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2Département de Génie Mécanique, Université de Sherbrooke,
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This paper presents a comprehensive analytical approach to the modelling of wall-
pressure fluctuations under a turbulent boundary layer, unifying and expanding the
analytical models that have been proposed over many decades. The Poisson equation
governing pressure fluctuations is Fourier transformed in the wavenumber domain to
obtain a modified Helmholtz equation, which is solved with a Green’s function technique.
The source term of the differential equations is composed of turbulence-mean shear
and turbulence-turbulence interaction terms, which are modelled separately within the
hypothesis of a joint normal probability distribution of the turbulent field. The functional
expression of the turbulence statistics is shown to be the most critical point for a
correct representation of the wall-pressure spectrum. The effect of various assumptions
on the shape of the longitudinal correlation function of turbulence is assessed in the
first place with purely analytical considerations using an idealised flow model. Then,
the effect of the hypothesis on the spectral distribution of boundary-layer turbulence on
the resulting wall-pressure spectrum is compared with the results of direct numerical
simulation computations and pressure measurements on a controlled-diffusion aerofoil.
The boundary layer developing over the suction side of this aerofoil in test conditions
is characterised by an adverse pressure gradient. The final part of the paper discusses
the numerical aspect of wall-pressure spectrum computation. A Monte Carlo technique
is used for a fast evaluation of the multi-dimensional integral formulation developed in
the theoretical part.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Nomenclature

Cf = friction coefficient
c = airfoil chord
c0 = speed of sound

† Email address for correspondence: gabriele.grasso@ec-lyon.fr
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erf = error function
erfc = complementary error function

pFq(a1, . . . , ap; b1, . . . , bq;x) = generalised hypergeometric function
F = Fourier transform operator
F = turbulence vertical correlation function
J0 = Bessel function of the first kind of order 0
k = (k1, k3), planar wavenumber vector

k =
√
k21 + k23, planar wavenumber vector magnitude

k1, k2, k3 = aerodynamic wavenumbers
kT = turbulent kinetic energy
Kz = Modified Bessel function of the second kind of order z
l,L = length scale of turbulent velocity fluctuations
Mi = Ui/c0, Mach number based on ith velocity component
p = fluctuating pressure variable
Rec = Reynolds number based on the chord
x1, x2, x3 = coordinate system for boundary-layer description
ui = fluctuating velocity component

uτ =
√
τ0/ρ0, shear velocity

Uc = convective speed of wall-pressure fluctuations
Ue = external flow speed
α = Ue/Uc
β =

√
1−M2

1 , compressibility factor
Γ() = Gamma function
δ = boundary-layer thickness
δ∗ = boundary-layer displacement thickness
δ() = Dirac function
θ = boundary-layer momentum thickness
κ = wavenumber vector

κ =
√
k21 + k22 + k23, wavenumber vector magnitude

Λ = longitudinal integral length scale of turbulence
µ = dynamic viscosity
ν = Generalised von Kármán spectrum constant
ρ0 = flow density in a quiescent medium
σ2 = variance of a homogeneous turbulence field
τw = wall shear stress
ϕpp = wavenumber spectral density of wall-pressure fluctuations
ϕij = cross-spectral density of turbulent velocity fluctuations
ω = reduced frequency

2. Introduction

The statistical characterisation of wall-pressure fluctuations under a turbulent bound-
ary layer is necessary in many industrial applications. The wall-pressure fluctuations
generated on the surface of air, land and maritime means of transport (where the
curvature will typically generate adverse free-stream pressure gradients) are the cause
of structural vibrations and noise that propagate inside the vehicle. Aircraft fuselage
excitation due to pressure fluctuations is a significant source of cabin noise. Also, wall-
pressure fluctuations can interfere with the signal of underwater sonar domes. More
importantly for the purpose of this work, the pressure disturbances generated on the
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surface of wing profiles are scattered into acoustic waves at the trailing edge. This is a
source of noise in low-speed fans and wind turbines. Moreover, it is the only remaining
source of broadband noise for a subsonic fan operating in a homogeneous stationary flow.
Due to the random nature of these disturbances, the generated noise is broadband and its
intensity is directly proportional to that of the wall-pressure fluctuations, as expressed in
analytical theories, among others Amiet (1976) re-addressed by Roger & Moreau (2005,
2012).

The experimental investigation of wall-pressure fluctuations dates back to the 50s (see
the reviews of Bull (1996) and Cohen & Gloerfelt (2018)) and still proves challenging
nowadays. For instance, Salze et al. (2015) discussed the separation of the hydrodynamic
and acoustic components of the spectrum of pressure fluctuations from the raw experi-
mental data. In particular, the acoustic component has its energy peak at low wavenum-
bers for a given frequency and thus it is more likely to excite the structural modes
of the underlying surface. It must also be remembered that the measured frequency-
wavenumber spectrum is a convolution of the true spectrum of pressure fluctuations with
the response function of the experimental apparatus. Prigent et al. (2018) discussed the
application of various numerical techniques for the deconvolution of the physical spectrum
from the response function, although this remains an open problem. Another question
that has been long debated is the choice of the relevant boundary-layer parameters for
the scaling of measured wall-pressure spectra, which is the first step towards building
empirical predictive models. This question has been treated in the works of Keith et al.
(1992) and Cipolla & Keith (2000).

Direct numerical simulation (DNS) of the turbulent boundary layer can provide plenty
of information concerning the statistical properties of turbulence and of the wall-pressure
fluctuations that it generates. Earlier attempts at DNS date back to the eighties with
the work of Spalart & Leonard (1987), using a spectral method. Reynolds numbers
representative of industrial applications have long been out of the reach of DNS codes
until the advent of supercomputers, as seen in Borrell et al. (2013). However, DNS is still
far from being considered a viable design tool. A compromise in terms of computational
cost for the generation of broadband noise sources is the fast random particle mesh
method, which superimposes a synthetic field of turbulent fluctuations to the mean
flow calculated by a Reynolds-averaged Navier-Stokes (RANS) simulation (see Proskurov
et al. 2017). However, this method depends on the assumed functional expression of the
turbulence energy spectrum, as shown by Wohlbrandt et al. (2016), similar to the family
of methods that is presented in this paper.

The fastest way to estimate the wall-pressure power spectral density (PSD) for noise
prediction is to use a model, either empirical or based on the analytical solution of the
Poisson equation. Most empirical models are developed by selecting several databases
of wall-pressure spectra in similar flow conditions and normalising them in order to
highlight the dependence on some boundary-layer parameters. Then, a mathematical
expression is developed to fit the collapsed curves. Corcos (1964) made one of the first
attempts to build a universal statistical model of the wall-pressure spectrum, which has
been widely used to this day due to its simple mathematical formulation but is known
to greatly overestimate the contribution to a given radian frequency of the wavenumber
range below the convective ridge. Corrections to the low-frequency behaviour of Corcos’
model have been proposed, for instance, by Ffowcs Williams (1982) and Caiazzo et al.
(2016). In the work of Schlinker & Amiet (1981), the pressure PSD is normalised by the
outer boundary-layer parameters, the displacement thickness δ∗ and the external velocity
Ue, and plotted as a function of the corresponding reduced frequency ω̃ = ω δ∗/Ue.
This model is suitable for flat-plate, zero-gradient boundary layers, but it is not able to
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represent the quadratic rise with ω in the low-frequency range, predicted by Kraichnan
(1956b) and Phillips (1956), or the increase of the PSD magnitude under the effect
of an adverse pressure gradient. The model of Chase (1980), expressed in terms of
both outer and inner boundary-layer variables (with the introduction of the wall shear
stress, τw) represents a step forward because it accounts for the low-frequency rise. More
recently, the model of Goody (2004), also expressed in terms of mixed inner and outer
generalized variables, has included the effect of the Reynolds number on the extension of
the overlap zone observed in the middle frequency range, where the normalised pressure
PSD decreases approximately as ω−0.7. Still, these models are calibrated on zero-pressure-
gradient flow databases. The model of Rozenberg et al. (2008), on the contrary, preserves
the main features of Goody’s but also takes into account the effect of the adverse
pressure gradient, which can increase the wall-pressure spectrum of up to 10 dB in the
low-frequency range. Initially this model was formulated with reference to τw, which
can be difficult to estimate in some cases. However, its latest formulation published in
Rozenberg et al. (2012) takes into account additional features of the boundary layer and
substitutes the wall shear stress with the maximum shear stress in the flow. Catlett et al.
(2015) generalised Goody’s model in order to capture adverse-pressure-gradient effects
as well. Hu’s model (Hu 2018) aims at representing the wall-pressure frequency spectrum
under arbitrary non-equilibrium flow conditions by using the shape factor H = δ∗/θ
for non-dimensionalisation, a parameter that is also representative of boundary-layer
development history. The most recent and comprehensive comparison of all published
empirical models is given by Lee (2018), who propose a formulation that is valid for a
wide range of flow conditions.

The Poisson equation governing pressure fluctuations in a turbulent boundary layer
can be used to build models that relate pressure and velocity statistics through relatively
simple analytical formulations. Heisenberg (1948) and Batchelor (1951) addressed the
problem of pressure fluctuations in homogeneous and unbounded turbulence, developing
equivalent formulations. Subsequently, Kraichnan (1956a) added an infinite plane bound-
ary condition to the homogeneous turbulence problem and then included the effect of
anisotropy of the length scales of turbulence as a first step towards the understanding
of a real boundary layer. This theory was then extended to the case of non-homogeneity
in the direction normal to the wall by Kraichnan (1956b) and Hodgson (1961). Whereas
Kraichnan’s theory is formulated in the space domain, Hodgson adopted a wavenumber-
domain approach. The results of these studies were essentially analytical and based on
idealised flow models. Panton & Linebarger (1974) coupled the analytical wavenumber-
domain solution of the Poisson equation with a realistic flow model, from which arose
the necessity to develop a numerical integration method to compute the wall-pressure
spectrum. Their approach was later taken up by Remmler et al. (2010), who used a
RANS flow solution to provide flow input data to the model. Peltier & Hambric (2007)
and Slama et al. (2018) coupled the space-domain solution of the Poisson equation with
steady-state flow simulations. These different approaches will be discussed in the first
part of this paper. Unlike the previous authors, Parchen (1998) developed a prediction
method based on an approximate solution of the Poisson equation, following the theory
developed by Blake (1986), which gave rise to the so-called TNO-Blake family of models,
(see Kamruzzaman et al. 2012; Bertagnolio et al. 2014; Stalnov et al. 2016; Fischer
et al. 2017). The difference between the exact and the approximate solutions in terms of
accuracy of the predicted spectrum will be discussed as well in this work. The purpose is to
provide the most comprehensive analytical approach to the prediction of the wall-pressure
PSD, unifying all other approaches in a common framework. In particular, it will be shown
that the fundamental problem consists of the representation of the two-point statistics of
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the turbulent velocity across the boundary layer, taking into account inhomogeneity and
anisotropy effects. The application case selected for this study is a controlled-diffusion
aerofoil at a free-stream Mach number of M = 0.05 and a chord based Reynolds number
of Rec = 1.5 × 105, which presents an equilibrium turbulent boundary layer with an
adverse pressure gradient on its suction side. This also represents an improvement, since
most currently used models are calibrated on zero-pressure-gradient boundary layers (see
Slama et al. 2018). Turbulence and wall-pressure statistics are extracted from a state-of-
the-art DNS in order to validate the different steps in the construction of the model. Flow
and wall-pressure statistics extracted from the DNS are compared for validation with
measurements performed in the anechoic wind tunnel of the Université de Sherbrooke.

The computation of wall-pressure spectra with formulations based on the Poisson
equation may present difficulties from the numerical point of view due to the presence
of multi-dimensional integrals. For this reason, the last section of this work presents a
Monte Carlo integration technique which can tackle this problem efficiently and at a low
computational cost.

3. Differential equation formulation

3.1. Poisson equation solution

The Poisson equation governing the pressure fluctuations in a turbulent boundary
layer derives from the divergence of the incompressible momentum equation, introducing
Reynolds decomposition into mean and fluctuating quantities, then subtracting the time-
averaged equation. As a result, the Laplacian of pressure fluctuations is equal to the sum
of two source terms,

1

ρ
∇2 p = −2

∂uj
∂xi

∂Ui
∂xj︸ ︷︷ ︸

turbulence-mean shear

− ∂2

∂xi∂xj
(uiuj − uiuj)︸ ︷︷ ︸

turbulence-turbulence

. (3.1)

where i, j = 1, 2, 3, with 1 the streamwise, 2 the wall-normal and 3 the transverse
direction. According to equation (3.1) the pressure fluctuation, p, can be considered
as generated by two separate mechanisms (see the review by Gerolymos et al. (2013)).
One mechanism is the turbulence-mean shear interaction, expressing the fact that the
corresponding pressure fluctuations react immediately to a change of the mean flow
gradient and are linear with respect to velocity fluctuations. The other mechanism is the
nonlinear interaction of different components of the velocity fluctuations, which is not
immediately affected by a change in mean flow gradient. Equation (3.1) is solved with
the Dirichlet boundary condition

lim
x2→∞

p = 0, (3.2)

whereby the pressure fluctuation vanishes at an infinite distance from the wall and
the overall pressure tends to its mean free-stream value, and the Neumann boundary
condition

∂p

∂x2

∣∣∣
x2=0

= 0 (3.3)

following from the rigid wall assumption. The space-domain solution of equation (3.1) is
expressed within a Green’s function approach as

1

ρ
p(x, t) =

∫
x′
−
[
2
∂

∂xi

(
∂Ui
∂xj

uj

)
G(x,x′) +

∂2

∂xi∂xj
(uiuj − uiuj) G(x,x′)

]
dx′

(3.4)



6 G. Grasso, P. Jaiswal, H. Wu, S. Moreau, M. Roger

where the function

G(x,x′) = − 1

2π

1

‖x− x′‖
(3.5)

satisfies the boundary conditions for an impulse source. The partial derivatives applied
to the velocity variables in equation (3.4) can be transferred to the Green’s function by
repeated applications of integration by parts and of the divergence theorem, yielding the
equivalent formulations

1

ρ
p(x, t) =

∫
x′
−
[
2

(
∂Ui
∂xj

uj

)
∂G(x,x′)

∂xi
+

∂

∂xi
(uiuj − uiuj)

∂G(x,x′)

∂xj

]
dx′ (3.6)

and

1

ρ
p(x, t) =

∫
x′
−
[
2

(
∂Ui
∂xj

uj

)
∂G(x,x′)

∂xi
+ (uiuj − uiuj)

∂2G(x,x′)

∂xi∂xj

]
dx′ (3.7)

where

∂G(x,x′)

∂xi
=

1

2π

‖xi − x′i‖
‖x− x′‖3

(3.8)

and

∂2G(x,x′)

∂xi∂xj
=

1

2π

[
δij

‖x− x′‖3
− 3
‖(xi − x′i)(xj − x′j)‖

‖x− x′‖5

]
. (3.9)

Equations (3.4), (3.6) and (3.7) are mathematically equivalent, so the choice is motivated
by considerations of numerical stability of the integration algorithm. Peltier & Hambric
(2007) and Slama et al. (2018) selected equation (3.7). However, Hu et al. (2017)
argued that equation (3.6) provides the best numerical realisation of the turbulence-
turbulence interaction contribution. In any case, the space-domain approach prescribes
a three-dimensional integral for the computation of p, whereby the cross-correlation of
wall-pressure fluctuations corresponds to a six-dimensional integral, which must still be
Fourier transformed numerically to obtain the wavenumber-frequency spectrum that is
needed in acoustic predictions. Performing these numerical integrations with limited time
and computational resources would inevitably lead to a loss of accuracy. For this reason,
it is preferable to derive an analytical solution for the unsteady pressure directly in the
wavenumber domain.

3.2. Modified Helmholtz equation

3.2.1. Turbulence-mean shear interaction term

In this section, the wavenumber-domain expression of the unsteady pressure at the wall
is derived assuming that the only significant contribution is given by the turbulence-mean
shear interaction component. This approach has its roots in the analytical considerations
of Kraichnan (1956a) and Hodgson (1961). More recently, however, Slama et al. (2018)
argued that the two components have the same order of magnitude, based on the
numerical integration of equation (3.7). The derivation of a wavenumber solution for
the turbulence-turbulence interaction term is more cumbersome and requires a set of
more restrictive hypotheses in order to get a simple closed-form formulation. For this
reason, the turbulence-turbulence interaction component will be presented separately in
section 3.4.

Assuming homogeneous turbulence in planes parallel to the wall, equation (3.1) can
be Fourier transformed in space in the (x1, x3) directions, yielding the following modified
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Helmholtz equation:

∂2p̂(k, x2)

∂x22
− k2 p̂(k, x2) = −2 ρ i ki

∂Ui
∂xj

ûj(k, x2) (3.10)

where the following convention for the Fourier transform is adopted:

p̂(k, x2) =
1

4π2

∫∫ +∞

−∞
p(x) e−i(k1x1+k3x3)dx1 dx3 (3.11)

Q̂(k, x2) =
1

4π2

∫∫ +∞

−∞
Q(x) e−i(k1x1+k3x3)dx1 dx3. (3.12)

Furthermore, assuming that the only non-vanishing mean velocity gradient is that of the
streamwise component, U1, in the wall-normal direction, x2, the source term is reduced
to

∂2p̂(k, x2)

∂x22
− k2 p̂(k, x2) = −2 ρ i k1

∂U1

∂x2
û2(k, x2). (3.13)

It is demonstrated in Appendix A that the wavenumber-domain solution for the pressure
at the wall is

p̂(k, x2 = 0) = 2 i ρ
k1
k

∫ ∞
0

∂U1(X2)

∂x2
û2(k, X2)e−kX2dX2. (3.14)

The PSD of wall-pressure fluctuations is equal to the ensemble average of the product of
equation (3.14) by its complex conjugate,

ϕTMpp (k) =4ρ20

∫
k′

∫∫ ∞
0

k21
k2

e−(X2+X
′
2)k

∂U1(X2)

∂x2

∂U1(X ′2)

∂x2

× 〈û2(k, X2)û∗2(k′, X ′2)〉dX2 dX ′2 dk′. (3.15)

The ensemble average of vertical velocity fluctuations appearing in equation (3.15) can
be expressed as

〈û2(k, X2)û∗2(k′, X ′2)〉 = ϕ22(k, X2, X
′
2) δ(k − k′) (3.16)

by virtue of the statistical orthogonality of turbulence wavevectors (see Bailly & Comte-
Bellot 2015). Finally, substituting equation (3.16) in equation (3.15) and integrating over
dk′ yields

ϕTMpp (k) = 4ρ20

∫∫ ∞
0

k21
k2

e−(X2+X
′
2)k

∂U1(X2)

∂x2

∂U1(X ′2)

∂x2
ϕ22 dX2 dX ′2. (3.17)

The main point in equation (3.17) is the correct analytical representation of the vertical
velocity fluctuation cross-spectral density, ϕ22. The remaining terms, namely the mean
velocity gradient and the vertical velocity root-mean-square (r.m.s.), are relatively easier
to calculate. They can be obtained from empirical models, as in Panton & Linebarger
(1974), from hot-wire measurements, or from steady-state simulations, as in Remmler
et al. (2010). Although the time variable has been omitted in the derivation of the
solution of the modified Helmholtz equation, it is understood that the variable p̂ is
dependent on time. The wavenumber spectrum of equation (3.17) can be converted to a
frequency spectrum first by integrating over the k3 wavenumber and then by adopting
Taylor’s hypothesis (see Taylor 1938) of frozen convection of the turbulent eddies in the
flow direction. Assuming constant convection speed of wall-pressure fluctuations, Uc, in a
close range around the point where the frequency spectrum is sought, the sole streamwise
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wavenumber contributing to a given radian frequency, ω, is Kc = ω/Uc. Therefore, the
frequency spectrum of wall-pressure fluctuations is

ϕpp(ω) =

∫ +∞
−∞ ϕTMpp (Kc, k3) dk3

Uc
. (3.18)

3.3. Turbulence modelling

The analytical expression of the cross-spectral density of vertical velocity fluctuations,
which closes equation (3.17), is based on a theory of isotropic turbulence which, following
Panton & Linebarger (1974), is modified in two ways. In the first place, the integral
length scale, Λ, is allowed to vary according to the distance from the wall. Secondly, the
stretching of the turbulent structures in the flow direction is taken into account with a
coefficient α representing the ratio of streamwise to transverse integral length scales (see
also Schlinker & Amiet 1981). The cross-spectral density of anisotropic turbulence, ϕNI22 ,
is related to the isotropic spectrum, ϕI22, as

ϕNI22 (k1, k3, x2, x
′
2) = αϕI22(αk1, k3, x2, x

′
2). (3.19)

The ratio of length scales, α, varies across the boundary layer with the distance from
the wall, x2. Remmler et al. (2010) postulate the existence of a function relating each
wavenumber k1 to a given value of α. However, the wall-pressure PSD at a given
wavenumber k1 results from a double integration over the distance from the wall (equa-
tion (3.17)) so that the result at each k1 does not depend on a single value of α, but
rather on the variation of α with x2.

A characteristic of boundary-layer turbulence that is not included in this model is the
45o orientation of the vorticity vectors due to mean straining, the effect of which was
deemed by Kraichnan (1956b) negligible with respect to that of length scale anisotropy.
However, this aspect has been taken into account in the models of Peltier & Hambric
(2007) and Slama et al. (2018).

The expression of ϕI22 follows from the choice of the analytical expression of the longi-
tudinal correlation function of turbulence, F (r) (see equations (B 13) and (B 17)). Two
analytical expressions are considered in this work: the Gaussian and the generalised von
Kármán function described in the following. The complete derivation of the corresponding
cross-spectral density expressions can be found in Appendix B.

3.3.1. Gaussian energy spectrum

The Gaussian longitudinal correlation function is defined as

F (r) = exp

(
− r

2

L2

)
(3.20)

with the characteristic length

L =
2√
π
Λ, (3.21)

complying with the definition of Λ given in equation (B 3). The corresponding cross-
spectral density of vertical velocity fluctuations is

ϕ22 (k, x2, x
′
2) =

√
u22(x2)u22(x′2)L4

16π
k2 exp

(
−L

2 k2

4
− (x2 − x′2)2

L2

)
. (3.22)

This is possibly the simplest mathematical formulation available in the literature. How-
ever, its accuracy has been questioned already by Panton & Linebarger (1974) and, more
recently, by Kamruzzaman et al. (2011), for instance.
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3.3.2. Generalised von Kármán energy spectrum

The generalised von Kármán correlation function is defined by Wilson (1997) as

F (r) =
1

2ν−1 Γ(ν)

(r
l

)ν
Kν

(r
l

)
(3.23)

with the characteristic length

l =
Γ(ν)√

π Γ(ν + 1/2)
Λ. (3.24)

The corresponding cross-spectral density of vertical velocity fluctuations is

ϕ22 (k, x2, x
′
2) =

√
u22(x2)u22(x′2) l2 k̃2 ζν+2

Γ(ν)π 2ν+1
(

1 + k̃2
)ν+2 Kν+2(ζ) (3.25)

with the parameter

ζ =
‖x2 − x′2‖

l

√
1 + l2k2. (3.26)

The limit of equation (3.25) for x2 → x′2 is the generalised auto-spectrum,

ϕa22 (k, x2) =
ν(ν + 1)u22(x2) l4 k2

π(1 + l2k2)ν+2
. (3.27)

This formulation is particularly interesting for its flexibility: different values of the
parameter ν represent some of the most widely used turbulence models. Firstly, ν = 1/3
corresponds to the original model of von Kármán (1948). This turbulence model is also
at the core of the TNO-Blake family of models, as will be discussed in the next section.

It can be easily verified that, for ν = 1/2, equation (3.23) corresponds to

F (r) = exp
(
− r
Λ

)
. (3.28)

This exponential longitudinal correlation function is the basis of Liepmann’s turbulence
model (see Liepmann et al. 1951). Interestingly, also Panton & Linebarger (1974) develop
their formulation of the cross-spectral density of vertical velocity fluctuations from equa-
tion (3.28). However, instead of simply using equation (3.25) with ν = 1/2, they chose
to formulate ϕ22 as a double integral (see equation (B 10)). As a result, equation (3.18)
becomes a five-dimensional integral, which can be more challenging from a numerical
point of view. A possible method for the fast and accurate integration of this kind of
high-dimensional formulation is presented in Section 6.

Finally, for ν = 7/6 the generalised formulation corresponds to the rapid distortion
theory (RDT) proposed by Hunt (1973). Although this model was originally developed
to account for the modification of the energy spectrum when homogeneous turbulent
structures are distorted and elongated by impingement on a bluff body, it has recently
been applied by Goldstein et al. (2017) to the study of the noise scattered by the
trailing edge of a flat plate interacting with a jet parallel to its surface. Furthermore,
the hypothesis that the turbulence-turbulence interaction is negligible with respect to
turbulence-mean shear interaction is at the basis of RDT as well (see Bailly & Comte-
Bellot 2015). It has been suggested by Christophe (2011) that the RDT formulation may
be more accurate than the classical von Kármán spectrum in the low-wavenumber range
(see also De Santana et al. 2016). In his dissertation de la Riva (2001) has also shown
the capabilities of RDT in predicting the development of turbulence convected through a



10 G. Grasso, P. Jaiswal, H. Wu, S. Moreau, M. Roger

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

r/Λ

F
(r

)

von Kármán
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Figure 1. Analytical longitudinal correlation functions.

highly staggered cascade propulsor configuration formed by non-symmetric aerofoils (see
also de la Riva et al. 2004).

The longitudinal correlation functions presented in this section are depicted in figure 1.
The correlation curves tend to drop faster to zero going from the Gaussian to the von
Kármán function. Furthermore, according to equation (B 3), the integral of every curve
for r going from zero to infinity is equal to Λ, so that the curves that go faster to zero
show higher correlation values for small r.

3.3.3. TNO-Blake model

The family of TNO-Blake models makes use of the von Kármán turbulence spectrum
in order to compute the wall-pressure spectrum. However, the original TNO-Blake model
(see Parchen 1998; Bertagnolio et al. 2014) approximates the cross-spectrum of vertical
velocity fluctuations as

ϕ22(k1, x2, x
′
2, k3) ≈ L2(x2)ϕa22(k1, x2, k3) δ(x2 − x′2)Φm(ω − Uc(x2)k1) (3.29)

where L2(x2) is a vertical correlation length scale, and Φm is the so-called moving-axis
spectrum, representing the contribution of the wavenumber k1 to a given frequency ω.
In most cases, Taylor’s hypothesis is applied and the moving-axis spectrum is expressed
as

Φm(ω − Uc(x2)k1) = δ(ω − Uc(x2)k1). (3.30)

The fundamental assumption behind the development of equation (3.29) is that

R22(r1, x2, x
′
2, r3) = 0 for x2 6= x′2 (3.31)

which can be hardly justified from a physical point of view. In fact, as will be shown
later in section 5.3, the vertical velocity cross-correlation coefficient is not negligible
over a vertical distance corresponding to at least two integral length scales. For this
reason, Fischer et al. (2017) presented an improved version of the TNO-Blake model
which corresponds to the substitution of the exact equation (3.25) (with ν = 1/3)
in equation (3.17). However, this hypothesis has the only advantage of reducing the
number of dimensions of integration of the wall-pressure spectrum formulation. Then,
the substitution of equations (3.29) and (3.30) in (3.17) yields the wavenumber wall-
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Authors β1 β2 β3

Bertagnolio et al. (2014) 0.4 γ
1/5
P

√
2γP

Stalnov et al. (2016) 1.0 0.5 0.75
Fischer et al. (2017) 1.0 0.74 0.9

Table 2. Values of of the anisotropy parameters βi according to different Authors.

pressure spectrum,

ϕpp(ω/Uc, k3) ≈ 8 ρ20

∫ ∞
0

k21
k21 + k23

e−2
√
k21+k

2
3 X2

(
∂U1(x2)

∂X2

)2

L2(X2)ϕa22(k1, X2, k3) dX2.

(3.32)
Finally, assuming equation (3.30), the corresponding frequency spectrum is calculated
by coupling equation (3.32) with equation (3.18).

The treatment of the anisotropy of turbulence length scales in the TNO-Blake family
of models is similar to that presented in equation (3.19). However, in this case there are
three coefficients, representing the anisotropy of the length scales in the streamwise and
transverse directions, respectively. The anisotropic three-dimensional auto-spectrum of
vertical velocity fluctuations is

ϕa,NI22 (k1, k2, k3) = β1 β2 β3 ϕ
a,I
22 (β1k1, β2k2, β3k3). (3.33)

Integrating the previous equation in dk2 yields the two-dimensional auto-spectrum used
in equation (3.29)

ϕa,NI22 (k1, k3) = β1 β3 ϕ
a,I
22 (β1k1, β3k3). (3.34)

Various values for these coefficients have been proposed over time, as can be seen in
table 2. The reason for the discrepancy in the values is that each set of parameters
has been tuned empirically to a different experimental database. It can be noticed that
Bertagnolio et al. (2014) expressed the vertical and transverse anisotropy coefficients as
a function of the free-stream pressure gradient parameter

γP =
δ

uτ

[
dP/dx1
ρ0µ

]
(3.35)

where dP/dx1 is the gradient of the mean wall static pressure with respect to the abscissa
along the aerofoil suction side. However, this dependence has been dropped in the later
work of Fischer et al. (2017). None of the sets of coefficients presented in table 2 takes
into account the variation of the anisotropy characteristics with the distance from the
wall, a fact that is not negligible as will be shown in section 5.3.

The original TNO-Blake model is also characterised by the fact that the only flow
quantity extracted from computational fluid dynamics (CFD) data is the mean shear,
whereas the other quantities are defined with analytic expressions. These expressions can
be found in Kamruzzaman et al. (2012) and are here summarised. The vertical component
of turbulent kinetic energy is

u22 = α0 kT (3.36)

where α0 = 0.45 on the suction side of an aerofoil and 0.35 on the pressure side. The
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turbulent kinetic energy is modelled as a function of the mean shear

kT =

√(
l2mix

∣∣∣∂U1

∂x2

∣∣∣ ∂U1

∂x2

)2
0.3

(3.37)

and

lmix = 0.085 δ tanh

(
0.41x2
0.085 δ

)
. (3.38)

In the last equation, the coefficient 0.41 is the von Kármán constant. Finally, the integral
length scale is

Λ =
lmix
0.41

. (3.39)

Equation (3.39) is used as an approximation of the vertical velocity correlation length
L2(x2).

3.4. A model of the turbulence-turbulence interaction wall-pressure spectrum

The derivation of a wavenumber-domain solution of the unsteady pressure generated
by the turbulence-turbulence interaction source term, originally proposed by Hodgson
(1961), is thoroughly reviewed and amended in some points in appendix C. In this section
only the main hypotheses and the final expression are briefly recalled, referring to the
Appendix for further considerations. The following assumptions are made:

(i) joint normal probability distribution of the turbulence at any two points across
the boundary layer;

(ii) isotropic distribution of the turbulent kinetic energy in the three spatial coordi-
nates

u2i (x2) = u2(x2) =
2

3
kT (x2); (3.40)

(iii) cross-spectral density of velocity fluctuations having a Gaussian distribution in the
wavenumber plane, k:

ϕij(x2, x
′
2,k) =

u2(x2)

16π
L4 (k2δij − kikj) e−κ

2L2/4 F2 (3.41)

where F2 represents the vertical velocity correlation function: it can be assumed as
Gaussian (equation (C 29)) or an exponential function (equation (C 30));

(iv) negligible contribution of turbulence cross-spectral densities such that ϕi2, i ∈
{1, 3}.
Appendix C then shows that the following expression of the turbulence-turbulence wall-
pressure PSD can be derived

ϕTTpp (k) =
ρ20 L

2

128π

∫∫ ∞
0

u2(X2)u2(X ′2) e−k(X2+X
′
2) F2

2 dX2dX ′2

× k2 (28 + L2k2) e−L
2k2/8. (3.42)

Equation (3.42) can be easily integrated with any numerical technique, being a two-
dimensional integral. From this point of view, it can be compared with equations (3.4) to
(3.7). In fact, Peltier & Hambric (2007) and Slama et al. (2018) also made the assumption
of a joint normal probability distribution of turbulence in order to treat the turbulence-
mean shear and turbulence-turbulence interaction terms separately. Consequently, multi-
plying equation (3.7) by its complex conjugate in order to get the wall-pressure correlation
coefficient yields a six-dimensional integral which must still be Fourier transformed in
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two dimensions in order to get the wavenumber PSD. However, the solution proposed in
this section is derived at the price of some restrictive assumptions and should be seen
as a means to better understand the relative importance of the two wall-pressure source
components.

4. Heuristic investigation of the influence of the turbulent kinetic
energy distribution

The previous section has highlighted the fact that the distribution of turbulent kinetic
energy over the wavenumber spectrum can be represented by various analytical expres-
sions. For this reason, the shape of a predicted wall-pressure PSD not only depends
on the mean velocity and the r.m.s. vertical fluctuation profiles of the corresponding
boundary layer, but also on the prescribed functional representation of the cross-spectrum
of vertical fluctuations. The aim of this section is to make some heuristic considerations
on the latter effect by using a simplified model of the boundary-layer profiles over a flat
plate without a pressure gradient. This model, proposed by Kraichnan (1956b), assumes
that the turbulent kinetic energy is constant in the vertical direction and that it is
isotropic along the three axes, so that the r.m.s. velocity is

u22(x2) = u2. (4.1)

Furthermore, the mean streamwise velocity gradient is assumed to decay exponentially
with the wall-normal direction:

∂U1

∂x2
=
τw
µ

e−γx2 . (4.2)

Kraichnan found that equation (4.2) is a fair approximation of the derivative of the
logarithmic law of the wall if the parameter γ is of the order of magnitude of the inverse
longitudinal integral length scale, Λ. This is admittedly a highly artificial flow model and
serves only as a first approximation towards the understanding of a real boundary layer,
as the one treated in section 5, and its main advantage is merely its analytical simplicity.
However, it will allow us to make some important considerations on the relationship
between the model of turbulence statistics and the shape of the corresponding wall-
pressure spectrum. For this purpose, all turbulence models discussed in section 3.3 will be
used. In particular, the mathematical properties of the Gaussian and Liepmann models
allow us to carry out analytically the integrations of equation (3.17). To begin with
the Gaussian spectrum, substituting equations (3.22), (4.1), (4.2) in equation (3.17) and
integrating with respect to X2 and X ′2 yields the following idealised wall-pressure spectral
distribution:

ϕ(k)TMpp =
ρ20τ

2
wu

2L5

8
√
πµ2

k21
k + γ

e
L2

4 ((k+γ)2−k2)erfc

(
L(k + γ)

2

)
(4.3)

(see Appendix D.1 for the derivation).
Similarly, the substitution of equation (3.25) (with ν = 1/2) and of equations (4.1)

and (4.2) in equation (3.17) yields

ϕ(k)TMpp =
ρ20τ

2
wu

2Λ5

πµ2

k21
k + γ

8(1 + k2Λ2) + 9 (k + γ)Λ
√

1 + k2Λ2 + 3 (k + γ)2Λ2

(1 + k2Λ2)(5/2)
(
(k + γ)Λ+

√
1 + k2Λ2

)3 (4.4)

(which is derived in Appendix D.2). Equations (4.3) and (4.4) provide direct, if ap-
proximate, expressions of the wall-pressure energy distribution among the wavenumber
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spectrum which are a direct consequence of the respective assumptions on the energy
distribution of the boundary-layer turbulence.

4.1. Comparison with Goody’s model

The empirical model developed by Goody (2004) represents the basic physical features
of a wall-pressure spectrum under a zero-pressure-gradient turbulent boundary layer. At
the lower frequencies, which are dominated by larger-scale turbulent structures present
in the outer part of the boundary layer, the spectrum rises as ω2. The ω−0.7 decay
corresponds to an overlap region that collapses with both inner and outer boundary-
layer scaling parameters (see Goody 2004). It has been argued that this region of the
spectrum is mostly influenced by the physics of the log layer (see Bradshaw 1967). Finally,
the wall-pressure spectrum decays as ω−5 for ω →∞ (see also Moreau & Roger 2005, p.
49). These trends are represented in the equation

ϕpp(ω)U0

τ2w δ
=

3.0
(
ω δ
U0

)2
[(

ω δ
U0

)0.75
+ 0.5

]3.7
+
[
(1.1R−0.57T ) ω δU0

]7 (4.5)

where

RT =

(
uτδ

ν

)√
Cf
2

represents the ratio of the outer layer to inner layer time scales. It can be noticed that
the use of inner and outer boundary layer parameters for normalisation provides a better
overlap of different experimental curves over the whole frequency range (see Keith et al.
1992; Cipolla & Keith 2000; Goody 2004).

Equation (4.5) is compared with the distributions produced by the turbulence models
of section 3.3, following the assumption that the main contribution to the wall-pressure
spectrum is that of the turbulence-mean shear interaction. The results are depicted in
figure 2. The Gaussian and Liepmann curves are obtained by means of equations (4.3) and
(4.4), respectively. The wavenumber spectra given by these equations are transformed
into frequency spectra by integrating numerically equation (3.18). The von Kármán and
RDT curves are obtained by numerical integration of equations (3.17) and (3.18) in
the X2, X ′2 and k3 variables. The following parameters, representative of a subsonic
turbulent boundary layer at M = 0.2 and Rec = 5.85× 105, have been used: RT = 31.7,
U0 = 68.0 m/s, U0/Uc = 1.25, u2 = 4.16 m2/s2, δ = 3.38 · 10−3 m, Λ = 0.473 · 10−3 m,
γ = 1/(2Λ),τw = 11.8 Pa, µ = 1.825 × 10−5 kg/m · s and ρ0 = 1.204 kg/m3. The
results show that all turbulence models considered in this study are able to represent the
quadratic rise of the wall-pressure PSD at low frequencies. In particular, the Liepmann
and von Kármán curves are quite close to Goody’s in that range. Concerning the high-
frequency range, only the Liepmann and von Kármán curves show a decay close to ω−5,
whereas the Gaussian curve drops much faster. Also the RDT curve drops slightly faster
than the Liepmann and von Kármán ones. The ω−5 slope has been predicted theoretically
by Blake (1986), who attributed it to the dominating influence of the viscous sub-layer.
This is consistent with the fact that the Gaussian turbulence spectrum represents only
large-scale turbulence structures, whereas the three turbulence spectral models classified
under the generalised von Kármán spectrum take into account also the energy contained
in the finer-scale structures such as those present in the viscous sub-layer. It is thus shown
that the mere knowledge of the wavenumber distribution of turbulent kinetic energy,
with only a simplified model of the boundary-layer mean and r.m.s. velocity profiles,
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Figure 2. Comparison of Goody’s normalised wall-pressure frequency spectrum with the
idealised spectral distribution derived from the Gaussian and Liepmann turbulence models.

is sufficient to justify the low-frequency and high-frequency slopes of the wall-pressure
spectrum observed experimentally. On the contrary, the ω−0.7 slope of the overlap region
cannot be retrieved by analytical considerations alone, at least not without a realistic
model of the boundary-layer velocity profiles.

4.2. Effect on the mean-square wall pressure due to turbulence-mean shear interaction

The mean-square wall pressure due to the turbulence-mean shear interaction is defined
as the integral of the wall-pressure PSD over the wavenumber spectrum

〈p2〉TM =

∫
k

ϕTMpp (k) dk. (4.6)

This integration can be performed analytically in order to understand how a given
formulation of ϕ22 influences the predicted mean-square wall pressure, which is in turn
directly proportional to the overall noise emitted by the trailing edge of an aerofoil, for
instance. However, analytical solutions can be obtained only at the price of a further
simplification, that is imposing γ = 0. In this case, the mean shear would be constant
across the boundary layer and the mean velocity profile would be linear. This is then
representative only of the physics of the laminar sublayer of a turbulent boundary
layer. The application of equation (4.6) to the Gaussian-based wall-pressure spectrum of
equation (4.3) yields

〈p2〉TM =
1

3

ρ20τ
2
wu

2L2

µ2
. (4.7)

Similarly, the integration of the Liepmann-based wall-pressure spectrum of equation (4.4)
yields

〈p2〉TM =
2

3

ρ20τ
2
wu

2Λ2

µ2
. (4.8)

It is thus verified that the flattening of the longitudinal correlation function of turbulence
from a Gaussian to an exponential curve (see figure 1) makes the turbulence-mean shear
interaction component of the mean-square wall pressure increase by a factor 2, within
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the assumptions of the simplified boundary-layer model and assuming that the length
scales of the two turbulence models are equal. The same result was derived by Kraichnan
(1956a) by integration of the wall-pressure correlation coefficient in the space domain.
The study of a real boundary layer presented in section 5 will allow us to understand if
this relationship between longitudinal correlation function and mean-square wall pressure
holds also in the case of a real boundary layer.

4.3. Application to the turbulence-turbulence interaction component

Equation (3.42) can be integrated analytically in order to estimate the order of
magnitude of the mean-square wall pressure due to the turbulence-turbulence source
term of the Poisson equation. For illustrative purposes, the mean-square velocity u2 is
considered constant in the x2 direction. The result then depends on the choice of the F2

function. If the Gaussian function of equation (C 29) is substituted in equation (3.42)
and the resulting formulation is integrated with respect to X2 and X ′2, one obtains

ϕTTpp (k) =

√
2πρ20 L

3u2
2

512π
k (28 + L2k2) erfc

(√
2

4
kL

)
. (4.9)

This result is obtained with a procedure similar to that described in Appendix D.1. Then,
the integration of equation (4.9) with respect to dk yields

〈p2〉TT =
47

30
ρ20u

2
2
≈ 1.57ρ20u

2
2
. (4.10)

If, on the contrary, the exponential function of equation (C 30) is substituted in equa-
tion (3.42), one obtains

ϕTTpp (k) =
ρ20 L

2

128π

∫∫ ∞
0

u2(X2)u2(X ′2) e−k(X2+X
′
2) e−|X2−X′

2|/L dX2dX ′2

× k2 (28 + L2k2) e−L
2k2/8. (4.11)

In this case, the integral in dX2 dX ′2 is solved by using the variable transformation
Y2 = X ′2 −X2 that yields∫ ∞

0

e−kX2 dX2

∫ ∞
0

e−kX
′
2 dX ′2 e−2|X2−X′

2|/L

=

∫ ∞
0

e−2kX2

(∫ ∞
−X2

e−kY2e−2|Y2|/LdY2

)
dX2 =

L

k(Lk + 2)
(4.12)

for Lk 6= −2 (which is always verified because L and k are positive by definition). Then,
substituting equation (4.12) in (3.42) leads to

ϕTTpp (k) =
ρ0 L

3 u2
2

128π

k (28 + L2k2)

(Lk + 2)
e−L

2k2/8 (4.13)

which corresponds to Hodgson’s equation (B.16) except that the present coefficient 28
appears as 22 in the manuscript, which is most likely a typewriting error. Finally, the
integration of equation (4.13) with respect to dk yields

〈p2〉TT ≈ 1.22 ρ20u
2
2
. (4.14)

These considerations based on a simplified boundary-layer model suggest that the shape
of the vertical correlation function does not alter significantly the mean-square wall
pressure for constant u2. Again, the application of the turbulence-turbulence interaction
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theory to the DNS data presented in section 5.6 will allow us to assess the validity of
this result in case of a real boundary layer. It can also be noticed that the turbulence-
turbulence mean-square wall pressure does not depend on the integral length scale,
unlike the analogous expressions derived for the turbulence-mean shear component in
section 4.2.

5. Comparison of the models with direct numerical simulation and
measurements of the flow over a controlled-diffusion aerofoil

5.1. Wall-pressure measurements

Measurements of the surface-pressure fluctuations on a controlled-diffusion (CD) aero-
foil were performed in the anechoic open-jet wind tunnel at Université de Sherbrooke (see
Padois et al. (2015) for an assessment of the capabilities of this facility for aeroacoustic
investigations). The CD aerofoil is instrumented with remote microphone probes (RMP)
on the suction side (see Moreau & Roger 2005). The RMPs are positioned along the
streamwise and spanwise directions, as can be seen in figure 3. Each probe comprises a
Knowles FG 23329 P07 microphone remotely connected via a T junction to a pinhole
of diameter of 0.5 mm on the suction side of the aerofoil and to a 2 m long anechoic
termination on the other end to damp end reflections and avoid resonances (see for more
details Perennes & Roger 1998). This microphone has a flat response in the frequency
range of 100 Hz to 10 kHz. For the calibration of the microphones a TMS microphone
(130P10 ICP) with a diaphragm diameter equal to 6.35 mm was used. It is known to have
a flat response in the frequency range of 100 Hz to 20 kHz. The TMS microphone was
calibrated using a Larson Davis 200 calibrator which has an uncertainty of approximately
±0.2 dB. The data were acquired using a NI 9234 module with a 24 bit resolution. The
acquisition frequency was of 25600 Hz and the length of the signals was 30 s. Since the
actual probes were not flush mounted but instead were placed at a remote location,
this leads to attenuation of the surface pressure registered at the remote location. This
attenuation can be attributed both to a change in section of the connecting tubes and the
finite length of the tubing. Hence the actual signal measured by the remote microphone
has an attenuated amplitude and is phase shifted. To account for these effects an in situ
calibration procedure was realised.

Lastly, it should be kept in mind that, due to the finite size of the pinhole, some spatial
averaging is anticipated especially at higher frequencies. Gravante et al. (1998) performed
a set of wall-pressure measurements with pinhole microphones of several diameters and
showed that spectral attenuation can be avoided until f+ = 1 if 12.0 < d+ < 18.0 ,
where f+ = f νT /u

2
τ and d+ = d uτ/νT are the frequency of interest and diameter of the

pinhole respectively, both normalised by wall units. It was also shown that the diameter
of the pinhole has no influence on the mean-square wall pressure up to d+ = 27. Using
the friction velocity calculated from the DNS, the d+ for sensor 21 was estimated to be
equal to 26.0, whereas the d+ for sensor 24 was estimated to be equal to 22.2. Likewise,
f+ = 1 corresponds to f = 39.1 kHz for sensor 21 and to f = 28.6 kHz for sensor
24. However, since the measurement range for the Knowles FG 23329 P07 is restricted
to 10 kHz the attenuation effects are expected to be small. However, Roger (2017) has
shown with analytical considerations that the attenuation due to integration effects at
high frequencies depends on the statistical properties of the wall-pressure field to be
measured. Then, the DNS-based wall-pressure statistics could be used in the future to
understand better this effect.
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Figure 3. Distribution of wall-pressure sensors on the surface of the CD aerofoil.

5.2. DNS of the flow over the controlled-diffusion aerofoil

The three-dimensional DNS of the flow over the CD aerofoil is conducted using a multi-
block structured high-order accurate compressible Navier-Stokes solver (Sandberg 2015)
taking the mean installation effects (jet width) into account, as suggested by Moreau et al.
(2003). The volume data around the aerofoil were recorded during the simulation at a
sampling frequency of 78 kHz for 7 flow-through times based on the reference velocity
and aerofoil chord length, which was found enough to yield properly converged flow
statistics in previous LES and DNS on this aerofoil at this flow condition (see Wang
et al. 2009; Moreau et al. 2011; Wu et al. 2019). A fourth-order central standard-difference
scheme with Carpenter boundary stencils (Carpenter et al. 1999) is applied for the spatial
discretisation in the streamwise and cross-wise directions. A spectral method using the
FFTW3 library is used in the spanwise direction. Time marching is achieved by an
ultra-low-storage five-step fourth-order Runge–Kutta scheme (Kennedy et al. 1999) with
a constant time step of ∆t = 6.4 × 10−8 s. Characteristic-based boundary conditions
(described in Jones 2008; Jones et al. 2008; Sandberg & Sandham 2006)(see also Kim
& Lee 2003) are used for this simulation on domain boundaries to avoid unphysical
reflections (see for more details Wu et al. 2018). An adiabatic, no-slip condition is set
on the aerofoil surface. The grid refinement in the boundary layers is guided by the
data obtained from experiments (Moreau et al. 2003; Wu et al. 2016). In the spanwise
direction, 96 Fourier modes are employed with 100% de-aliasing, which corresponds to 194
collocation points in physical space. These points are distributed with equal distance over
a spanwise width of 12% of the aerofoil chord length and are shown to resolve properly
the Kolmogorov scale (see Wu et al. 2018, 2019). The O-grid around the boundary layer
comprises 3341×279×194 grid points, which give finally a grid resolution of∆x+1,ave ≈ 6.0,

∆x+2,ave ≈ 0.8, and ∆x+3,ave ≈ 5.5 based on the friction velocity. These average values are
calculated on the rear part of the aerofoil surface corresponding to 40% of the aerofoil
chord. Further details on the validation of the DNS can be found in Wu et al. (2019)
including turbulent kinetic energy budgets.

Mean velocity profiles extracted from the DNS data on the aerofoil surface and in the
wake compare favourably with hot-wire measurements performed in the anechoic wind
tunnel of the Université de Sherbrooke (UdeS) (see Wu et al. 2018, 2019). The calculated
pressure coefficient,

Cp =
p− p0

1/2 ρ0 U2
e

(5.1)

where p0 is the free-stream static pressure, is compared in figure 4(a) with wall-pressure
measurements taken in the same wind tunnel, which has a free-stream turbulence in-
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Sensor δ, [mm] τw, [Pa] Ue,
[
m s−1

]
21 4.6 0.686 18.0
24 5.4 0.505 17.3
26 6.4 0.341 16.9

Table 3. Parameters for the normalisation of frequency and wall-pressure PSD.

tensity below 0.4%. A laminar separation bubble can be observed at the leading edge,
whose extension is well captured by the DNS. The onset of an adverse pressure gradient
is visible on the rear half of the suction side. The development of the pressure gradient
on the suction side of the aerofoil is presented in figure 4(b) using the Clauser parameter,
defined as,

βC =
δ∗

τw

dP

dx1
. (5.2)

The pressure gradient with respect to the abscissa along the aerofoil, dP/dx1, increases
continuously from the mid-chord to the trailing edge.

The wall-pressure PSD calculated from the DNS results is compared in figure 5 with
the measured one at three pressure sensors on the suction side of the aerofoil close to the
trailing edge, namely sensor 21 (with βC = 5.01), sensor 24 (with βC = 6.28) and sensor
26 (with βC = 9.72). The boundary-layer parameters used for the normalisation of the
curves are summarised in table 3. The boundary-layer thickness corresponds to the x2
coordinate where the total pressure reaches 99% of its maximum constant value along
the wall-normal direction. The total pressure is used instead of the velocity because the
aerofoil is loaded and therefore the external flow is deflected so that the external velocity
is not constant. It can be noticed that at the lower frequencies the DNS spectrum is
slightly below the experimental one. This is due to the fact that, whereas the simulation
does not include the jet unsteadiness and acoustics, some significant effect from the jet is
inevitable in the experiment, which prevents us obtaining the theoretical positive slope in
the wall-pressure spectra.In the case of sensor 26, a high-frequency hump can be noticed,
which is attributed to the contamination from the acoustic sources in the wake of the
aerofoil. For this reason, the following analysis will focus on sensors 21 and 24 only.

Finally, figure 6 presents the boundary-layer profiles of mean streamwise velocity and
vertical r.m.s. fluctuation extracted from the DNS corresponding to sensors 21 and 24.
Both plots are normalised in wall units. The effect of the increase of βC from sensors 21 to
24 can be observed in the mean velocity plot of figure 6(a), particularly in the wake zone
of the boundary layer corresponding to x+2 > 100. Also the vertical r.m.s. fluctuation of
figure 6(b) is seen to increase with the Clauser parameter as expected.

5.3. Calculation of turbulence statistics

The DNS of the flow around the CD aerofoil is post-processed to gain information
on the statistics of turbulence that are part of the above analytical model for the
prediction of the wall-pressure spectrum. The wall-normal velocity correlation coefficient,
R22, is analysed. In fact, the cross-spectral density of wall-normal velocity fluctuations,
ϕ22, which appears in equation (3.17) is the double spatial Fourier transform of R22

(see equation (B 9)). The correlation coefficients calculated from the DNS results are
compared with the analytical formulations that are derived from a given longitudinal
correlation function, F (r), according to equation (B 6). This comparison assesses the
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accuracy of the analytical formulation of ϕI22. The R22 profiles discussed below are
extracted from planes parallel to the suction side of the CD aerofoil using seven flow-
through times for averaging. The results correspond to sensor 24. The same calculations
performed for sensor 21 are not reported here for brevity as they yield equivalent results.
The profiles are plotted versus the distance from the reference point, r, normalised
by the longitudinal integral length scale, Λ, calculated at each wall-normal position.
Furthermore, R22 is calculated for several streamwise, r1, and transverse r3 separations.
The curves of R22(r1) and R22(r3) nearly collapse if the coordinate r1 is divided by the
coefficient α that represents the ratio of streamwise to transverse longitudinal integral
length scales (see equation (3.19)).

Figure 7(a) shows the R22(r1) and R22(r3) profiles extracted from a plane at x+2 = 23.
In this case, it is sufficient to take α = 1.88 for the curves to coincide, at least for
small separations, r. The transverse correlation R22(r3) is higher than R22(r1) for
longer separations, whereas R22(r1) exhibits negative lobes. These facts point to the
presence of coherent turbulent structures elongated in the transverse direction (see
Sillero et al. 2014, figure 1). Wu et al. (2018) have shown that the onset of these
structures is related to the increase of the adverse pressure gradient and that also the
wall-pressure correlation coefficient increases in the transverse direction. In this case,
all analytical formulations seem to overestimate the numerical correlation coefficients.
Only the Liepmann formulation is in close agreement with the numerical curves for small
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values of r. The von Kármán formulation is not shown in this analysis as its results are
very close to that of Liepmann in all calculations.

Figure 8 presents the same analysis of the velocity fluctuations extracted from a
plane at x+2 = 65. The elongation of the turbulence structures farther away from the
wall is represented by the coefficient α = 1.55. In this case, the Gaussian formulation
overestimates the negative undershoots of the numerical curves. On the contrary both
the RDT and the Liepmann formulations give good approximations to the results. In
particular, the Liepmann curve is closer to the computed R22 for r < 1, whereas for
r > 1 the RDT curve is the closest.

Figure 9 refers to a plane at the outer edge of the boundary layer (x+2 = 165), with
α = 1.35. It can be noticed that the Gaussian theory (figure 7(b)) reproduces well the
negative parts of the curve of R22. Figures 7(c) and 7(d) compare the DNS curves with
the RDT and Liepmann formulations, respectively. In this case, the former analytical
formulation provides a slightly better representation of the numerical results than the
latter.

In the results presented so far it has been assumed that ∆x2 = 0. In order to complete
this analysis, the calculation of R22 between two planes parallel to the wall is now
presented. Figure 10 shows the correlation coefficient computed between the plane at
x+2 = 65 and a second plane parallel to the wall which has a normalised distance
∆x2/δ = 0.024 from the first. Due to the wall-normal separation, the maximum value of
R22, found at r1 = r3 = 0, is logically lower than unity. Visibly, the three analytical
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formulations predict differently the decay of R22 with ∆x2. In this case, the RDT
and Liepmann formulations are in better agreement with the numerical data than the
Gaussian. Finally, figure 11 presents the R22 coefficient calculated between the plane at
x+2 = 65 and another plane at ∆x2/δ = 0.05 from the first. It can be noticed that the
peak of R22(r1) corresponds to a r1 slightly below zero, whereas the plot of R22(r3) is
centred on r3 = 0. This is due to the fact that the velocity time series has been extracted
directly at the mesh cell centres, in order to avoid the numerical error introduced by
interpolation. The mesh follows the curvature of the aerofoil surface, so the cell centres
are not perfectly aligned in the wall-normal direction, whereas there is perfect alignment
in the transverse direction. It must be emphasised that if the fundamental assumption
of the TNO-Blake model, expressed in equation (3.31), was true, then the DNS-based
statistics presented in figures 10 and 11 would vanish for any r.

The decay of the maximum R22 with the increase of the vertical separation is plotted
in figure 12. The reference point for this calculation has been taken at roughly half
the boundary layer thickness for both sensors 21 and 24. The second point for the
calculation of the cross-correlation coefficient has been chosen moving upwards in the
vertical direction. As will be shown below, the longitudinal integral length scale of
turbulence is nearly constant in this region of the boundary layer. For this reason, it has
been possible to normalise the abscissa of figure 12 using the averaged Λ in the outer part
of the boundary layer. It can be observed that, especially for small separations, the RDT
is in best agreement with the DNS data corresponding to both sensors. For higher vertical
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separations, the DNS data are between the RDT and Liepmann theoretical curves. The
cross-correlation coefficient of vertical velocity fluctuations is significantly higher than
zero on a vertical extension corresponding to two integral length scales, thus further
contradicting equation (3.31).

The general conclusion that can be drawn from this study is that especially the RDT
and, secondly, the Liepmann models provide an acceptable description of the turbulence
statistics in this adverse-pressure-gradient boundary layer. The present result is also very
consistent with what Magnaudet (2003) found: the rapid distortion theory is the leading-
order approximation capable of describing short- and long-time evolutions of turbulent
boundary layers in the limit of large Reynolds number. In any case, all analytical
formulations of the cross-spectral density of wall-normal turbulent fluctuations, ϕ22, that
have been presented in section 3.3 will be applied to the prediction of the wall-pressure
spectra on the surface of the CD aerofoil in section 5.5. In this way, the relationship
between the shape of turbulence statistics and that of the corresponding wall-pressure
PSD will be assessed.
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In order to compute ϕ22 with any analytical formulation, it is necessary to know
the variation of the length scale Λ with the distance from the wall. This is depicted in
figure 13(a) corresponding to sensors 21 and 24, for which the wall-pressure spectrum
will be calculated. Since Λ is a quantity that is defined in the theory of homogeneous
turbulence (see, for instance Wilson (1997, 1998) and Appendix B), it should only be
calculated with respect to spatial directions in which the turbulence can be, to a good
approximation, considered homogeneous. In this case, the correlation of the streamwise
velocity component, R11, has been calculated as a function of the streamwise separation,
r1, on planes at given distances from the wall. According to equation (B 3), Λ is the
integral of this correlation function. Since the tail of the function tends to be noisy,
similarly to the R22 functions previously examined, R11 has been calculated over several
parallel streamwise lines and the results have been averaged in order to obtain a smooth
curve allowing a robust calculation of the integral. Interestingly, the plateau of Λ/δ
corresponds to a higher value than the classical 0.14 of Prandtl theory (see Panton &
Linebarger 1974). Figure 13(b) shows the trend of α along the wall-normal direction: the
length scales are equal (α = 1) for x2/δ > 0.8 corresponding to both pressure sensors.
Then, α slowly rises to 2.0 corresponding to x2/δ = 0.2 and reaches the value 3.0 at the
inner edge of the boundary layer, but only for sensor 24. Instead, the maximum α equals
2.5 corresponding to sensor 21. Yet, very similar variations are observed for these two
different adverse-pressure-gradient conditions.

5.4. Estimation of the convective speed of wall-pressure fluctuations

The wavenumber wall-pressure spectra predicted with equation (3.17) will be converted
into the frequency domain by using equation (3.18) for the sake of comparison with the
measured and directly computed spectra. For this purpose, it is necessary to define
the value of the convective speed of the wall-pressure fluctuations, Uc. This quantity
is, in principle, a function of the frequency. The empirical model of Uc developed by
Smol’yakov (2006) for zero-pressure-gradient boundary layers, however, predicts that
this quantity will tend to a constant value with the increase of ω. Salze et al. (2014) have
shown that this trend is also valid for adverse and favourable pressure gradients. The
reference measured and computed spectra correspond, in the present application case,
to a range of frequencies where, according to the results presented by these authors,
Uc can be considered to a good approximation a constant fraction of the external flow
speed, U0. The estimation of Uc is made by means of the cross-correlation of two pressure
signals extracted from the DNS over seven flow-through times at a sampling frequency
of 78 663 Hz. This has been done for both sensors 21 and 24. The two points on the
surface of the aerofoil are aligned in the transverse direction and are separated by a given
distance in the streamwise direction. The points around sensor 21 are separated by 0.85δ,
whereas those around sensor 24 are separated by δ. Since the largest size of the vortical
structures corresponds roughly to the boundary-layer thickness, pressure signals recorded
at locations more than δ apart are expected to be statistically uncorrelated. Figure 14
depicts the wall-pressure cross-correlations versus the time lag, ∆τ . The maximum cross-
correlation is indicated with a circle in each plot. The distance between the two points
where the pressure signals were recorded divided by the time lag corresponding to the
maximum cross-correlation gives an estimate of the convection speed. It is found that for
sensor 21, Ue/Uc = 1.51, whereas for sensor 24, Ue/Uc = 1.54. These values are consistent
with those found in the previous experimental investigations of Roger & Moreau (2004)
and Moreau & Roger (2005) on the CD aerofoil.
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5.5. Prediction of the wall-pressure PSD

The wall-pressure PSD is predicted by using the mean shear, ∂U1/∂x2, and r.m.s. of the
wall-normal velocity fluctuations, u2, as input to equations (3.17) and (3.18). The mean
and r.m.s. velocity profiles have been presented in figure 6. The effect of the anisotropy of
the length scales on the predicted wall-pressure PSD can be verified, as a preliminary test,
by choosing one wall cross-spectral density formulation and performing the calculation
of ϕpp twice. The first calculation is made taking into account in equation (3.19) the
variation of α with x2 (depicted in figure 13). The second calculation is performed with
α = 1. The results of this test are shown in figure 15 for sensors 21 and 24 using the RDT
turbulence model. It is then shown that the wall-pressure PSD in the frequency range of
interest is determined by the isotropic part of the boundary layer. As a matter of fact, the
integrand of equation (3.17) is directly proportional to ∂U1/∂x2 and u2, multiplied by
an exponential function that decays proportionally to the product of the distance from
the wall by the magnitude of the wavenumber vector. Consequently, it is possible that
the wall-pressure PSD is mostly determined by the near-wall physics of the boundary
layer, as suggested by the study of Panton & Linebarger (1974). The outer part of the
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boundary layer is expected to play an important role only at very low frequencies, which
correspond to small k1 values. However, since a comparison with measured and DNS
wall-pressure PSD can be made only in the medium-high-frequency range, the following
computations will be performed assuming α = 1 without any loss of accuracy in the
range of frequencies of interest.

Since all relevant physical quantities are known from the DNS, the prediction of wall-
pressure PSD can be used to assess the effect of the different analytical formulations of
ϕ22 presented in section 3.3. The results for sensors 21 and 24 are presented in figure 16.
Comparing the results in figures 16 and 1 clearly highlights the relationship between
the longitudinal correlation function of turbulence and the corresponding predicted wall-
pressure PSD. The flattening of F (r) from the Gaussian to the von Kármán correlation
function, indicated by the arrows in figure 1, corresponds to a marked increase of the wall-
pressure PSD in the middle-frequency range and a slight decrease at high frequencies,
also indicated with the arrows in figure 16. Overall, the flattening of the turbulence
correlation function corresponds to an increase of the mean-square pressure at the wall,
a result that has been foreseen by means of purely analytical considerations in section 4.2.
It can be noticed that, for ω δ/Ue > 5, the RDT and Gaussian ϕ22 expressions provide
the best agreement with the directly computed curve, whereas in the lower-frequency
range the Liepmann and RDT-based curves are much closer to the DNS. The good
agreement between the DNS and RDT curves is particularly visible in the sensor 24
plot, whereas for the sensor 21 the Liepmann model performs slightly better at low
frequencies. As a general conclusion, considering that the difference between the various
formulations at high frequencies is relatively small, the RDT and possibly Liepmann
turbulence spectrum provide a proper description over the whole frequency range that has
been considered (0.15 < ω δ/Ue < 25). This is consistent with the considerations made on
the turbulence statistics earlier in this section. Furthermore, the use of the turbulence-
mean shear interaction source term alone is sufficient to retrieve the correct level of
the wall-pressure PSD on the explored range of frequencies. However it is interesting
to apply also the turbulence-turbulence interaction formulation in order to estimate its
contribution to the overall spectrum.
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5.6. Application of the turbulence-turbulence interaction component formulation

The formulation presented in section 3.4 can be applied to the prediction of the
turbulence-turbulence interaction wall-pressure PSD in the same way as the turbulence-
mean shear formulation. The results obtained using both F2 formulations are presented
in figure 17. It can be seen that the curve obtained with the Gaussian vertical correlation
function is only slightly higher than the curve obtained with the exponential F2 formu-
lation, as suggested by the previous analytical considerations. These numerical results
suggest that the turbulence-turbulence source is significant only at high frequencies but
thoroughly underestimates the main low-frequency contribution to the overall mean-
square pressure. The (turbulence-turbulence) TT curves presented in figure 17 exhibit
a plateau for ωδ/Ue < 5, a trend that can also be observed in figure 17 of Slama
et al. (2018). However, this conclusion must be taken with caution since it is obtained
by making such a critical hypothesis as that of a normal probability distribution and
isotropic turbulence. This should be further evaluated in the DNS results in the future.

5.7. Application of the TNO-Blake model

The TNO-Blake model can be applied to the DNS data in order to assess the effect
of the substitution of the turbulence cross-spectrum with the single-point auto-spectrum
and of the hypothesis on the boundary-layer profiles of u2 and Λ on the predicted wall-
pressure PSD.

First, the empirical equations used in the original TNO-Blake model can be compared
with the boundary-layer profiles extracted from the DNS on the CD aerofoil correspond-
ing to the sensors 21 and 24. Figure 18 compares the directly computed u2 with the
results of the application of equation (3.36) to the mean-shear profiles. It appears from
these results that the empirical formulation fails to reproduce the DNS curve. The small
local peaks in the modelled u2 curve are due to the numerical calculation of the velocity
gradient of the mean flow interpolated on a line perpendicular to the blade surface. On the
contrary, it is shown in figure 19 that equation (3.39) provides a slightly underestimated
approximation of the computed Λ.
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The accuracy of the TNO-Blake model in the prediction of the wall-pressure PSD can
be evaluated in two steps. First, equation (3.32) is computed using the profiles of u22 and
Λ given by the empirical equations (3.36) and (3.39), respectively. Secondly, and perhaps
more interestingly, equation (3.32) is computed using the profiles of u2 and Λ extracted
from the DNS of the controlled-diffusion aerofoil, as done in section 5.5. Both sets of
calculations are performed assuming isotropy of the length scales (α = 1), following the
results presented in section 5.5.

In the first test the modelled wall-pressure PSD is underestimated with respect to the
DNS result, as can be seen in figure 20, and this is a direct consequence of the inaccurate
representation of boundary-layer profiles. The results of the second test are depicted
in figure 21. In this case, the wall-pressure PSD obtained with the exact expression
of the von Kármán cross-spectral density, already presented in section 5.5, has been
reproduced for comparison. It can be seen that the approximate solution of the TNO-
Blake model and the one based on the exact formulation of the turbulence cross-spectral
density yield similar results in terms of wall-pressure PSD at high frequency but diverge
at low frequency. In the range ω δ/Ue < 5 the wall-pressure PSD predicted using the
vertical velocity auto-spectrum underestimates the prediction obtained with the exact
formulation of the cross-spectrum but, thanks to this very fact, it also gets closer to the
DNS result. Indeed, in section 5.5, the von Kármán theory was shown to overestimate
the wall-pressure PSD at low frequencies. In the TNO-Blake model, this inaccuracy
is compensated by substituting the cross-spectral density with the single-point auto-
spectrum, although the latter assumption is quite wrong as shown in section 5.3.

Section 3.3.3 has illustrated the treatment of the anisotropy of length scales by means of
the coefficients presented in different versions of the TNO-Blake model (see table 2). The
final test of this section concerns the effect that these different sets of coefficients have on
the predicted wall-pressure PSD. The results, obtained for sensors 21 and 24, are depicted
in figure 22, where the DNS spectrum and the TNO-Blake prediction obtained with the
hypothesis of isotropy of the length scales are reported for comparison. The earliest set
of coefficients proposed by Bertagnolio et al. (2014) significantly overestimates the DNS
result at low frequencies. However, the later sets of coefficients proposed by Stalnov et al.
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Figure 19. Comparison of the longitudinal integral length scale of turbulence extracted from
DNS and modelled according to the TNO-Blake approach.

(2016) and Fischer et al. (2017) are more conservative in the sense that they do not vary
significantly the prediction with respect to the isotropic case.
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Figure 22. Comparison of the wall-pressure PSD computed from DNS and using the TNO-Blake
turbulence model with the DNS-extracted boundary layer profiles as input and using different
sets of βi coefficients to account for turbulence anisotropy.
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6. Application of a Monte Carlo integration method to
high-dimensional wall-pressure spectrum formulations

The analytical formulation of the turbulence-mean shear wall-pressure spectrum com-
ponent developed in section 3.2 is a three-dimensional integral, which does not pose
problems of numerical computation. However, in some cases it might be desirable to
compute the complete solution to the Poisson equation with one of the formulations
(3.4), (3.6) or (3.7). In this case, as mentioned earlier, the space-domain wall-pressure
correlation coefficient is obtained by computing a six-dimensional integral, followed
by a two-dimensional integration to obtain the wavenumber-domain PSD. It is not
advised to perform a high-dimensional numerical integration by quadrature. In fact,
taking N equally spaced samples in each of the d integration dimensions, the integrand
function must be calculated at Nd points in a d-dimensional hyperspace. Therefore,
even for a moderate number of samples N in each dimension, the number of function
evaluations rises exponentially with the number of dimensions, a problem which is
known to mathematicians as the curse of dimensionality. Another issue concerns the
rate of convergence of the integral in multiple dimensions. For instance, if a trapezoidal
rule is used the uncertainty of the integral estimation is proportional to N−2/d for
large N and similar trends can be demonstrated for other quadrature rules (see James
1980). Additional difficulties arise, in this particular integration problem, from the
singularity points in the integration domain where x = x′. The solution proposed by
Peltier & Hambric (2007) was Gauss-Legendre integration, while Slama et al. (2018)
used a Kriging-based algorithm. In order to provide a further alternative, this paper
investigates the application of one of the Monte Carlo integration methods, for which
the number of samples of the integrand function, N , and the rate of convergence of
the estimation of the integral are independent of the number of dimensions. Different
Monte Carlo algorithms applied to the problem of wall-pressure spectrum prediction
have been compared and evaluated in Grasso et al. (2018), namely the quasi-random
sampling, importance sampling and recursive stratified sampling. It has been shown that
the importance sampling method provides the fastest convergence of the integral with
respect to the number of samples (see Grasso et al. 2018, figure 3). This method has been
used by Panton & Linebarger (1974) and Remmler et al. (2010) for the computation of
wall-pressure PSD. Its only disadvantage is that it is tailored to the specific integrand
function, so that an algorithm must be devised for every integration problem. As an
alternative, this section focuses on the recursive stratified sampling which does not
impose conditions on the integrand function, not even continuity, while still requiring
an acceptable computational cost, as will be shown below.

6.1. Recursive stratified sampling

This method has been developed by Press & Farrar (1990) and is implemented in the
widely used MISER algorithm. In order to understand its advantages, it is necessary to
take a step back and introduce the simplest form of Monte Carlo integration: the quasi-
random sampling. Given a generic function f : Rn → R, sampled with N random vectors,
xi, uniformly distributed over the integration domain, the function mean estimator is
defined as

〈f̃〉 =
1

N

N∑
i=1

f(xi). (6.1)

Then, the estimator of the integral is the product of 〈f̃〉 by the size of the integration
volume. It can be shown (see James 1980) that the variance of the estimator is related
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to the variance of the function over the integration domain as

Var(〈f̃〉) =
Var(f)

N
(6.2)

and that the following asymptotic relation holds for the error of the estimation

ε = O

√Var(〈f̃〉)
N

 . (6.3)

Thus, the convergence of the quasi-random sampling is independent of the number of
dimensions of integration. The recursive stratified sampling differs from quasi-random
sampling because it divides the integration region V into two equal and disjoint sub-
volumes, Va and Vb. The sub-volumes are then sampled at Na and Nb = N −Na random
points, respectively, drawn from a uniform probability distribution function. In this case,
the function estimator is defined as

〈f̃〉′ =
1

2

(
〈f̃〉a + 〈f̃〉b

)
(6.4)

where the 〈f̃〉a,b terms are computed by applying equation (6.1) to each sub-volume. It

can also be shown that the variance of 〈f̃〉′ is

Var
(
〈f̃〉′

)
=

1

4

(
Vara(f)

Na
+

Varb(f)

N −Na

)
(6.5)

which is minimised when
Na
N

=
σa

σa + σb
, (6.6)

where σ =

√
Var

(
〈f̃〉
)

. If Na satisfies equation (6.6), the variance of the function mean

estimator is

Var
(
〈f̃〉′

)
=

(σa + σb)
2

4N
. (6.7)

The advantage of this method is that Var
(
〈f̃〉′

)
as defined in equation (6.7) is never

greater than the variance of the estimator computed with the quasi-random sampling,
defined in equation (6.2). In practice, a fixed number of function evaluations N is
allocated at the beginning of the execution of the algorithm. Then each dimension of
integration is divided in two disjoint sub-volumes. A given fraction of the N samples is
used to estimate the variance of the function on each sub-volume, so that the remaining
points can be allocated according to equation (6.6). In order to converge to a more
accurate estimation, the algorithm can be applied recursively on the sub-volumes where
the integrand function has greater variance.

6.2. Application to the turbulence-mean shear component of the wall-pressure spectrum

As mentioned at the beginning of this section, the expression of the turbulence-
mean shear component of the wall-pressure PSD resulting from the substitution of
equation (3.17) in (3.18) is a three-dimensional integral which can be calculated nu-
merically with quadratures in a reasonable computational time. However, the same
turbulence-mean shear component can be expressed by a four-dimensional integral if
the one-dimensional integral expression of ϕ22 given in equation (B 13) is substituted in
equation (3.17). This expression can also be made five-dimensional if the two-dimensional
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(2-D) integral expression of ϕ22 given in equation (B 10) is used instead. Thus, this
problem in which the same physical quantity can be expressed by a 3-D, 4-D or 5-
D integral formulation is particularly suited for the evaluation of the performance of
a Monte Carlo method. The recursive stratified sampling is applied to the calculation
of the turbulence-mean shear wall-pressure PSD, with the 4-D and 5-D formulations,
corresponding to sensor 24 of the CD aerofoil using the boundary-layer profiles presented
in section 5. The von Kármán model of turbulence statistics has been selected for this
study. Analogous tests have been presented in Grasso et al. (2018) using the Gaussian
turbulence model, which has a simpler mathematical formulation. The MISER algorithm
used to obtain the following results is available in the Scikit-Monaco package for Python
(see Buignon 2013).

Figure 23 presents the convergence of the 4-D and 5-D formulations of the wall-pressure
PSD calculated with the MISER algorithm for an increasing number of sample points.
The spectra have been computed with N ranging from 2000 to 2 × 105 points. It can
be seen that the integration is challenging from the numerical point of view only at
the highest and lowest frequencies. However, starting from 2 × 104 sampling points, all
curves coincide. It is thus shown that the convergence of the MISER algorithm depends
on the number of sampling points but not on the number of dimensions of integration,
as postulated by the theory. The calculation of the wall-pressure PSD at 25 values of
ω, using 2 × 104 sampling points for each frequency, has been performed in parallel on
4 cores of an Intel Xeon Processor EG-1630 v3 with base frequency of 3.70 GHz. The
computational time is 8.6 s for the 3-D formulation and 10.2 s for both the 4-D and the
5-D integral formulations. Increasing the number of sampling points for each frequency
of one order of magnitude, that is 2× 105, the computational time corresponding to 25
values of ω integrated in parallel on 4 cores rises to 1 min for the 3-D formulation and to
1 min 13 s for both the 4-D and the 5-D integral formulations. Finally, figure 24 presents
the somewhat obvious but necessary verification that the integration algorithm converges
to the same prediction of the wall-pressure PSD using the 3D, 4D and 5D formulations,
which are equivalent from the analytical point of view.

This application shows that the MISER algorithm can be recommended for the
prediction of wall-pressure PSD due to its fast and robust convergence, the ease of
implementation and the absence of conditions on the shape of the integrand function.

7. Conclusions and perspectives

This work has presented a comprehensive approach to several analytical formulations
of the spectrum of wall-pressure fluctuations under a turbulent boundary layer available
in the literature. The discriminant character of published models usually consists in the
choice of an analytical expression of the turbulence cross-spectral density. For this reason,
the most widely used turbulence spectral models have been reviewed and presented in a
unified framework. The two sources of wall-pressure fluctuations, turbulence-mean shear
and turbulence-turbulence interaction, have been modelled in the wavenumber domain. In
particular, the influence of the different analytical formulations of turbulence statistics on
the shape and level of the resulting wall-pressure PSD has been studied for the first time.
The relationship between the shape of the longitudinal correlation function of turbulence
and that of the corresponding predicted wall-pressure spectrum has been elucidated by
applying different turbulence models to the same boundary-layer mean profiles extracted
from the DNS of the flow around a controlled-diffusion aerofoil under significant adverse
pressure gradients (Clauser parameter of 5.01 and 6.23 in the two test cases, respectively).
The post-processing of DNS data allowed us to compute directly two quantities that are
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Figure 23. Convergence of the Monte Carlo integration of the wall-pressure spectrum 4D and
5D formulations.
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Figure 24. Correspondence of the Monte Carlo integration of the wall-pressure spectrum 4D
and 5D formulations with the 3D formulation.

usually modelled in the case of RANS-based predictions, namely the longitudinal integral
length scale of turbulence, Λ, and the anisotropy factor, α. It has been found that only the
outmost part of the boundary layer, in this application, is affected by a strong anisotropy
of the turbulence length scales. For this reason, a good agreement between the predicted
and directly computed wall-pressure PSDs in the range of frequency of interest could be
obtained by assuming α = 1. The inclusion of the variation of α with the wall-normal
coordinate in the integral formulation of the wall-pressure PSD did not yield appreciably
different results. Also, the turbulence-turbulence interaction component resulted to be
negligible with respect to the turbulence-mean shear, except at the highest frequencies.

The turbulence spectral model that best fits the turbulence statistics extracted from
the DNS is the rapid distortion theory, followed by Liepmann’s model. As a consequence,
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the predictions based on these turbulence models are the closest to the directly computed
wall-pressure PSD. The capabilities of the RDT to represent the evolution of turbulence in
various configurations have also been highlighted by de la Riva et al. (2004), Santana et al.
(2016) and Goldstein et al. (2017). The predictions based on the von Kármán and on the
Gaussian model are found to overestimate and underestimate the PSD for ωδ/Ue < 10,
respectively. It has also been verified that the flattening of the longitudinal correlation
function corresponds to a higher low-frequency wall-pressure PSD and, consequently, to a
higher mean-squared wall-pressure fluctuation. Interestingly, this result is also suggested
by purely analytical considerations on a simplified model of boundary layer originally
proposed by Kraichnan (1956b).

The TNO-Blake model, which is an approximate form of the wall-pressure PSD, has
also been reviewed. Its fundamental assumption of the statistical de-correlation of vertical
velocity fluctuations for non-vanishing vertical separations has been proven wrong by the
analysis of the turbulence statistics extracted from the DNS. Yet, provided that realistic
flow parameters extracted from the DNS are used, the TNO-Blake model provides
reasonable predictions at both selected APG conditions. Among the various versions
of the model, the most recent ones proposed by Stalnov et al. (2016) and Fischer et al.
(2017) also yield the most accurate predictions.

Finally, a contribution to the problem of the numerical computation of wall-pressure
PSD with high-dimensional integral formulations has been presented. The Monte Carlo
integration with the recursive stratified sampling technique is robust and its implemen-
tation is straightforward thanks to open-source libraries.

The results presented in this paper can provide a useful reference for the improvement
of existing RANS-based wall-pressure PSD prediction methods that share the same
analytical foundation. The next development that can be envisaged is the extension
of the theory hereby presented to the case of compressible subsonic flows. The main
problem will be that of the quantification of the effect of the variation of density across
the boundary layer on the wall-pressure PSD.
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and S. Orestano are also gratefully thanked for the support and the fruitful conversations
on the topic of this article.

Appendix A. Solution of the modified Helmholtz equation

The spatial Fourier transform of equation (3.1) in the (x1, x3) directions yields the fol-
lowing inhomogeneous second-order ordinary differential equation (ODE) with constant
coefficients:

∂2p̂(k, x2)

∂x22
− k2 p̂(k, x2) = −Q̂(k, x2) (A 1)
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where the physical source terms are represented by Q̂(k, x2). Equation (A 1) can be
solved with the method of variation of parameters (see Ince 1956), whereby the complete
solution to equation (A 1), Y , is split into two terms

Y = Yc + Yp. (A 2)

The term Yc is the solution of the complementary homogeneous ODE

∂2p̂(k, x2)

∂x22
− k2 p̂(k, x2) = 0 (A 3)

and Yp is the specific solution to the inhomogeneous equation. Substituting the ansatz
p̂(k, x2) = eλx2 in equation (A 3) we obtain

Yc = A e−kx2 +B e+kx2 . (A 4)

In order to find the specific solution, Yp, let y1 = e−kx2 and y2 = e+kx2 . Then, the
functions y1 and y2 are used to calculate the Wronskian,

W (y1, y2) =

∣∣∣∣ e−kx2 e+kx2

d
dx2

e−kx2 d
dx2

e+kx2

∣∣∣∣ = 2 k. (A 5)

The specific solution is

Yp = −y1
∫ ∞
0

y2 Q̂(X2)

W (y1, y2)
dX2 + y2

∫ ∞
0

y1 Q̂(X2)

W (y1, y2)
dX2. (A 6)

Substituting equation (A 5) in (A 6) we obtain

Yp =
1

2 k

∫ ∞
0

e−k|x2−X2|Q̂(X2)dX2. (A 7)

The complete solution to equation (A 1) is

p̂(k, x2) = A e−k x2 +B e+k x2 +
1

2 k

∫ ∞
0

e−k|x2−X2|Q̂(X2)dX2 (A 8)

where the coefficients A and B can be determined from the boundary conditions. In
particular, for the solution to vanish at infinity according to equation (3.2), the coefficient
B must be equal to 0. The coefficient A must satisfy equation (3.3), for which the x2
derivative of the solution vanishes at the wall. Taking the derivative of equation (A 8),
we obtain for x2 = 0

A =
1

2 k

∫ ∞
0

e−kX2 Q̂(X2) dX2. (A 9)

Finally, the wavenumber-domain solution for the wall pressure is

p̂(k, x2 = 0) =
1

k

∫ ∞
0

e−kX2 Q̂(X2)dX2. (A 10)

The same solution is obtained by Gerolymos et al. (2013, app. B) following a Green’s
function approach.

Appendix B. Derivation of turbulence cross-spectral densities

This appendix presents the concepts from the theory of homogeneous and isotropic
turbulence that are necessary to understand the derivation of the turbulence cross-
spectral densities used in section 3.3. For a complete discussion of this topic, the reader
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can refer to handbooks by Batchelor (1953), Pope (2000) or Bailly & Comte-Bellot (2015).
The analytical expressions derived in this appendix are summarised in the works of
Wilson (1997, 1998).

B.1. General definitions

The normalised correlation coefficient of the i, jth components of a homogeneous vector
field is defined as

Rij(r1, r2, r3) =
〈ui(x1, x2, x3) · uj(x1 + r1, x2 + r2, x3 + r3)〉

σ2
. (B 1)

With the further assumption of isotropy of the vector field, the longitudinal correlation
function is defined as a function of the normalised correlation coefficients as

F (r) = R11(r, 0, 0) = R22(0, r, 0) = R33(0, 0, r). (B 2)

From this follows the definition of the longitudinal integral length scale of turbulence as

Λ =

∫ ∞
0

F (r) dr. (B 3)

Furthermore, the lateral correlation function is defined as

G(r) = R11(0, r, 0) = R22(r, 0, 0) = ... (B 4)

Batchelor (1953) provides the following relationship between the longitudinal and the
lateral correlation functions

G(r) = F (r) +
r

2

dF

dr
. (B 5)

as well as the analytical formulation of the normalised correlation coefficient as

Rij(r1, r2, r3) =
rirj
r2

F (r) +
(
δij −

rirj
r2

)
G(r). (B 6)

In order to take into account the inhomogeneity of turbulence in the vertical direction
for a boundary-layer flow, the coordinates of the two points used to compute the cross-
correlation must be written explicitly,

r2 = ‖x2 − x′2‖ (B 7)

and the variance must be written as

σ2 =

√
u22(x2)u22(x′2) (B 8)

coherently with the approach of Panton & Linebarger (1974).

B.1.1. Direct Fourier transform

One way to define the cross-spectrum of vertical velocity fluctuations is the double
spatial Fourier transform of the normalised correlation coefficient in the plane defined by
the wall,

ϕ22 (k1, r2, k3) =
σ2

4π2

∫∫ +∞

−∞
R22(r1, r2, r3) cos(k1 r1) cos(k3 r3) dr1 dr3. (B 9)

Then, using the change of coordinates r1 = r1,3 cos(θ) and r3 = r1,3 sin(θ), equation (B 9)
can be re-written as

ϕ22 (k1, r2, k3) =
σ2

4π2

∫ ∞
0

∫ 2π

0

R22 cos(k1 r1,3 cos(θ)) cos(k3 r1,3 sin(θ)) r1,3 dθ dr1,3.

(B 10)
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Using trigonometric identities the integrand function is re-formulated as

cos(a cos(θ)) cos(b sin(θ)) =
1

2
[cos(a cos(θ) + b sin(θ)) + cos(a cos(θ)− b sin(θ))] .

(B 11)
where the variables a = k1r1,3 and b = k3r1,3 are defined in order to simplify the
notations. Furthermore, defining the angle β = arctan (a/b), from which derive sin(β) =
a/
√
a2 + b2 and cos(β) = b/

√
a2 + b2,using the trigonometric summation formulas and

defining the new integration variable u = θ ± β, the dθ integral becomes

1

π

∫ π±β

±β
cos
(√

a2 + b2 sin(u)
)

du = J0

(√
a2 + b2

)
. (B 12)

Using the result of equation (B 12) in equation (B 10) yields

ϕ22 (k1, r2, k3) =
σ2

4π2

∫ ∞
0

R22(r1,3, r2) J0 (k r1,3) r1,3 dr1,3 (B 13)

which is also called the Hankel transform of the vertical velocity correlation coefficient.

B.1.2. Inverse Fourier transform

An alternate way to derive ϕ22 is by performing a one-dimensional inverse Fourier
transform, which may be easier to solve depending on the specific form of F (r). In first
place, the cosine Fourier transform of F (r) is defined as the one-dimensional spectral
function,

F̂ (κ) =
1

2π

∫ +∞

−∞
F (r) cos(κ r) dr. (B 14)

Then, it is shown by Batchelor (1953) that the energy spectrum of turbulence is related
to the spectral function by the following equation:

E(κ) = σ2 κ3
d

dκ

[
1

κ

dF̂ (κ)

dκ

]
. (B 15)

In turn, the three-dimensional energy spectral density is derived from the energy spec-
trum E(κ) according to the relation

Φij(k1, k2, k3) =
E(κ)

4πκ2

(
δij −

kikj
κ2

)
. (B 16)

Finally, the inverse spatial Fourier transform in the vertical direction of equation (B 16)
yields

ϕ22(k1, r2, k3) =

∫ +∞

−∞
Φ22(k1, k2, k3) cos(k2 r2) dk2. (B 17)

B.2. Gaussian spectrum

The Gaussian energy spectrum has a rather simple mathematical formulation and
therefore it can be used to illustrate the derivation of the cross-spectral density, ϕ22,
from the longitudinal correlation function, F (r), using either the direct or the inverse
Fourier transform method.
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B.2.1. Direct Fourier transform

Substituting equation (3.20) in (B 6), the vertical velocity correlation coefficient is
obtained as

R22 =

(
1−

r21,3
L2

)
exp

(
−
r21,3 + r22
L2

)
(B 18)

Then, substituting equation (B 18) in (B 13) yields

ϕ22 (k1, r2, k3) =
σ2

2π
exp

(
− r

2
2

L2

)∫ ∞
0

(
1−

r21,3
L2

)
exp

(
−
r21,3
L2

)
J0 (k r1,3) r1,3 dr1,3.

(B 19)
Since the integral of equation (B 19) is formulated as a subtraction, it can be split into
two terms, which are both re-worked using the technique of integration by parts. Using
the tables of integrals involving Bessel functions of Rosenheinrich (2016), both terms can
be simplified to yield

ϕ22 (k1, r2, k3) =
σ2 L4

16π
k2 exp

(
−L

2 k2

4
− r22
L2

)
. (B 20)

B.2.2. Inverse Fourier transform

The application of equation (B 14) to (3.20) yields

F̂ (κ) =
1

2π

∫ +∞

−∞
exp

(
− r

2

L2

)
cos(κ r) dr =

L

2
√
π

exp

(
−L

2 κ2

4

)
. (B 21)

Then, the energy spectrum follows from equation (B 15)

E(κ) =
σ2 L5 κ4

8
√
π

exp

(
−L

2 κ2

4

)
. (B 22)

The three-dimensional spectral density follows from equation (B 16) as

Φ22(k1, k2, k3) =
σ2 L5

32π3/2
k2 exp

(
−L

2 κ2

4

)
(B 23)

and, finally, the inverse Fourier transform of equation (B 23) yields

ϕ22(k1, r2, k3) =
σ2 L5

32π3/2
k2 exp

(
−L

2 k2

4

)∫ +∞

−∞
exp

(
−L

2 k22
4

)
cos(k2 r2) dr2

=
σ2 L4

16π
k2 exp

(
−L

2 k2

4
− r22
L2

)
, (B 24)

which corresponds to equation (B 20).

B.3. Generalised von Kármán spectrum

The longitudinal correlation function of equation (3.23) can be Fourier transformed
using equation (6.699.4) of Gradshteyn & Ryzhik (2007) in the following way:

F̂ (κ) =
1

2π

∫ +∞

−∞

1

2ν−1 Γ(ν)

(r
l

)ν
Kν

(r
l

)
cos(κ r) dr

=
l Γ(ν + 1/2)√

π Γ(ν)
2F1

(
ν +

1

2
,

1

2
;

1

2
;−l2 κ2

)
=

Γ(ν + 1/2)√
π Γ(ν)

l

(1 + l2 κ2)ν+1/2
. (B 25)
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Hence, applying equation (B 15),

E(κ) =
4 Γ(ν + 5/2)√

π Γ(ν)

σ2 l5 κ4

(1 + l2 κ2)ν+5/2
. (B 26)

Imposing i = j = 2 in equation (B 16) and using equation (B 26), we obtain

Φ22(k1, k2, k3) =
Γ(ν + 5/2)

π3/2 Γ(ν)

σ2 l3 k̃2

(1 + κ̃)
ν+5/2

(B 27)

where the dimensionless wavenumbers k̃i = l ki, with i = 1, 2, 3, k̃ = l k and κ̃ = l κ are
used for simplicity. The substitution of equation (B 27) in (B 17), with the dimensionless
radius r̃2 = r2/l, yields

ϕ22(k1, r2, k3) = 2
Γ(ν + 5/2)

π3/2 Γ(ν)
σ2 l2 k̃2

∫ ∞
0

cos(k̃2 r̃2)

(1 + κ̃2)
ν+5/2

dk̃2 (B 28)

where equation (B 28) derives from the symmetry of the integrand function with respect
to k̃2. Using equation (3.771.2) of Gradshteyn & Ryzhik (2007), one can readily verify
that ∫ ∞

0

cos(k̃2 r̃2)

(1 + κ̃2)
ν+5/2

dk̃2 =
1√
π

1

2ν+2

(
r̃2
√

1 + k̃2

1 + k̃2

)ν+2

cos(πν)

× Γ

(
1−

(
ν +

5

2

))
Kν+2

(
r̃2

√
1 + k̃2

)
. (B 29)

Taking into account Euler’s reflection formula for the gamma function, the following
simplification of the coefficients can be performed:

Γ
(
ν + 5

2

)
Γ
(
1−

(
ν + 5

2

))
Γ(ν)

cos(πν) =
π cos(πν)

sin
(
πν + 5

2π
)
Γ(ν)

=
π

Γ(ν)
. (B 30)

Finally, using equation (B 30) and introducing the parameter ζ = r2/l
√

1 + l2k2, equa-
tion (B 28) becomes

ϕ22 (k1, r2, k3) =
σ2 l2 k̃2 ζν+2

Γ(ν)π 2ν+1
(

1 + k̃2
)ν+2 Kν+2(ζ) (B 31)

which corresponds to equation (2.39) of Wilson (1997).

Appendix C. Derivation of the turbulence-turbulence interaction
wall-pressure spectrum

This appendix reviews the derivation of the model proposed by Hodgson (1961) for
the wavenumber wall-pressure spectrum generated by turbulence-turbulence interaction,
clarifying some steps and correcting some mistakes found in the original document.
Hodgson’s main contribution with respect to the earlier studies of Batchelor (1951) and
Kraichnan (1956a) was the introduction of the inhomogeneity of the flow in the nomal-
to-wall direction, which makes the task more cumbersome from a mathematical point of
view.
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C.1. Differential equation formulation

The turbulence-mean shear and turbulence-turbulence source terms of equation (3.1)
are assumed to be independent. Therefore, the governing equation of the pressure
fluctuations is reduced to

∇2p = −ρ0
∂2

∂xi ∂xj
(uiuj − uiuj) . (C 1)

The flow obeys the continuity equation,

∂ui
∂xi

= 0 (C 2)

from which we derive that

∂2

∂xi ∂xj
(uiuj) =

∂uj
∂xi

∂ui
∂xj

. (C 3)

Using equation (C 3), equation (C 1) is re-formulated as

∇2p = −ρ0

[
∂uj
∂xi

∂ui
∂xj

+

(
∂u2
∂x2

)2

+ 2
∂ui
∂x2

∂u2
∂xi
− ∂uj
∂xi

∂ui
∂xj
−
(
∂u2
∂x2

)2

− 2
∂ui
∂x2

∂u2
∂xi

]
(C 4)

In equation (C 1) the wall-normal direction, indicated by the subscript 2, has been singled
out. The subscripts i, j ∈ {1, 3}, where the values 1 and 3 represent the streamwise
and transverse directions, respectively. Since the boundary-layer flow is assumed to be
homogeneous in planes parallel to the wall, equation (C 1) can be Fourier transformed in
the two corresponding directions. The dependence on the wall-normal direction, on the
contrary, must be kept explicit in the following derivations.

Assuming two functions f(x) and g(x), where x ∈ Rm, the Fourier transform of their
product is the convolution of their transforms, that is

F [f g] (ξ) =

∫
Rm

F [f ]
(
ξ − ξ′

)
F [g]

(
ξ′
)

dξ′. (C 5)

Then, the source terms of equation (C 4) are transformed in the following way

F

[
∂uj
∂xi

∂ui
∂xj

]
(k) =

∫
R2

F

[
∂uj
∂xi

]
(k − k′)F

[
∂ui
∂xj

]
(k′) dk′

=

∫
R2

i (ki − k′i) ûj(x2,k − k
′) i k′j ûi(x2,k

′) dk′

= −
∫
R2

(ki − k′i) k′j ûj(x2,k − k
′) ûi(x2,k

′) dk′, (C 6)

F

[(
∂u2
∂x2

)2
]

(k) =

∫
R2

d

dx2
û2(x2,k − k′)

d

dx2
û2(x2,k

′) dk′, (C 7)

and finally

F

[
2
∂ui
∂x2

∂u2
∂xi

]
(k) = 2

∫
R2

i (ki − k′i) û2(x2,k − k′)
d

dx2
ûi(x2,k

′)dk′. (C 8)

The same relations hold for the mean terms of equation (C 4) as well. Then, the following
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modified Helmholtz equation is obtained,(
d2

dx22
− k2

)
p̂(x2,k) = ρ0

∫
R2

[
(ki − k′i) k′j ûj(x2,k − k

′) ûi(x2,k
′)

− d

dx2
û2(x2,k − k′)

d

dx2
û2(x2,k

′)− 2 i (ki − k′i) û2(x2,k − k′)
d

dx2
ûi(x2,k

′)

−mean terms

]
dk′ (C 9)

which corresponds to equation (B.3) of Hodgson (1961). The mean terms will not appear
explicitly in the following derivation, but it is understood that they are subject to the
same transformations as the fluctuating quantities. They will be written again at the
point of the derivation where they cancel out. Equation (C 9) can be expressed in a more
convenient form. First, the Fourier transform of the continuity equation in the directions
of homogeneity is

d

dx2
û2(x2,k) + i ki ûi(x2,k) = 0. (C 10)

This equation can be used to simplify the first two terms of equation (C 9),

(ki − k′i) k′j ûj(x2,k − k
′) ûi(x2,k

′)− d

dx2
û2(x2,k − k′)

d

dx2
û2(x2,k

′)

=(ki − k′i) k′j ûj(x2,k − k
′) ûi(x2,k

′) + k′i ûi(x2,k
′) (kj − k′j) ûj(x2,k − k

′)

=(−2k′ik
′
j + kik

′
j + k′ikj) ûi(x2,k

′) ûj(x2,k − k′) (C 11)

So, using equation (C 11), equation (C 9) becomes

(
d2

dx22
− k2

)
p̂(x2,k) =ρ0

∫
R2

[
(−2k′ik

′
j + kik

′
j + k′ikj) ûi(x2,k

′) ûj(x2,k − k′)

− 2 i (ki − k′i) û2(x2,k − k′)
d

dx2
ûi(x2,k

′)

]
dk′. (C 12)

Applying again equation (C 10), together with the rule of the derivative of the product
of two functions,

− 2 i (ki − k′i) û2(x2,k − k′)
d

dx2
ûi(x2,k

′)

=− 2 i (ki − k′i)

[
d

dx2

{
ûi(x2,k

′)û2(x2,k − k′)
}
− ûi(x2,k′)

d

dx2

{
û2(x2,k − k′)

}]

=− 2 i (ki − k′i)

[
d

dx2

{
ûi(x2,k

′)û2(x2,k − k′)
}

+ i (kj − k′j) ûj(x2,k − k
′)ûi(x2,k

′)

]
.

So, substituting this result in equation (C 12) and considering that

−2k′ik
′
j + kik

′
j + k′ikj + 2 (ki − k′i)(kj − k′j) = 2kikj − kik′j − k′ikj
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it is possible to write(
d2

dx22
− k2

)
p̂(x2,k) =ρ0

∫
R2

[
(2kikj − kik′j − k′ikj) ûi(x2,k

′) ûj(x2,k − k′)−

− 2 i (ki − k′i)
d

dx2

{
û2(x2,k − k′)ûi(x2,k′)

}]
dk′. (C 13)

This corresponds to equation (B.5) of Hodgson (1961), but in the original reference one
parenthesis is misplaced.

C.2. Green’s function solution

Assuming the boundary conditions p = 0 for x2 = 0, dp/dX2 → 0 for x2 →∞, u2 = 0
for x2 = 0, the general solution of the equation (C 13) is obtained with the following
Green’s function:

G (x2, X2; k 6= 0) = −e−k|x2−X2|

2k
− e−k(x2+X2)

2k
. (C 14)

So, the pressure at the wall can be written in the wavenumber domain as

p̂(x2 = 0,k) =− ρ0
∫ ∞
0

e−kX2

∫
R2

1

k

[
(2kikj − kik′j − k′ikj) ûi(X2,k

′) ûj(X2,k − k′)

− 2 i (ki − k′i)
d

dX2

{
û2(X2,k − k′)ûi(X2,k

′)
}]

dk′dX2. (C 15)

The derivative by X2 appearing in the second term of the right-hand side of equa-
tion (C 15) can be eliminated by performing the integration in dX2,∫ ∞

0

d

dX2

{
û2(X2,k − k′)ûi(X2,k

′)
}

e−kX2dX2

=
[
û2(X2,k − k′)ûi(X2,k

′) e−kX2
]∞
0

+ k

∫ ∞
0

û2(X2,k − k′)ûi(X2,k
′) e−kX2dX2.

(C 16)

The term in square brackets of equation (C 16) vanishes for X2 → ∞ due to the
exponential function and vanishes also for X2 = 0 due to the boundary conditions.
For this reason, equation (C 15) can be re-written as

p̂(x2 = 0,k) =− ρ0
∫ ∞
0

e−kX2

∫
R2

[
1

k
(2kikj − kik′j − k′ikj) ûi(X2,k

′) ûj(X2,k − k′)

− 2 i (ki − k′i) û2(X2,k − k′)ûi(X2,k
′)

]
dk′dX2 (C 17)

which corresponds to equation (B.6) of Hodgson (1961).
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C.3. Wall-pressure power spectral density

The wall pressure at a point k′′ of the wavenumber space is

p̂(x2 = 0,k′′) =− ρ0
∫ ∞
0

e−k
′′X′

2

∫
R2

[
1

k′′
(2k′′l k

′′
m − k′′l k′′′m − k′′′l k′′m) ûl(X

′
2,k
′′′)

× ûm(X ′2,k
′′ − k′′′)− 2 i (k′′l − k′′′l ) û2(X ′2,k

′′ − k′′′)ûl(X ′2,k
′′′)

]
dk′′′dX ′2

(C 18)

where l,m ∈ {1, 3}.
Taking the complex conjugate of equation (C 17), multiplying it by equation (C 18)

and taking the average of the product, the following expression is obtained:

p̂∗(0,k)p̂(0,k′′) = ρ20

∫ ∞
0

∫ ∞
0

e−kX2−k′′X′
2dX2dX ′2

×
∫
R2

∫
R2

[
1

k k′′
(2kikj − kik′j − k′ikj)(2k′′l k′′m − k′′l k′′′m − k′′′l k′′m)

×
(
û∗i (X2,k

′) û∗j (X2,k − k′)ûl(X ′2,k
′′′)ûm(X ′2,k

′′ − k′′′)

− û∗i (X2,k
′) û∗j (X2,k − k′) ûl(X ′2,k

′′′)ûm(X ′2,k
′′ − k′′′)

)
+ 4(ki − k′i)(k′′l − k′′′l )

×
(
û∗2(X2,k − k′)û∗i (X2,k

′)û2(X ′2,k
′′ − k′′′)ûl(X ′2,k

′′′)

− û∗2(X2,k − k′)û∗i (X2,k
′) û2(X ′2,k

′′ − k′′′)ûl(X ′2,k
′′′)
)

− 2 i

k
(k′′l − k′′′l )(2kikj − kik′j − k′ikj)

×
(
û∗i (X2,k

′) û∗j (X2,k − k′)û2(X ′2,k
′′ − k′′′)ûl(X ′2,k

′′′)

− û∗i (X2,k
′) û∗j (X2,k − k′) û2(X ′2,k

′′ − k′′′)ûl(X ′2,k
′′′)
)

+
2 i

k′′
(ki − k′i)(2k′′l k′′m − k′′l k′′′m − k′′′l k′′m)

×
(
û∗2(X2,k − k′)û∗i (X2,k

′)ûl(X ′2,k
′′′)ûm(X ′2,k

′′ − k′′′)

− û∗2(X2,k − k′)û∗i (X2,k
′) ûl(X ′2,k

′′′)ûm(X ′2,k
′′ − k′′′)

)]
dk′dk′′′ (C 19)

where the mean terms previously omitted have been written explicitly. At this point, the
analysis can be carried on only by introducing the hypothesis on joint normal probability
distribution of the turbulence at two points in the boundary layer. In this way, the fourth-
order co-variances can be reduced to the sum of products of second-order co-variances,

û∗i (X2,k
′) û∗j (X2,k − k′) û2(X ′2,k

′′ − k′′′) ûl(X ′2,k
′′′)

=û∗i (X2,k
′) û∗j (X2,k − k′) û2(X ′2,k

′′ − k′′′) ûl(X ′2,k
′′′)

+û∗i (X2,k
′) û2(X ′2,k

′′ − k′′′) û∗j (X2,k − k′) ûl(X ′2,k
′′′)

+û∗i (X2,k
′) ûl(X ′2,k

′′′) û∗j (X2,k − k′) û2(X ′2,k
′′ − k′′′) (C 20)
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It must be noted that the overall wall-pressure power spectral density contains also
the cross-product of the turbulence-mean shear and the turbulence-turbulence sources.
However the terms Ui(X2)uj(X2)ul(X ′2)um(X ′2) contain third-order co-variances which
vanish for a joint normal distribution. For this reason, the separate treatment of the
turbulence-mean shear and turbulence-turbulence contributions to the wall-pressure
power spectral density is justified.

Taking into account the statistical orthogonality of turbulence wavevectors, the wall-
pressure PSD can be defined as

p̂∗(0,k)p̂(0,k′′) = ϕTTpp (k) δ(k − k′′) dk dk′′ (C 21)

and the turbulence cross-spectra as

û∗i (X2,k
′) ûl(X ′2,k

′′′) = ϕil(X2, X
′
2,k
′) δ(k′ − k′′′) dk′ dk′′′. (C 22)

Consistently with the previous definitions, some second-order statistics vanish due to the
statistical orthogonality of wavenumber vectors, e.g.

û∗i (X2,k
′) û2(X ′2,k

′′ − k′′′) = 0. (C 23)

Substituting equations (C 20), (C 21) and (C 22) in equation (C 19) and integrating with
respect to dk′′ and dk′′′,

ϕTTpp (k) = ρ20

∫ ∞
0

∫ ∞
0

e−k(X2+X
′
2)dX2dX ′2

×
∫
R2

[
1

k2
(2kikj − kik′j − k′ikj)(2klkm − klk′m − k′lkm)ϕil(X2, X

′
2,k
′)ϕjm(X2, X

′
2,k − k

′)

+ 4(ki − k′i)(kl − k′l)ϕil(X2, X
′
2,k
′)ϕ22(X2, X

′
2,k − k

′)

− 2 i

k
(kl − k′l)(2kikj − kik′j − k′ikj)ϕil(X2, X

′
2,k
′)ϕj2(X2, X

′
2,k − k

′)

+
2 i

k
(ki − k′i)(2klkm − klk′m − k′lkm)ϕil(X2, X

′
2,k
′)ϕ2m(X2, X

′
2,k − k

′)

]
dk′. (C 24)

As a consequence of the use of equation (C 20), the mean terms that appeared in
equation (C 19) have been cancelled out. Furthermore, it is possible to simplify the
coefficient of the first term of the integral in the following way:

(2kikj − kik′j − k′ikj)(2klkm − klk′m − k′lkm)ϕilϕjm

=(4kikjklkm − 2kikjk
′
lkm − 2kikjklk

′
m

− 2k′ikjklkm + k′ikjk
′
lkm + k′ikjklk

′
m

− 2kik
′
jklkm + kik

′
jk
′
lkm + kik

′
jklk

′
m)ϕilϕjm

=(4kikjklkm − 8k′ikjklkm + 4k′ik
′
jklkm)ϕilϕjm (C 25)

In fact, kikjk
′
lkm, kikjklk

′
m, k′ikjklkm, kik

′
jklkm all represent the same kind of combi-

nations of the elements of k and k′, namely those that take one coefficient from k′ and
the remaining three coefficients from k. Likewise, terms k′ikjk

′
lkm, k′ikjklk

′
m, kik

′
jk
′
lkm,

kik
′
jklk

′
m represent the same combinations where two factors are taken from k and two
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from k′. So, the first term of the integral can be re-written as

1

k2
(2kikj − kik′j − k′ikj)(2klkm − klk′m − k′lkm)ϕil(X2, X

′
2,k
′)ϕjm(X2, X

′
2,k − k

′)

=
4klkm
k2

(kikj − 2k′ikj + k′ik
′
j)ϕil(X2, X

′
2,k
′)ϕjm(X2, X

′
2,k − k

′). (C 26)

The formulation that appears in Hodgson (1961) is slightly different. There we can find
in equation (B.11)

2klkm
k2

(2kikj − k′ikj − kik′j)ϕil(X2, X
′
2,k
′)ϕjm(X2, X

′
2,k − k

′).

However, this formula lacks all the fourth-order monomials where two factors are taken
from k and two from k′. This is most likely a typewriting error.

C.4. Turbulence modelling

A possible expression of the cross-spectrum of two components of the turbulent velocity
fluctuations is given by

ϕij(X2, X
′
2,k) =

u2(X2)

16π
L4 (k2δij − kikj) e−k

2L2/4 F2 (C 27)

where i, j ∈ {1, 3} and the use of a Gaussian function indicates a kind of “isotropic”
distribution of energy in the plane of the wavenumbers (k1, k3). Similarly, the cross-
spectrum of vertical velocity fluctuations can be defined as

ϕ22(X2, X
′
2,k) =

u2(X2)

16π
L4 k2 e−k

2L2/4F2 (C 28)

In both equations (C 27) and (C 28), the term that represents the distribution of turbulent
kinetic energy over the planar wavenumbers (k1, k3) is multiplied by a factor F2 that
represents the correlation of turbulence between planes parallel to the wall, having
vertical coordinates X2 and X ′2, respectively. Consistently with the theory presented
in section 3.3, the correlation of velocity between planes parallel to the wall should be
expressed as

FG2 = e−(X2−X′
2)

2
/L2

(C 29)

that is also a Gaussian function. In particular, using equation (C 29) in (C 28), equa-
tion (3.22) is immediately obtained. However, Hodgson (1961) expresses this coefficient
as

FE2 = e−|X2−X′
2|/L. (C 30)

Since the exponential function is flatter than the Gaussian, the corresponding turbulence
field is significantly correlated over a greater part of the boundary layer. The cross-
spectral densities obtained by substituting equation (C 30) in (C 28) or (C 27) cannot
be derived from a given longitudinal correlation function, as shown in Appendix B.
However, they are grounded in experimental evidence, being the Fourier transform of
the correlation coefficients given by Grant (1958). In any case, the assumption behind
this formula is that the turbulent kinetic energy, K, is equally distributed among the
three spatial directions, so that

u2(X2) =
2

3
kT (X2).

Furthermore, Hodgson (1961) argues on the basis of a mirror flow model that the
contribution of the turbulence cross-spectra of the kind ϕi2, with i ∈ {1, 3}, is small
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enough to be negligible. Accepting this assumption and substituting equations (C 26),
(C 27), (C 28) in equation (C 24), the following expression is obtained:

ϕTTpp (k) =
ρ20 L

8

256π2

(∫∫ ∞
0

u2(X2)u2(X ′2) e−k(X2+X
′
2) F2

2 dX2dX ′2

)
×
∫
R2

e−k
′2 L2/4 e−|k−k

′|2 L2/4

×

[
4klkm
k2

(kikj − 2k′ikj + k′ik
′
j) (k′2δil − k′ik′l)

×
(∣∣k − k′∣∣2 δjm − (kj − k′j)(km − k′m)

)
+ 4(ki − k′i)(kl − k′l) (k′2δil − k′ik′l)

∣∣k − k′∣∣2 ]dk′. (C 31)

The integral in dk′ of Eq. (C 31) is lengthy but quite straightforward from the analytic
point of view, since the integrand consists in the product of a polynomial by a Gaus-
sian function. The integration has been performed automatically using the open-source
symbolic computation code SageMath-8.2, which yields the following result:

ϕTTpp (k) =
ρ20 L

2

128π
k2 (28 + L2k2) e−L

2k2/8

∫∫ ∞
0

u2(X2)u2(X ′2) e−k(X2+X
′
2) F2

2 dX2dX ′2.

(C 32)

Appendix D. Derivation of equations

D.1. Derivation of equation (4.3)

Starting from the equation

ϕTMpp (k) =
τ2wu

2L4

4πν2

∫∫ ∞
0

k21 exp

(
−k

2L2

4
− (k + γ) (X2 +X ′2)− (X2 −X ′2)

2

L2

)
dX2 dX ′2

(D 1)
and defining the new variable Y2 = X ′2 − X2, the double integration in the vertical
direction can be solved as∫ ∞

0

e−(k+γ)X2 dX2

∫ ∞
0

e−(k+γ)X
′
2 dX ′2 e−(X2−X′

2)
2
/L2

=

∫ ∞
0

e−2(k+γ)X2

(∫ ∞
−X2

e−(k+γ)Y2e−Y
2
2 /L

2

dY2

)
dX2

=−

√
π
(
L erf

(
1
2 L(k + γ)

)
e( 1

4 L
2(k+γ)2) − L e( 1

4 L
2(k+γ)2)

)
2 (k + γ)

. (D 2)

Substituting equation (D 2) in (D 1) and using the relationship

erfc(x) = 1− erf(x)

yields equation (4.3).
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D.2. Derivation of equation (4.4)

Substituting ν = 1/2 in equation (3.25) yields the Liepmann turbulence cross-spectral
density,

ϕ22(k, X2, X
′
2) =

u2 Λ4 k2 ζ5/2

(2π)3/2 (1 + k2Λ2)
5/2

K5/2(ζ). (D 3)

In this case, the Bessel function assumes the form

K5/2(ζ) =

√
2π
(
ζ2 + 3 ζ + 3

)
e(−ζ)

2 ζ5/2
(D 4)

which makes the following derivations easier.
The use of equations (D 3), (4.1) and (4.2) in equation (3.17) yields

ϕTMpp (k) =
4 τ2w u

2 Λ4 k21

(2π)3/2 (1 + k2Λ2)
5/2

ν2

∫∫ ∞
0

e−(X2+X
′
2)(k+γ)

×
(
|X2 −X ′2|

Λ

√
1 + k2Λ2

)5/2

K5/2

(
|X2 −X ′2|

Λ

√
1 + k2Λ2

)
dX2 dX ′2.

(D 5)

Defining the variable

Ỹ2 =
(X ′2 −X2)

√
1 + k2Λ2

Λ
allows us to cast the integral of equation (D 5) in the form

Λ√
1 + k2Λ2

∫ ∞
0

e−2(k+γ)X2

∫ ∞
−X2

Λ

√
1+k2Λ2

e
− (k+γ)Λ√

1+k2Λ2
Ỹ2
∣∣∣Ỹ2∣∣∣5/2 K5/2

(∣∣∣Ỹ2∣∣∣) dỸ2 dX2.

(D 6)
Defining, for simplicity, the parameter β =

√
1 + k2Λ2/((k + γ)Λ), the integral in Ỹ2 of

equation (D 6) can be calculated as follows:∫ ∞
−(k+γ)βX2

e−
Ỹ2
β

∣∣∣Ỹ2∣∣∣5/2 K5/2

(∣∣∣Ỹ2∣∣∣) dỸ2

=

√
π

2
β

(
8β2 − 9β + 3

(β − 1)3
+

8β2 + 9β + 3

(β + 1)3

)
−
√

π

2
βe−(k+γ)(β−1)X2

× (β2((k + γ)2β2X2
2 + 5(k + γ)βX2 + 8) + β(−2(k + γ)2β2X2

2 − 8(k + γ)βX2 − 9)

+ (k + γ)2β2X2
2 + 3(k + γ)βX2 + 3)/(β − 1)3 = I . (D 7)

Then, substituting equation (D 7) in (D 6),

Λ√
1 + k2Λ2

∫ ∞
0

e−2(k+γ)X2I dX2 =

√
2πΛβ

2
√

1 + k2Λ2

8β2 + 9β + 3

(k + γ)(β + 1)3
. (D 8)

Finally, the substitution of equation (D 8) in (D 5), with the rearrangement of a few
coefficients, yields equation (4.4).
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Borrell, G., Sillero, J. A. & Jiménez, J. 2013 A code for direct numerical simulation of
turbulent boundary layers at high reynolds numbers in bg/p supercomputers. Computers
& Fluids 80, 37 – 43, selected contributions of the 23rd International Conference on
Parallel Fluid Dynamics ParCFD2011.

Bradshaw, P. 1967 “inactive” motion and pressure fluctuations in turbulent boundary layers.
Journal of Fluid Mechanics 30 (2), 241–258.

Buignon, P. 2013 Scikit-monaco documentation. http://scikit-monaco.readthedocs.io/en/
latest/.

Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: Some
reflections on forty years of research. Journal of Sound and Vibration 190 (3), 299 –
315.

Caiazzo, A., D’Amico, R. & Desmet, W. 2016 A generalized corcos model for modelling
turbulent boundary layer wall pressure fluctuations. Journal of Sound and Vibration 372,
192 – 210.

Carpenter, M. H., Nordström, J. & Gottlieb, D. 1999 A stable and conservative interface
treatment of arbitrary spatial accuracy. Journal of Computational Physics 148, 341–365.

Catlett, M. R., Anderson, J. M., Forest, J. B. & Stewart, D. O. 2015 Empirical
modeling of pressure spectra in adverse pressure gradient turbulent boundary layers. AIAA
Journal 54 (2), 569–587.

Chase, D. M. 1980 Modeling the wavevector-frequency spectrum of turbulent boundary layer
wall pressure. Journal of Sound and Vibration 70 (1), 29–67.

Christophe, J. 2011 Application of hybrid methods to high frequency aeroacoustics. PhD
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