Ruthenium and Osmium Metalloradicals
Rinaldo Poli

To cite this version:

HAL Id: hal-03158361
https://hal.science/hal-03158361
Submitted on 15 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Ruthenium and Osmium Metalloradicals

Rinaldo Poli*

Keywords:
- Ruthenium
- Osmium
- Dinitrogen
- Radicals
- Non-innocent ligands

With a limited number of well-understood exceptions (the square planar configuration, complexes with strongly π-donating ligands, ...), complexes of transition metals that belong to the 4d and 5d series most typically follow the so-called EAN rule by adopting a closed-shell 18-electron configuration. Relative to the 3d metals, those of the 4d and 5d series possess more diffuse and more polarizable d orbitals, leading to greater bond covalence and to lower pairing energies and consequently to lower stability for open-shell configurations, especially in the lower oxidation states and especially for the late transition metals.\[1\] Coordinative saturation is achieved by coordination of a suitable number of 1- and 2-electron ligands and/or by forming metal-metal bonds in oligonuclear clusters. Nevertheless, enforcing mononuclear metalloradical configurations through the use of specially designed ligands can lead to peculiar properties and reactivity. A good example is the use of bulky porphyrins or geometrically constrained alkene-containing ligands leading to stable (porphyrin)RhII complexes or (alkene)RhII and (alkene)IrII complexes that have shown interesting applications in C-H activation and in catalysis.\[2, 3\]

For the heavier Group 8 elements ruthenium and osmium, complexes with the formal oxidation state 1 and a metalloradical character were previously produced, generally by electrochemical methods, only as unstable species or could not be isolated. Pilloni et al. already pointed out in 1977 that the coordination geometry could be an important factor allowing the generation of stable d⁰ mononuclear complexes and that the presumed lability of the chloride ligand in complex [Ru(dppp)Cl] (dppp = 1,3-bisdiphenylphosphinopropane) opens decomposition pathways through disproportionation.\[4\] A longer-living but still not isolable RuI complex, [Ru(P2)(Cl)]\[3\] was obtained by using the “Sacconi-type” tetratandentate phosphine ligand P2 = P(CH2CH2PPh2), which is known to stabilize M(L4) moieties either in an octahedral (with two additional cis ligands) or in a trigonal bipyramidal (with one additional axial ligand) geometry. A key to further stabilize the construct could be the incorporation of the anionic function into the tetratandentate ligand to yield a M(XL4) moiety. On the basis of this idea, Peters has recently developed tris(phosphino)silyl ligands, the relationship with the Sacconi tris system being illustrated in Scheme 1, initially showing that they are capable of stabilizing dinitrogen complexes of FeI, [(SiPR3)Fe(N2)], with R = Ph or iPr.\[6-8\]

Scheme 1. Relationship between Sacconi-type XP₃ and Peter’s [SiP(PR₃)₃] ligands.

More recently, the same ligand (with R = iPr) has successfully been used to generate the first stable mononuclear RuI and OsI metalloradicals (see Scheme 2).\[9\] The precursor complexes [(SiPR₃)MCl] were prepared from [(η⁶-C₆H₆)MCl]₂ and HSIP₃ in the presence of Et₃N and then converted into [(SiPR₃)M(N₂)] (M = Ru, 1; Os, 2) by reduction with KC₈ under dinitrogen.

The spectroscopic (IR, NMR, EPR) and structural (single crystal X-ray diffraction, see Figure 1 for 1) characterization leaves no doubt about the formulation as mononuclear M¹ species. The N₂ ligand is labile and could be substituted by PME₃ yielding the corresponding [(SiPR₃)M(PMe₃)] complexes (M = Ru, 3; Os, 4), which have also been fully characterized. The two dinitrogen complexes were also investigated electrochemically, revealing a reduction and an oxidation. The reduction process is reversible for both compounds and the stable M⁰ products could be generated by stoichiometric reductions with KC₈, isolated and crystallographically characterized. The oxidation process is reversible only for Ru and the stable product, containing however a very labile N₂ ligand, could be obtained by stoichiometric oxidation with [Cp₂Fe][B{C₆H₄(CF₃)₂-3,5}₄]. The radical character at the metal is indicated by the chemical reactivity for compound 1, i.e., by the generation of the RuI complexes [(SiPR₃)RuH(N₂)], [(SiPR₃)RuI] and [(SiPR₃)Ru(SPh)] upon treatment with Bu₃SnH, I₂, and PhSSPh, respectively. However, two-electron reactivity is also shown, in addition to the above described transformation to 3 and 4, by the reaction with organoazides, leading to imido/nitrene products via elimination of N₂ (Scheme 2). The EPR investigation and DFT calculations for compounds 1-4 give strong support to the description of the complexes as bona fide metalloradicals. The EPR...
spectrum shows significantly anisotropic rhombic tensors with larger ($\Delta g_{xx}/\Delta g_{min}$) values than typically observed for ligand-centered radicals, while the calculations place the majority of the spin density (76% for 1, 69% for 2, 84% for 3 and 79% for 4) on the metal and also a non negligible fraction at the P nuclei (Figure 1). The observed P hyperfine splitting is consistent with the unpaired electron being located in the equatorial plane.

Figure 1. X-ray structure and spin density plot for compound 1.

Another recent study by Berry[10] has shown that the Ru0 complexes (η^6-toluene)Ru[N\textsubscript{2}] (N\textsubscript{2} = 2,6-dimino pyridine), where [N\textsubscript{2}] is only coordinated in a bidentate fashion, are converted under dinitrogen to the diamagnetic dinuclear [N\textsubscript{2}]Ru\textsubscript{2}(μ-N\textsubscript{2}) complexes \textbf{5-7}, Scheme 3, where the coordination geometry of the Ru center is strictly square planar, an unusual observation for a formally Ru0 center. In light of the known non-innocent character of 2,6-dimino pyridine ligands and on the previous recognition that [N\textsubscript{2}]FeCl and [N\textsubscript{2}]Fe(N\textsubscript{2}) complexes are best described as FeII complexes with transfer of one or two electrons to the ligand,[11, 12] the electronic structure of compounds \textbf{5-7} has been carefully analyzed. Structural evidence (ligand imino C=N distances) and an unusual temperature independent shift of the imine Me proton resonance in the 1H NMR spectrum suggest a certain degree of ligand non-innocence. Replacement of the N\textsubscript{2} ligand in compound \textbf{5} by other neutral donors (C\textsubscript{6}H\textsubscript{6}, PMe\textsubscript{3}, CO) yields 5-coordinate complexes [N\textsubscript{2}]RuLL' (Scheme 3) that seem adequately described as RuII derivatives. On the other hand, the addition of H\textsubscript{2} affords an unusual dinuclear Ru hydride complex ([N\textsubscript{2}]RuH$_2$(μ-N\textsubscript{2}), \textbf{8} (see Scheme 3), the structure of which shows two square pyramidal Ru centers with an axial hydrido ligand, linked by a linear N\textsubscript{2} bridge.[13] This is formally a RuII species and is indeed paramagnetic as expected for one unpaired electron per [N\textsubscript{2}]Ru(H) unit, but displays no tendency to further add H\textsubscript{2} to yield a dihydrido RuIII product. Broken symmetry DFT calculations on a mononuclear [N\textsubscript{2}]Ru(H)(N\textsubscript{2}) model complex reveal a large contribution of the RuII([N\textsubscript{2}] formalism, with 73% SOMO localization on the [N\textsubscript{2}] ligands and only 19% on the metals. In conclusion, the one-electron reactivity of \textbf{8} with H\textsubscript{2} appears more consistent with a formal transformation of RuII to RuIII rather than RuII to RuI.

In conclusion, the two above-highlighted elegant studies by Peters and Berry have underlined for the first time that relatively stable complexes of ruthenium and osmium in the oxidation state I may be obtained by judicious choice of the supporting ligand system, but also that internal electronic rearrangements are possible when the ligand has the ability to play a non innocent role. They have clearly shown the need to carefully apply a vast array of experimental and theoretical characterization methods for achieving an appropriate description of the electronic structure for these interesting new systems.[9, 10, 13] The preliminary reactivity studies reported in these contributions already announce that they are amenable to the development of interesting new chemistry. Note that a recent review on ruthenium complexes with non innocent ligands has appeared,[14] although it makes no mention of systems best described as having a Ru center with a formal oxidation state of I.

Received: (will be filled in by the editorial staff)
Published online on (will be filled in by the editorial staff)

Unprecedented stability for ruthenium(I) and osmium(I) complexes with metalloradical character has been achieved by use of judiciously chosen supporting ligands based on the tris(phosphino)silyl motif, but pronounced radical character on Ru I is also enforced by non-innocent ligands of diiminopyridine type.