depending on the lead time and ensemble size. This improves the detection but results in a larger number of false alarms.

Optimizing forecasts using low cost-loss ratios promotes high detection rates, which is desirable for weather warning applications. This result should not be achieved at the expense of too frequent false alarms, which would undermine the credibility of the warnings. In order to explore this issue, two false alarm metrics were checked (Jolliffe and Stephenson, 2003): the false alarm rates and false alarm ratios, on the 1h maximum reflectivity forecasts of the AROME-NWC LAF ensemble, at the optimal probability threshold of C/L = 0.2 .

False alarm rates (on the abscissa of the ROC diagrams) measure the number of false alarms normalized by the number of observed non-events. Over the period 6 May to 6 June 2016, false alarm rates are 10 and 14% at the 1 and 7 mm h -1 threshold, which seems quite reasonable. Unfortunately, false alarm rates can be misleading for events with a low base rate such as high convective precipitation, because they can be lowered artificially by underpredicting the event. For this reason it is useful to look at the false alarm ratios, which are defined as the number of false alarms divided by the number of predicted non-events. Over the same period, this quantity is 67 and 79%, which indicates that there is still room for improvement. Much higher ratios (close to 100%) only occur on some nearly dry days that have little practical significance because only small areas are affected. On days with widespread convective activity, false alarm ratios at the 7 mm h -1 threshold are of the order of 75%, which is still quite high and is the price to pay to achieve significant detection rates (about 40% at this threshold).

Conclusions

An ensemble for the very short forecast ranges between 1 and 6h was created using timelagged nowcasts, which were combined with deterministic and probabilistic forecasts. The applied forecast products are operationally available, so this procedure requires little additional computational and memory resources for the specific aviation application oriented processing. It includes a horizontal spatial upscaling and the use of a 15 min time tolerance to create additional ensemble members to take spatiotemporal uncertainties of the forecasts into account. The use of the additional forecast fields 15min before and after the exact time improves the forecast quality. Reflectivities are bias corrected using a quantile-to-quantile mapping, leading to a slight reduction in the area below the receiver operating characteristic (ROC) curve (ROCA) but substantial benefit for the frequency bias index, the dispersion and the reliability. The time-lagged nowcasts are not weighted in this study. This is motivated by the fact that a study by [START_REF] Raynaud | Application of a Bayesian weighting for short-range lagged ensemble forecasting at the convective scale[END_REF] demonstrated for the AROME-EPS that objectively estimated weights are close to an equal weighting of the ensemble members. In our case, the different forecast products (lagged-average forecast (LAF), Ensemble Prediction System (EPS) and deterministic runs) get different weights in the blended ensemble due to the time dependence of the LAF nowcast ensemble size. Thus, the impact of the nowcasts, predominant during the first 2h, decreases with increasing forecast horizon, and the AROME-EPS ensemble gets more weight. The ensemble of AROME-NWC based on the time-lagging brings a benefit against the single model-based nowcasts and the blending with probabilistic and deterministic forecasts further improves the forecast quality. It is shown that the blended ensemble is able to predict an exceedence of the maximum reflectivity in the column with a threshold of about 37 dBZ, which is relevant for aviation, with ROCA values between 0.73 and 0.66 for forecasts of 1-6 h. A higher frequency of the availability of AROME-EPS runs can be expected to have a positive impact on the ensemble. An optimal probability threshold was determined using a method based on the slope of the ROC curve. For a cost-loss ratio of 0.2, this threshold is of the order of 20%. Hazardous regions, which should not be penetrated by aircraft, can be identified by applying this method. To support the pilots' decision making and to facilitate the perception of the information, one can translate the probabilities traffic-light like, for example, with red standing for the exceedence of the optimal probability threshold, yellow for weaker positive probabilities and a neutral background colour for regions where the probability is zero. For a data transfer into the cockpit, sample points of the contour lines can be used instead of the entire 2D probability field for data reduction. Even if the gain in the forecast accuracy achieved by the different steps in this study seems to be small, the monetary benefit in the aviation sector can be substantial. [START_REF] Leigh | Economic benefits of Terminal Aerodrome Forecasts (TAFs) for Sydney Airport, Australia[END_REF] shows an example for aviation-specific forecasts, called terminal aerodrome forecasts, for the Sydney terminal manoeuvring area and concludes that an increase of only 1% of the forecast accuracy can lead to an estimated yearly cost reduction of about 1.2 million Australian dollars for only a single airline, namely Qantas in this case. The forecast of severe convection is one of the most challenging and impacting phenomena, which are part of a terminal aerodrome forecast.

Figure 1 :

 1 Figure 1: Echotop18 (hPa) 2h AROME-NWC nowcast initialized on 28 May 2016 2000 UTC: (a) original model resolution; (b) upscaled and smoothed; (c) radar observation.

Figure 2 :

 2 Figure 2: Sketch showing the combination of AROME-NWC nowcasts used to generate a laggedaverage-forecast ensemble; HH:00 designates the hour to be predicted with the ensemble. Forecast fields 15min before and after the hour of interest are added as additional pseudo-members.

Figure 3 :

 3 Figure 3: (a) Frequency bias index, (b) Talagrand diagram, (c) receiver operating characteristic (ROC) curve and (d) reliability diagram for the six member lagged-average-forecast (LAF) ensemble of hourly accumulated precipitation (LAF six members) and forecasts with lead times of 1, 3 and 5h (member 1, 3, 5, respectively); time period 6 May 2016 until 6 June 2016; threshold for ROC and reliability 1mmh -1 . POD, probability of detection; FAR, false alarm ratio.

Figure 4 :

 4 Figure 4: Example showing the blending of a deterministic AROME-France forecast with a six member AROME-NWC lagged-average-forecast (LAF) ensemble for a 1h forecast for 0100 UTC.

Figure 6 :

 6 Figure 6: As in Figure5, this time for the reflectivity maximum in the column for 30, 27, 18 and 15 member blended ensemble for 1, 2, 5 and 6 h forecasts based on AROME-EPS, AROME-France and the AROME-NWC lagged-average-forecast ensemble with 15min tolerance; curves for 3 and 4h lie in between, threshold 7 mm h -1 , time period 6 May to 6 June 2016: ROC, receiver operating characteristic; POD, probability of detection; FAR, false alarm ratio.

Figure 7 :

 7 Figure 7: (a) Cost of misses m (see text) against the probability threshold for 1, 3 and 5 h forecasts of the exceedence of 7 mm h -1 of the reflectivity maximum based on the AROME-NWC lagged-averageforecast (LAF) ensemble blended with AROME-EPS and AROME-France with ensemble sizes of 30, 24 and 18 members. The cost-loss ratio is 0.2 . Curves for 2 and 4h forecasts with 27 and 21 members lie between. Optimal probability threshold is at the minimum of each curve. (b) Gain of the blended ensemble with respect to a single AROME-NWC nowcast expressed in the reduction of the cost of misses.

Figure 8

 8 Figure 8(a) shows the observed reflectivity maximum for 28 May 2016 2000 UTC. Figures 8(b) -(f) illustrate the probabilities of exceeding the reflectivity maximum with a threshold of 7mmh -1 for 1-5h forecasts derived from the blended ensemble.

Figure 8 :

 8 Figure 8: (a) Observed reflectivity maximum in the column for 28 May 2016 2000UTC. Probabilities (%) of exceedance of 7 mm h -1 of the reflectivity maximum in the column, AROME-NWC lagged-averageforecast bias corrected blended with uncorrected AROME-EPS and AROME-France, all initialized on 28 May 2016 at (b) 1900 UTC + 1h forecast with 17 + 12 + 1 = 30 members, (c) 1800 UTC + 2 h forecast with 14 + 12 + 1 = 27 members, (d) 1700UTC+3h forecast with 11 + 12 + 1 = 24 members, (e) 1600UTC+4h forecast with 8 + 12 + 1 = 21 members and (f) 1500 UTC + 5 h forecast with 5 + 12 + 1 = 18 members; black contour lines (b -f) show regions which exceed the lead time dependent optimal probability threshold.

Table 1 :

 1 Number of ensemble members depending on forecast horizon and temporal tolerance for the AROME-NWC lagged-average-forecast ensemble.

	forecast horizon (h) forecast time 15-min tolerance
	1	6	17
	2	5	14
	3	4	11
	4	3	8
	5	2	5
	6	1	2
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