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ABSTRACT
We investigate the mixing of a passive scalar in an isotropic turbulent flow in the
presence of a time-periodic forcing. The results corroborate recent analytical pre-
dictions on the frequency dependence of the scalar variance and dissipation. In
particular, when the modulation amplitude is large, it is shown that a low frequency
modulation diminishes the mixing rate, whereas it enhances the transfer rate of ki-
netic energy, as compared to a flow with the same properties without an imposed
temporal modulation of the forcing.
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1. Introduction

Is it possible to enhance the mixing rate of a turbulent flow by adding a periodic
modulation to the mixing protocol? That is the main question we address in this
investigation by considering the academic case of isotropic turbulence, mixing a passive
scalar.

The mixing rate of a scalar quantity advected by a fluid is a key quantity in a
wide range of applications. Increasing the mixing rate by changing the flow properties
can have far reaching consequences in process-optimization. Whereas the mixing in
laminar flows can often be studied analytically, and the mixing rate can be greatly
enhanced by changing the boundary conditions [1] or the time-dependence of the flow
[2], the turbulent case is in general far more complicated. It is not even known if it is
possible to affect, in a controlled way, the mixing of a turbulent flow by changing the
large-scale forcing.

If any understanding of the modification of turbulent mixing through time-
dependent forcing is to be obtained, we think it is compulsory to look at the most
simplified case. We consider therefore the academic case of periodically forced isotropic
turbulence, advecting a passive scalar.

The influence of a time-periodic forcing on the turbulence itself is a relatively young
problem, despite its obvious academic interest. Indeed, whereas first studies on oscillat-
ing turbulent pipe flows go back to the early seventies [3], first results on the response
of a turbulent velocity field on a time-periodic isotropic forcing were only obtained in
the beginning of the 2000s. The initial studies aimed at identifying a possible resonance
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in the energy transfer process [4–6]. Direct numerical simulations [7,8] and experiments
[9,10] were carried out to systematically investigate the response of the kinetic energy
and dissipation rate to the forcing frequency. Analytical studies, using two-point clo-
sure techniques, allowed to explain the different scaling regimes of the time-dependent
quantities [11] and assess the ability of engineering models to reproduce the different
features [12].

Obviously it is extremely interesting to transpose these ideas to turbulent mixing.
Inspired by DNS results on modulated turbulence [7], the application of particular
forcing schemes to influence turbulent mixing was considered [13]. The forcing was
introduced in different wavenumber bands in Fourier space to mimic the complex na-
ture of turbulent flows generated by realistic objects. The influence of the so-generated
flow on turbulent mixing was assessed by monitoring the wrinkling of level-sets of an
advected scalar. Those results inspired several experimental investigations with ap-
plication to turbulent combustion [14,15]. In the previous DNS study aiming at the
assessment of the influence of the forcing type on mixing in turbulent flow [13], the
spatial character of the forcing was modified, but no temporal modulation was ap-
plied. In the experiments the modulation was both spatial and temporal, and it is
not straightforward to disentangle the different effects, so that it is not clear whether
the observed effects were caused by the time-periodic nature of the experimental in-
let conditions or the spatial complexity of the latter. The influence of the geometry
of a large-scale forcing on mixing has thus already received some attention, but the
temporal modulation of the flow was not considered in these studies.

In a recent paper [16], we carried out an analytical study of such a case: mixing
in periodically forced turbulence. We showed that the second-order contributions of
a perturbation analysis of the nonlinear transfer with respect to a modulation of
the velocity forcing will lead to (1) an enhanced energy transfer (2) a reduced scalar
transfer. Since the study was based on a simple turbulence closure and the perturbation
analysis assumed small modulation amplitude, it is important to check the results in
a more realistic setting, where the Navier-Stokes and advection-diffusion equations
are not modeled, but directly evaluated. That is what will be done in the present
investigation.

In the next section (section 2) we will outline the strategy to assess the influence
of a periodic forcing on the mixing of a passive scalar, we will recall the analytical
results and discuss the numerical tools. Then, in section 3 we will show and discuss
the results, before concluding in section 4.

2. Definitions, predictions and numerical set-up

2.1. Description of the problem

We consider the Navier-Stokes equations for incompressible flow u, mixing a passive
scalar θ:

∂

∂t
u+ u · ∇u = −∇P + ν∇2u+ f (1)

∇ · u = 0 (2)

∂

∂t
θ + u · ∇θ = D∇2θ + g, (3)
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where P is the pressure (normalized by a uniform density), ν and D are kinematic
viscosity and diffusivity, respectively. The flow and the scalar field are kept in a statis-
tically stationary state through an energy and scalar variance input f , g acting at the
large scales of the flow. The forcing f and g are acting at the same wavelength, so that
there is one integral lengthscale L determining both the scalar and velocity dynamics.
The forcing functions are chosen such that ensemble averaging (or phase-averaging),
indicated by brackets 〈.〉, yields,

〈fiui〉 ≡ p(t) = p+ p̃ cos(ωt), (4)

〈gθ〉 ≡ pθ(t) = pθ + p̃θ cos(ωt), (5)

where the quantities p and pθ denote the average kinetic energy and scalar variance
injection rates. Overlined quantities denote time-averages and tilded quantities denote
the amplitude of a periodic (non-zero frequency phase-averaged) contribution. The
precise form of the forcing is given in the appendix.

In our study the flow domain is a spatially periodic box. In the present setting the
evolution equations for the kinetic energy k = 1

2

〈
|u|2

〉
and the variance of the scalar

kθ = 1
2

〈
θ2
〉

reduce to

dk

dt
= p− ε (6)

dkθ
dt

= pθ − εθ. (7)

In these equations ε and εθ are the phase averaged dissipation of kinetic energy and
scalar variance, respectively, defined by

ε = ν

〈
∂ui
∂xj

∂ui
∂xj

〉
and εθ = D

〈
∂θ

∂xj

∂θ

∂xj

〉
. (8)

All the different statistical quantities of interest will in the following be decomposed
into a time-averaged and a periodic component. Thereby the expressions of k and ε
are

k(ω, t) = k(ω) + k̃(ω) cos(ωt+ φk), (9)

ε(ω, t) = ε(ω) + ε̃(ω) cos(ωt+ φε), (10)

where φ indicates a phase-shift. Analogous expressions can be written for kθ and εθ.
It is of interest here to note that both the time-averaged quantities, such as k and the
amplitudes of the periodic part like k̃ are in principle a function of the imposed forcing
frequency ω. In the limit of small fluctuations, as considered in previous studies [11,12],
it is only the tilded quantities which depend on the forcing frequency. This is the most
important novelty of the present investigation, where we consider the influence of large
modulation amplitudes on the frequency behaviour of the averaged quantities. Since
all quantities k, ε, kθ, εθ, k̃, ε̃, k̃θ and ε̃θ are a function of ω only, we will omit this
dependence in the following.

The time-averaged balance equations for the kinetic energy and scalar variance are
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given by

0 = p− ε (11)

0 = pθ − εθ, (12)

and the periodic quantities evolve according to

−ωk̃ sin(ωt+ φk) = p̃ cos(ωt)− ε̃ cos(ωt+ φε), (13)

−ωk̃θ sin(ωt+ φkθ) = p̃θ cos(ωt)− ε̃θ cos(ωt+ φεθ). (14)

In these expressions, we have assumed that all quantities will periodically oscillate
around a mean value with a frequency ω. This was observed to be the case in our
simulations. In previous works [5–8,11], the frequency dependence of k̃ and ε̃ was
investigated. The influence of the modulation on the time-averaged quantities k and ε
has not received any attention yet in the analytical and numerical studies, in particular
since a linear perturbation analysis does not show any influence of the modulation on
the averages. In the experimental studies [9,10] measurements were made of the average
injection rate, but mostly aiming at the determination of a possible resonance. It is
these average quanties that quantify the transfer rate.

Indeed one can introduce the transfer efficiency of kinetic energy χ as the inverse
of the integral timescale

χ =
ε

k
. (15)

The value of χ measures the efficiency of the energy transfer through the energy cas-
cade. In our set-up, where the average dissipation should balance the average injection,
it is therefore 1/k, which measures the efficiency.

In order to measure the transfer efficiency of the passive scalar, one can define the
mixing rate χθ,

χθ =
εθ

kθ
, (16)

measuring the efficiency of a flow to transfer scalar variance to diffusivity-dominated
scales. Similarly, this quantity is in a steady state determined by 1/kθ.

2.2. Summary of analytical results

In this summary we will only consider the case where the kinetic energy injection is
modulated p̃ 6= 0, p̃θ = 0, and where the modulation frequency is small. For the high
frequency analytical results we refer to references [11,16].

In reference [11] we derived using spectral closure theory the frequency dependence
of the modulated part of the kinetic energy k̃ and viscous dissipation ε̃. In the low
frequency, or quasistatic limit, both quantities were predicted to tend to constant
values, independent of the frequency,

ε̃ = p̃ (17)

k̃ =
2

3
αpk̄, (18)

4



where the relative forcing amplitude is defined by

αp =
p̃

p̄
. (19)

More importantly, retaining second-order contributions in the perturbation analysis,
we obtained estimates of the influence of the modulation on the time-averaged quan-
tities, χ and χθ [16]. We will here give a simplified derivation of the results in [16]. For
this analysis we will use the Taylor expression for the dissipation (or injection) rate

p ∼ k3/2

L
, (20)

with L the integral lengthscale. Combining this with our expression for the modulated
forcing yields

k ∼ (p+ p̃ cos(ωt))2/3L2/3. (21)

In our setting the forcing-scale is fixed, so that we find immediately,

k ∼ (pL)2/3(1 + αp cos(ωt))2/3 (22)

developing to second order gives

k ∼ (pL)2/3

(
1− 1

18
α2
p

)
, (23)

which corresponds to the previous results [16], for αp � 12. Similarly, using the analog
of the Taylor expression for the passive scalar,

pθ ∼
kθk

1/2

L
. (24)

and combining this with Taylor’s relation (20) gives

kθ ∼
pθL

2/3

p1/3
. (25)

to that one obtains

kθ ∼
pθL

2/3

p1/3

(
1 +

1

9
α2
p

)
. (26)

These expressions yield then the relations for the energy transfer and scalar mixing
rate,

χ

χ(p̃ = 0)
=

(
1 +

1

18
α2
p

)
. (27)
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and

χθ
χθ(p̃ = 0)

=

(
1− 1

9
α2
p

)
, (28)

where χ(p̃ = 0) and χθ(p̃ = 0) are the transfer efficiencies in the absence of modulation.
These expressions show that a modulation of the forcing can influence the average
value of the transfer efficiency. For the kinetic energy transfer χ, this effect is positive,
whereas for the scalar mixing rate this effect is negative. These expressions also show
that the relative strength of the forcing, αp = p̃/p must be large for the modulation
to affect the transfer rates significantly. To illustrate: for αp = 0.2, it is found that
χ/χ(p̃ = 0) = 1.002 and χθ/χθ(p̃ = 0) = 0.996, whereas these values change to 1.05
and 0.89 respectively for αp = 1.

The analytical predictions suggest thus that we can affect the mixing rate of a
turbulent flow by modulating the energy input. However, the modulation increases
the energy transfer rate but decreases the scalar transfer, which is the opposite of
what is desirable in most applications. In general one would prefer a modification of
the mixing protocol leading to better mixing, while consuming less kinetic energy.
The analytical results suggest that a slow modulation will lead to more kinetic energy
transfer, for a less efficient scalar transfer. The fact that a modulation enhances the
transfer of energy, whereas the opposite is observed for the scalar variance is a direct
consequence of the fact that k in expression (20) is proportional to p2/3, whereas this
exponent is negative in expression (25). Note further that in this derivation we have
only considered the large-scale quantities p, pθ, k, kθ and L. Therefore these results are
supposed to be robust even when the Schmidt number Sc = ν/D is non-unity, as long
as the Péclet is sufficiently large for the large scales not to be affected by diffusion.

Indeed, the fact that relations (20) and (24) lead to the same results as a more
detailed spectral analysis seems to indicate that, if we are in a regime where both the
kinetic energy and passive scalar are dominated at the large scales by nonlinear transfer
and not by visco-diffusive effects, the above arguments remain valid. Nevertheless, this
remains fairly speculative and it would be interesting to test this by simulations at
different Schmidt numbers. The parameter-space becomes thereby significantly larger
and we will not consider these cases in the present work.

Since these predictions were obtained using a second-order perturbation of a sim-
plified transfer model, it is important to check them numerically. Indeed, within the
framework of a perturbation analysis, we consider that we measure the response of
a system to an infinitesimal perturbation. In the case of a periodic perturbation the
response is assumed to be at the same frequency as the perturbation, around the
unaltered system. When the perturbation is large, the system itself can be affected
importantly, and linear-response theory is no longer valid. In our case, a perturbation
of the injection with an amplitude equal to the average injection cannot possibly be
considered infinitesimal. It is therefore interesting to see if such a perturbation mod-
ifies the time-averaged properties of the flow, as suggested by expressions (27) and
(28), obtained, as we said, from a second-order perturbation analysis.

2.3. Numerical set-up

A standard pseudospectral method is used to compute the velocity and scalar field in
a space-periodic cubic domain of size 2π. A conventional 2/3 wavenumber truncation
is used to eliminate the aliasing error and a third order Runge-Kutta, Total Variation
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Diminishing scheme is used as time discretisation. The same code was used to study
the mixing of temperature fluctuations in isotropic turbulence [17].

A total number of 46 simulations is carried out at two different values of the Taylor-
scale Reynolds number, Rλ = 32 and 105 where Rλ =

√
20/3(k/

√
νε). The integral

lengthscale will in the present investigation be taken proportional to the box-size, L =
2π. Since the forcing lenghtscale, which determines primarily the integral lengthscale,
is fixed with respect to the boxsize, this choice is not supposed to qualitatively change
the results.

A challenge in the study of the frequency response of turbulent flows is the conver-
gence of the statistics. At low forcing frequencies the simulations become very long if
a sufficient number of periods is to be resolved. At high frequencies the response to a
periodic forcing will be shown to be small, so that also in this case long simulations are
needed, not to resolve sufficient periods, but to be able to distinguish the frequency
response from the turbulent fluctuations. Obtaining converged statistics is therefore
challenging in both the small and large frequency limits.

Details on the numerical parameters and on the post-processing procedure are given
in the Appendix.

3. Results

Two different cases will be considered: the case of mixing in a modulated turbulent
velocity field (p̃ 6= 0 and p̃θ = 0) and the case where only the scalar injection is
modulated (p̃ = 0 and p̃θ 6= 0).

3.1. Response of turbulence and mixing on a periodic kinetic energy
input

In this section we consider the case where we only modulate the kinetic energy,

p = p+ p̃ cos(ωt), (29)

pθ = pθ. (30)

It will be shown that the modulation p̃ of the velocity field does also affect the mixing
of the passive scalar.

3.1.1. Frequency response of the modulated kinetic energy and dissipation

The frequency response of k̃ and ε̃ is shown in Fig. 1 for Rλ = 32. We compare
in this figure the frequency responses for two different relative forcing amplitudes,
αp = p̃/p̄ = 0.2 and αp = 1. In order to compare the frequency response for the
different forcing amplitudes, we plot in these figures the quantities

k∗ = α−1
p

k̃

k
and ε∗ = α−1

p

ε̃

ε
(31)

as a function of frequency. Several observations can be made. Firstly, the 20% and
100% relative forcing amplitudes give results that superpose at almost all frequencies
for both quantities. These observations seem to indicate that the results of the linear-
perturbation analysis are robust enough to be transposable to the case where αp = 1,
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Figure 1. The frequency dependence of (a) k∗ = k̃
k
α−1
p and (b) ε∗ = ε̃

ε
α−1
p as a function of ωT for Rλ = 32

and Rλ = 105, αp = 0.2 and αp = 1.

i.e., the case where the modulation amplitude has the same value as the mean value.
Numerically, this is convenient, since the αp = 1 results allow to obtain results at
a lower computational cost, and therefore, at higher Reynolds number, because the
signal-to-noise ratio is larger.

Secondly, the powerlaw dependence proportional to ω−1 observed in previous in-
vestigations [7,11] is clearly reproduced both for k̃ and ε̃. At small frequencies both k̃
and ε̃ tend to constant values, as predicted [11], but unlike DNS results [7] at these
frequencies, perhaps due to unconverged statistics in the simulations. Indeed, in one
of the previous investigations [7], a local maximum was observed at low frequencies,
suggestive of a resonance. This effect is not observed in our results, neither was it in
the closure studies [11].

Furthermore, Figure 1 also illustrates the influence of the Reynolds number on the
modulated kinetic energy and dissipation. It is observed that this influence is small
for the modulated kinetic energy. However, for the dissipation this influence is larger,
as was explained by the fact that the ω−1 asymptote is inversely proportional to the
Reynolds number, since it corresponds to the direct influence of the viscous damping
on the forced scales [11]. The intermediate zone between the low frequency plateau
and the high frequency asymptote was theoretically predicted to be proportional to
ω−3 for large Reynolds numbers [11]. This frequency range is too small here to be
conclusive on the presence, or not, of such a power law.

3.1.2. Frequency response of the modulated scalar variance and its dissipation

The results on k̃ and ε̃ in the foregoing section are in agreement with previous work
(except for the small local maximum observed in DNS [7]). In Figure 2 we evaluate
quantities which have not received any attention yet in experiments and simulations:
k̃θ and ε̃θ. It is observed that the large-frequency asymptotes predicted in our previous
investigation [16] are well reproduced. More specifically it is observed that the scalar
variance contains a periodic component which is constant at low frequencies, and
rapidly drops off at high frequencies, following a powerlaw proportional to ω−3. The
periodic part of the scalar dissipation behaves as |ε̃θ| = ω|k̃θ| as is illustrated in figure
2, where for ω tending to zero ε̃θ is proportional to ω, and for large values of ω the
asymptotic slope is proportional to ω−2. It seems that the analytical predictions based
on the linear perturbation of a simple flux closure for the nonlinear transfer is sufficient
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Figure 2. Frequency response of (a) the modulated scalar variance k∗θ = k̃θ
kθ
α−1
p and (b) modulated scalar

dissipation ε∗θ = ε̃θ
εθ
α−1
p for Rλ = 32 and Rλ = 105. The relative forcing amplitude is αp = 1.

to predict the small and large frequency asymptotes of both k̃θ and ε̃θ.

3.1.3. Influence of the modulation on the mixing and transfer rates

We now present the most important results of this investigation. In Figure 3, the
influence of the modulation is shown on the quantities χ and χθ. Our forcing scheme
is designed to keep the average rate of ε and εθ constant. Thereby, in none of our
simulations, the values of ε(ω) and ε(p̃ = 0) differ more than 2%. The transfer and
mixing rates are then determined by the variations in k̄(ω) and k̄θ(ω) (see equations
(15) and (16)). It is shown that for αp = 0.2, no clear modification of the mixing
and transfer rate is observed. Indeed, the analytical study predicted the effect for this
value of αp to be less than 0.5%, well below the statistical errors induced by the time-
averaging. However, for αp = 1, a clear effect is observed, of the order of +7% for χ
and −20% for χθ. These are of the same order of magnitude, but slightly larger than
the analytically predicted values (+5%,−11%). Clearly the analytical study predicted
the correct tendencies and order of magnitude of the influence of the modulation of the
mixing and transfer rate. The fact that the numerical values are not exactly predicted
cannot be considered very surprising given the nature of the simplifications in the
analytical study.

These results confirm thus that the modulation of the velocity field can affect the
average transfer and mixing rates in the low frequency limit. The origin of this effect
is the nonlinear dependence of the kinetic energy and scalar variance on the forcing,
k ∼ p2/3, kθ ∼ p−1/3, as follows from relations (21) and (25). The Reynolds number
does not seem to be an important parameter for the values we considered, which
illustrates the robustness of the observations.

3.2. Modulation of the scalar injection

For completeness, we now consider the case where we only modulate the scalar input,

p = p, (32)

pθ = pθ + p̃θ cos(ωt). (33)
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Figure 3. Influence of the large-scale modulation on the transfer-rate χ and mixing-rate χθ, for Rλ = 32 and
Rλ = 105, αp = 0.2 and αp = 1.
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Figure 4. Amplitudes of the modulated scalar variance k∗θ = k̃θ
kθ
α−1
p and (b) modulated scalar dissipation

ε∗θ = ε̃θ
εθ
α−1
p as a function of ωT for the case of a modulated scalar injection. Results for Rλ = 32 and Rλ = 105,

both at αp = 1.

Naturally the modulation p̃θ should not influence the velocity field and we therefore
only evaluate the influence of the modulation on the scalar quantities.

In Figure 4 we show the results for k∗θ = α−1
p k̃θ/k̄θ and dissipation ε∗θ = α−1

p ε̃θ/ε̄θ
as a function of the modulation frequency for αp = 1, Rλ = 32 and Rλ = 105. A very
close similarity with the results for k∗ and ε∗ in Figure 1 is observed. In particular the
small and large frequency asymptotes are identical. Indeed, the reasonings leading to
the prediction of the frequency behaviour of the kinetic energy and dissipation [11]
can be extended to the case of the passive scalar, in particular in the limit of the linear
response approximation.

4. Conclusion

In this manuscript, we have answered to the question whether a periodic modulation
of a turbulent flow changes its mixing properties. It was clearly shown that for large
modulation amplitudes, the modulation affects the energy transfer positively, whereas
it diminishes the mixing rate, as was predicted in a recent analytical study [16]. The
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average mixing rate was shown to decrease by approximately 20%, for two distinct
Reynolds numbers, whereas the energy transfer rate increases by approximately 7%.
This result shows that in most applications where an efficient mixing is required for
a minimum amount of energy, the modulation of the velocity field is not a good idea.
We should however mention that these results concern the case of isotropic turbulence
and that a possible mixing enhancement by the modulation of spatially inhomogeneous
mixing devices cannot be excluded. However, we show here that it is not the heart
of the turbulent mechanism, the energy and scalar cascade, which is affected in the
desired way by the modulation of an isotropic forcing.

It can now be asked how our findings can be assessed in experiments. Experi-
mental investigations of mixing in isotropic turbulence have focused mainly on grid-
turbulence. In such flows the turbulence is decaying from initial conditions, generated
at the grid. Active-grids have been used to modulate turbulence [10], and to generate
high Reynolds number flow in which to study scalar mixing [18]. However, the combi-
nation of these two, i.e., using modulated active grids to generate a turbulent flow in
which small temperature fluctuations are injected, would constitute a perfect set-up
to check the results of the present investigation in a real life flow.

Given the negative results obtained here one might question if it is worth to set
up such experiments. Indeed, it might, and we want to finish this investigation by a
positive note for those who want to enhance mixing by temporal modulation. Indeed,
there might be a way to enhance the mixing by modulation in the current framework.
To understand this reconsider equations (20) and (25),

k(t) ∼ (p(t)L)2/3,

kθ(t) ∼
pθ(t)L

2/3

p(t)1/3
.

The average kinetic energy transfer rate is in the current investigation influenced
through the temporal modulation, because k is nonlinear dependent on p. On the
contrary, kθ will not be affected by a modulated forcing of the scalar input pθ, since
their inter-dependence is linear. However, kθ depends nonlinearly on L. Therefore,
there might be a chance that the temporal modulation of the integral scale L could
enhance the mixing. Indeed, introducing a modulated integral scale,

L = L(1 + αL cos(ωt)) (34)

the analysis in section 2.2 leads straightforwardly to

k ∼ p2/3L
2/3
(

1− 1

18
α2
p

)
kθ ∼

pθL
2/3

p1/3

(
1− 1

18
α2
p

)
. (35)

And therefore, in this case, both the transfer of kinetic energy and of scalar variance
are enhanced. We note that we have assumed here that it is possible to modulate L,
while keeping p and pθ constant. Investigating whether this is realizable and if such
a modulation leads to improved mixing seems to be a promising direction for further
research.
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Appendix: further details on the numerical simulations and
postprocessing procedure

The numerical simulations are carried out at two different resolutions, corresponding to
different values of the Reynolds number. First, low resolution simulations at a spatial
resolution of 643 are performed with kinematic viscosity ν = 0.009, corresponding to a
Taylor Reynolds number Rλ = 32, with eddy turn-over time T = 1.949. The resolution
allows to resolve the smallest scales upto kmaxη = 0.93. Another set of simulations is
carried out at a resolution of N3 = 2563 gridpoints, kinematic viscosity ν = 0.0009;
Taylor Reynolds number Rλ = 105; eddy turn-over time T = 2.317 and kmaxη = 0.97,
where η = ν3/4/ε1/4 and kmax the largest resolved wavenumber. In all simulations the
Schmidt number Sc ≡ ν/D = 1.

The Fourier-transformed velocity and scalar field are denoted by ûi and θ̂, respec-
tively. The forced Fourier-modes are the modes in the range 0.5 < |κ| ≤ 2.5. Only for
these modes the forcing terms are non-zero and have the form

f̂i(κ, t) =
1

NF

ûi(κ, t)

|û(κ, t)|2
(p+ p̃ cos(ωt)) (36)

ĝ(κ, t) =
1

NF

θ̂(κ, t)∣∣∣θ̂(κ, t)∣∣∣2 (pθ + p̃θ cos(ωt)), (37)

with NF the total number of forced modes. These forcing schemes will result in a
statistically isotropic velocity and scalar field.

Previous investigations [7,11] focused in particular on the linear response of tur-
bulence on a periodic modulation. In this limit linearized equations around a given
equilibrium allow to analytically derive certain results. The verification of such re-
sults is not straightforward in the nonlinear regime, where the perturbation is large.
Ideally, to investigate the linear response of a turbulent flow, the amplitude of the
forcing should be chosen small compared to the amplitude of the steady part of the
forcing (αp ≡ p̃/p̄ � 1). However, since the turbulent fluctuations are in this case
much larger than the periodic response, very long simulations should be carried out to
obtain an estimate of the frequency response. In particular at large frequencies, where
the frequency response will be shown to drop rapidly as a function of frequency this
would impose prohibitively long computations. A compromise is to consider a larger
modulation amplitude. In this study, as in a previous DNS investigation [7], we use
αp ≡ p̃/p̄ = 0.2. This allows to obtain converged statistics for a large range of fre-
quencies at a reasonable computational cost for low Reynolds number (Rλ = 32). For
higher Reynolds number this already leads to prohibitively long simulations. Therefore
we have carried out another set of simulations with a relative modulation amplitude
αp = 1. Even though this certainly violates the linear perturbation assumption, we
will show that the frequency-response of the modulated quantities is not quantita-
tively altered. We will further show that this has an interesting direct influence on the
time-averaged quantities.

Before extracting the frequency response of the simulations, the flow was simulated
for approximately 10 eddy turn-over times to obtain a statistically steady state. It
proved convenient to determine the amplitude of the periodic response by using a
Fourier-transform of the signal. Before Fourier-transforming the time-series of a given
quantity, a hanning window function is applied to the signal to eliminate the aliasing
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error at high frequencies due to the finite length of the signal. In the frequency spectra,
if the simulations are carried out for a sufficiently long time-interval, the amplitude
of the periodic response is easily identified by a sharp peak. Comparing the value
of this peak to the neighbouring values in the spectrum gives a direct estimate of
the signal-to-(turbulent)-noise ratio. In all simulations the value of the peak at the
considered frequency was at least ten times the value of the neighbouring values in
the spectra. In particular, it was observed that the main response of the considered
quantities appeared at the forcing frequency and that subharmonic contributions were
negligible.

For the phase averaged amplitudes, error-bars are added to the datapoints in the
figures, computed from the signal to noise ratio. In most cases, this error-bar is smaller
than the size of the symbols used in the figures. The time-averaged value is conveniently
estimated from the ω = 0 component of the spectrum.

The different simulations we have carried out are documented in table 1.
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ωT N t αp Rλ

0 0 800 0.2 32
0.037 4 1316 0.2 32
0.064 8 1519 0.2 32
0.11 8 877 0.2 32
0.19 8 506 0.2 32
0.33 8 292 0.2 32
0.57 8 169 0.2 32

1 15 183 0.2 32
1.7 90 633 0.2 32
3 180 731 0.2 32
5 540 1266 0.2 32
9 360 487 0.2 32
16 810 633 0.2 32
27 1080 487 0.2 32
47 110 29 0.2 32
81 200 30 0.2 32
0 0 800 1 32

0.037 4 1316 1 32
0.064 8 1519 1 32
0.11 8 877 1 32
0.19 8 506 1 32
0.33 8 292 1 32
0.57 8 169 1 32

1 15 183 1 32
1.7 35 246 1 32
3 60 243 1 32
5 105 246 1 32
9 180 243 1 32
16 315 246 1 32
27 540 243 1 32
47 945 246 1 32
81 1800 271 1 32
0 0 40 1 105

0.11 2 262 1 105
0.19 3 227 1 105
0.33 3 131 1 105
0.57 3 76 1 105

1 2 29 1 105
1.7 6 50 1 105
3 12 58 1 105
5 54 151 1 105
9 108 175 1 105
16 54 50 1 105
27 108 58 1 105
47 162 50 1 105
81 324 58 1 105

Table 1. Simulation parameters: normalized frequency ωT , number of simulated periods N , simulated time-

interval t, relative forcing amplitude αp and Reynolds number Rλ.
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