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Hyperspectral super-resolution accounting for spectral variability: coupled tensor1

LL1-based recovery and blind unmixing of the unknown super-resolution image∗2

Clémence Prévost† , Ricardo A. Borsoi‡ ,§ , Konstantin Usevich† , David Brie† , José C. M.3

Bermudez‡ , and Cédric Richard§4

5

Abstract. In this paper, we propose to jointly solve the hyperspectral super-resolution problem and the unmix-6
ing problem of the underlying super-resolution image using a coupled LL1 block-tensor decomposi-7
tion. We consider a spectral variability phenomenon occurring between the observed low-resolution8
images. Exact recovery conditions for the image and mixing factors are provided. We propose two9
algorithms: an unconstrained one and another one subject to non-negativity constraints, to solve10
the problems at hand. We showcase performance of the proposed approach on synthetic and real11
images.12

Key words. Hyperspectral super-resolution, spectral variability, hyperspectral unmixing, image fusion, tensor13
decompositions.14
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1. Introduction.16

1.1. Background. Hyperspectral devices are able to sample the electromagnetic spectrum17

into hundred of wavelengths, allowing for the acquisition of hyperspectral images (HSIs) that18

possess high spectral resolution. However, the tradeoff between spatial and spectral resolution19

forces the HSIs to have a small number of relatively large pixels [41]. On the other hand, mul-20

tispectral sensors produce multispectral images (MSIs) with high spatial resolution (smaller21

pixels), at the cost of a restricted number of spectral bands. The composition of each pixel22

in HSIs and MSIs can be approximated by a sum of a small number of spectral signatures,23

or endmembers. This representation is known as the linear mixing model, and allows for24

identification of the materials and their abundances in a scene, a process termed unmixing.25

Many unmixing approaches have been proposed (see [3, 37, 36] and references therein).26

The hyperspectral super-resolution (HSR) problem [50] was formulated to circumvent the27

physical limitations of each device. This problem aims at recovering a super-resolution image28

(SRI) that possesses both high spatial and high spectral resolutions from co-registered HSI29

and MSI of the same scene. The high spatial and spectral resolutions of the SRI can then be30

exploited in unmixing tasks.31
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Since there exist few satellites that carry both hyperspectral and multispectral sensors32

[15, 29], combining an HSI and an MSI acquired onboard of different missions has become33

a task of prime interest [22, 17]. Since the HSI and the MSI are acquired at different time34

instants, their acquisition conditions can differ by, e.g., illumination, atmospheric or seasonal35

changes [5]. This can cause variations in the underlying endmembers and impact negatively36

the HSR and unmixing algorithms. This phenomenon is known as spectral variability.37

In this paper, we propose to formulate the HSR problem as a coupled tensor block-term38

decomposition (BTD) of the HSI and MSI, accounting for spectral variability between the39

endmembers. Inspired by the works of [54, 53, 13], we propose guarantees for noiseless exact40

recovery of the SRI and its latent factors based on the linear mixing model. One advantage41

of using the linear mixing model is that the factors of a properly chosen decomposition can42

be seen as the high-resolution spectral signatures and abundance maps corresponding to the43

materials in the underlying SRI, provided that they are entry-wise non-negative. Differently44

from matrix-based models, our noiseless recovery conditions do not require additional con-45

straints on the low-rank factors. We also propose a unified procedure that aims at estimating46

the latent mixing factors and recovering the SRI in one single step. Our experiments illus-47

trate the competitive performance of the proposed approach for HSR. The performance for48

unmixing of the unknown SRI is compared to that of traditional unmixing algorithms applied49

on an estimated SRI.50

Many approaches have been proposed to solve the HSR problem. Most matrix approaches51

[51, 49, 42, 48] are based on the linear mixing model and perform a coupled low-rank fac-52

torization of the matricized HSI and MSI. Some matrix approaches provide exact recovery53

conditions for the SRI in noiseless cases. However, these recovery guarantees usually require54

additional priors on the model. See for example [33], which promotes sparsity of the factors. In55

the absence of such hypotheses, only a bound on the recovery error can be obtained [34]. Some56

matrix approaches are suitable for the HSR and unmixing problem as well, which consists of57

recovering the underlying SRI by means of a physically-informed low-rank approximation. See58

for instance [33] and [51]. However, identifiability of the mixing model could only be obtained59

under additional constraints on the low-rank factors [14, 32]. As a result, to the best of our60

understanding, recovery conditions for the joint HSR and unmixing problem in the literature61

only consider specific classes of problems.62

More recently, tensor-based approaches were proposed for the HSR problem. The works63

of [27, 28] formulate the HSR problem as a coupled canonical polyadic (CP) decomposition,64

while a coupled multilinear Tucker decomposition is used in [38]. However, the factors of these65

decompositions lack physical interpretation, and thus the aforementioned methods cannot be66

used for unmixing. Motivated by the usefulness of tensor models, approaches based on block-67

tensor decomposition [53, 13] were proposed for solving the HSR problem. This decomposition68

was also successfully used to perform unmixing [39] on the SRI directly.69

Most of these approaches however share a common limitation: they assume that the70

acquisition conditions of the HSI and MSI are the same, hence they ignore the variability71

phenomenon. In [4], a super-resolution method accounting for seasonal spectral variability72

was proposed. Using a low-rank matrix formulation, the spectral signatures underlying the73

HSI and MSI were allowed to be different from each other, with variations introduced by a74

set of multiplicative scaling factors [25]. This algorithm led to significant performance im-75

provements when the HSI and MSI are subject to spatially uniform seasonal or acquisition76

variations. However, the algorithm in [4] presented high computation times and did not offer77

any theoretical guarantees. In [6], two tensor-based algorithms based on the Tucker decom-78
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HSR WITH VARIABILITY: LL1 FUSION AND UNMIXING 3

position were proposed, accounting for spatially and spectrally-localized changes between the79

HSI and MSI. Noiseless unique recovery guarantees were proposed. Unfortunately, the Tucker80

decomposition being generally non-unique, the decomposition factors were not physically in-81

terpretable.82

The paper is organized as follows. The remainder of Section 1 contains tensor algebra83

preliminaries. Section 2 introduces the low-rank tensor model, and the model for spectral vari-84

ability. Section 3 addresses recovery analysis for the joint HSR and unmixing task. Section 485

describes the proposed algorithms and their computational complexity. Finally, Sections 586

and 6 contain numerical experiments for HSR and coupled unmixing, respectively.87

1.2. Definitions and notations. We follow the notations of [31, 10]. We use lower (a) or88

uppercase (A) plain font for scalars, boldface lowercase (a) for vectors, boldface uppercase89

(A) for matrices and calligraphic (A) for tensors. The elements of vectors, matrices and90

tensors are denoted as ai, Ai,j and Ai1,...,iN , respectively. The transpose of a matrix A is91

denoted by AT. We use IN for the N ×N identity matrix and 0L×K for the L ×K matrix92

of zeros. Notation 1L denotes an all-ones vector of size L× 1. For a matrix X, the notation93

X ≥ 0 means that X is entry-wise non-negative. Symbols � and � denote the Kronecker94

and Khatri-Rao products, respectively. The Hadamard (element-wise) product is denoted by95

�. We use vec{·} for the standard column-major vectorization of a matrix or a tensor. For96

two matrices A and B, the operator Diag{A,B} produces a block-diagonal matrix whose97

diagonal blocks are A and B. Each dimension of a tensor is called a mode, and the number of98

dimensions is called order. A mode-p fiber of tensor X is a vector obtained from X by fixing99

all but the p-th dimension. A slab or slice of a tensor X is a matrix whose columns are the100

vectors of X obtained by fixing all but two of its modes. We restrict the scope of this paper101

to order-3 tensors.102

Definition 1.1. Outer product – The outer product between three vectors a ∈ RI , b ∈ RJ ,103

c ∈ RK is an order-3 tensor of rank 1 defined as X = a⊗ b⊗ c ∈ RI×J×K . Each element of104

X is accessed as Xi,j,k = aibjck.105

Definition 1.2. Tensor unfoldings – The mode-p unfolding of a tensor X , denoted by106

X(p), is the matrix whose rows are the mode-p fibers of X , ordered according to the vector-107

ization order. For a third-order tensor X ∈ RI×J×K , we have X(1) ∈ RJK×I , X(2) ∈ RIK×J108

and X(3) ∈ RIJ×K .109

Definition 1.3. Mode product – The mode-p product between a tensor X and a matrix110

M is denoted by X •pM and is evaluated such that each mode-p fiber of X is multiplied by111

M . For instance, the elements of the mode-1 product between X ∈ RI×J×K and M ∈ RL×I112

are determined as (X •1M)`,j,k =
∑
i
Xi,j,kM `,i, ` ∈ {1, . . . , L}. Moreover, it holds that113

Y = X •kM ⇔ Y (k) = X(k)MT.114

1.3. Block-term decomposition with ranks (L,L, 1). In this subsection, we introduce the115

block-term decomposition with ranks (L,L, 1), that we will use to build our model. The main116

advantage of this decomposition is to link the low-rank factors to high-resolution abundance117

matrices and spectral signatures used inunmixing of the unknown SRI, under additional non-118

negativity priors on the low-rank factors. We also recall some sufficient uniqueness conditions119

for this decomposition, as well as useful properties.120
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Definition 1.4. Block-term decomposition – An order-3 tensor X ∈ RI×J×K generally121

admits a block-term decomposition (BTD) with ranks (L,L, 1) (LL1-BTD) as122

X =

R∑
r=1

(
ArB

T
r

)
⊗ cr,(1.1)123

124

where Ar ∈ RI×L, Br ∈ RJ×L, and cr ∈ RK , for r ∈ {1, . . . , R}. Moreover, we denote125

A = [A1, . . . ,AR] ∈ RI×LR, B = [B1, . . . ,BR] ∈ RJ×LR and C = [c1, . . . , cR] ∈ RK×R.126

Theorem 1.5. [12, Theorem 4.7] Let (A,B,C) denote an LL1-BTD of a tensor X for127

r ∈ {1, . . . , R} as in (1.1). Assume that (A,B,C) are drawn from certain joint absolutely128

continuous distributions. If IJ ≥ L2R and129

min

(
b I
L
c, R

)
+ min

(
bJ
L
c, R

)
+ min(K,R) ≥ 2R+ 2,130

131

then ArB
T
r and cr are essentially unique almost surely for r ∈ {1, . . . , R}.132

Definition 1.6. Partition-wise Khatri-Rao product – The partition-wise Khatri-Rao133

product between two partitioned matrices A and C defined as above can be expressed as134

C �p A = [c1�A1, . . . , cR�AR] ∈ RIK×LR.135136

Property 1.7. Tensor unfoldings and LL1 – Using the above notations, the unfoldings137

of a tensor X admitting an LL1-BTD as above can be expressed as138

X(1) = (C �p B)AT,139

X(2) = (C �p A)BT,140

X(3) = [(A1 �B1) 1L, . . . , (AR �BR) 1L]CT.141142

2. Proposed model.143

2.1. Degradation model and indeterminacies. We consider an HSI data cube YH ∈144

RIH×JH×K and an MSI data cube YM ∈ RI×J×KM . The scalars K and KM denote the145

spectral dimensions, and (I, J) (resp. (IH , JH)) stand for the spatial dimensions. We suppose146

that the spatial resolution of the MSI is higher than that of the HSI (i.e., IH < I and JH < J),147

while its spectral resolution is lower (KM < K). Most previous works [27]–[13] considered the148

low resolution images as degraded versions of a single SRI Z ∈ RI×J×K , that possesses high149

spatial and spectral resolutions. This model can be expressed as:150 {
YH = Z •1P 1 •2P 2 + EH ,
YM = Z •3P 3 + EM ,

(2.1)151

152

where the tensors EH and EM are additive noise terms. The matrix P 3 ∈ RKM×K contains153

the spectral response functions for each band of the MSI sensor. The spatial degradation154

matrices P 1 ∈ RIH×I and P 2 ∈ RJH×J perform Gaussian blurring and downsampling along155

each spatial dimension, i.e. we suppose that the spatial degradation operation is separable,156

as in the commonly used Wald’s protocol [47].157
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However, this model implies that the acquisition conditions of YH and YM are the same,158

thus it ignores possible variations in atmospheric, seasonal or illumination conditions [44, 52]159

between the HSI and MSI. The variability phenomenon motivates the need for more flexible160

models. As a result, in this paper, we adopt a more general approach. As in [6], we consider161

two different SRIs Z ∈ RI×J×K and Z̃ ∈ RI×J×K , underlying the HSI and MSI, respectively.162

The SRIs Z and Z̃ contain possibly different spectral signatures and can be linked as163

Z̃ = Z + Ψ,(2.2)164165

where Ψ ∈ RI×J×K is a tensor of spectral variability. This leads to the following model:166 {
YH = Z •1P 1 •2P 2 + EH ,
YM = Z̃ •3P 3 + EM .

(2.3)167

168

In this framework, the HSR problem consists recovering Z ∈ RI×J×K and Ψ ∈ RI×J×K169

under the assumption of the observation model (2.2)–(2.3). However, the presence of the170

variability tensor Ψ makes this problem ambiguous [6], as one cannot easily separate Z and171

Ψ from Z̃. We recall the following theorem [6]:172

Theorem 2.1. [6, Theorem 1.a)] Suppose that the HSI and MSI are generated according to173

(2.3) and that the observation noise is zero (i.e. EH ,EM = 0). If either P 1, P 2 or P 3 have174

non-trivial nullspace, then (Z,Ψ) cannot be uniquely recovered from YH and YM .175

In [6], approaches based on model (2.3) were proposed, using a coupled Tucker approxima-176

tion. However, due to the non-uniqueness of the Tucker decomposition, the latent multilinear177

factors were not guaranteed to be unique, and no non-negativity constraints were enforced.178

Thus it was not possible to incorporate them into an interpretable mixing model. In what179

follows, we introduce a low-rank tensor model to circumvent the fundamental ambiguities of180

the proposed degradation model. Indeed, a wisely chosen low-rank decomposition might still181

allow for unique recovery of portions of the tensors. We propose to use the LL1-BTD, whose182

factors are suitable for physical interpretation. The LL1-BTD model was successfully used for183

unmixing [39] and HSR [53, 13]. However, these works ignored any variability phenomenon.184

Differently from [6] (that considered spatially and spectrally localized changes), we con-185

sider that variability only impacts the spectral dimension of the SRI. This is reasonable, since186

spectral variability can occur even with short acquisition time differences. This assumption187

also allows for sometimes less restrictive noiseless recoverability guarantees than the ones from188

[6]∗. As a result, the proposed model is more suitable for scenarios with low spatial variability.189

Nevertheless, we will show in Sections 5 and 6 that it is able to address large acquisition time190

differences as well.191

2.2. LL1-BTD mixing model for the underlying SRIs. In the linear mixing model, each192

pixel of the SRI Z (and therefore, of the HSI YH) can be represented as a sum of a small193

number R of pure spectral signatures [30]. This property can be incorporated in a physically-194

informed low-rank approximation model, allowing to perform both HSR and unmixing in a195

unified procedure. Thus, as in [53], we can model the third-mode unfolding of Z as:196

Z(3) = SCT ∈ RIJ×K ,(2.4)197198

∗because of the more general variability model.
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where C = [c1, . . . , cR] ∈ RK×R is a matrix containing the spectral signatures of the R199

endmembers underlying the SRI. The matrix S = [vec{S1}, . . . , vec{SR}] ∈ RIJ×R contains200

the vectorized abundance maps of each material. In fact, (2.4) can be viewed as the linear201

mixing model for the SRIZ, under the assumption thatC and S are entry-wise non-negative†.202

We assume as in [53] that the abundance maps admit low rank L. The hypothesis of low-203

rank abundance matrices is reasonable, since the two spatial dimensions are often correlated204

along the rows and columns, respectively. Thus we have205

Sr ≈ ArB
T
r ∈ RI×J ,(2.5)206207

where Ar ∈ RI×L and Br ∈ RJ×L admit rank L. In [7], an upper bound on the reconstruction208

error of such matrices by (2.5) is provided in the general problem. In particular, this error209

can be as small as desired if L is large enough, which motivates the above assumption.210

Reshaping (2.4) into tensor format yields the following:211

Z =
R∑
r=1

(ArB
T
r )⊗ cr.(2.6)212

213

The above model can be seen as an LL1-BTD of the tensor Z with factors A = [A1, . . . ,Ar],214

B = [B1, . . . ,Br] and C = [c1, . . . , cr] related to the mixing factors.215

State-of-the-art unmixing algorithms aim at recovering {Sr = ArB
T
r }Rr=1 and C from the216

mixed pixels in Z. Here, since Z is unknown and only YH is observed with high spectral reso-217

lution, these algorithms are only able to recover spatially-degraded versions of the abundance218

maps [13], namely219

P 1SrP
T
2 ∈ RIH×JH for r ∈ {1, . . . , R}.(2.7)220221

Differently from those works, fusion of an HSI with an MSI with high spatial resolution allows222

us to seek for abundance maps at a higher spatial resolution.223

In Figure 1, our model and the joint unmixing-and-HSR strategy are summarized. Since224

the true SRIs Z and Z̃ are unknown, we utilize the fusion framework to decompose the HSI225

and MSI into interpretable mixing factors. While high-resolution spectra can be obtained226

from the HSI, high-resolution abundance maps can only be obtained from the MSI. The227

fusion framework allows to exploit fully the information contained in the observations. Once228

the mixing factors have been retrieved, the estimated SRI Ẑ can be approximated using the229

LL1-BTD‡. However, the spectral variability has to be modeled first.230

2.3. Modeling spectral variability. In traditional unmixing applications, which only deal231

with a single SRI, spectral variability defines the fact that the spectrum of a material (e.g.,232

grass or soil) changes from pixel to pixel. This sort of spectral variability is widely considered233

in the literature; see e.g., [44] and references therein. However, two different images are234

†In some traditional unmixing methods (see e.g. [36]), the sum-to-one constrained abundance matrices
is also enforced. However, spatial illumination changes frequently introduce scaling variations in each pixel.
Moreover, non-negativity constraints can be transformed equivalently to generalized sum-to-one constraint, as
specified in [26]. As a result, we do not consider this additional constraint in this work.
‡It should be mentioned that this framework is different from a two-step procedure which would i) recover

the SRI Ẑ from data fusion, then ii) run a traditional unmixing algorithm with the estimated SRI.
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Unknown
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HSRLL1-BTD

Low-rank
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Figure 1. Summary of the model and resolution strategy.

considered in our framework. The variability between their corresponding spectra can be235

more significant, since their acquisition conditions may be very different. In this paper, we236

adopt a simple model for spectral variability, which characterizes which wavelengths are more237

impacted by different acquisition conditions for each material in the images. Although not238

describing pixel-by-pixel spectral variability, this model is appropriate to describe variations239

due to different acquisition conditions and will allow us to obtain recovery guarantees.240

In [25], the generalized linear mixing model was proposed to model the spectra underlying241

the MSI as242

C̃ = ψmulti �C,(2.8)243244

where ψmulti ∈ RK×R is a matrix of positive scaling factors. In this paper, motivated by model245

(2.1), we propose to use an equivalent additive model:246

C̃ = ψ +C,(2.9)247248

where ψ ∈ RK×R is different from ψmulti. The choice of the additive variability model (2.9)249

allows us to keep the spectral variability explicit in ψ. Moreover, both models (2.8) and (2.9)250

are able to represent arbitrary endmember variations.251

Since we allow only spectral variability to be present, the variability tensor Ψ also admits252

an LL1-BTD with the same factors A and B as for the SRI Z, but with spectral factor253

ψ ∈ RK×R representing the spectral variations. This allows to write Z̃ as254

Z̃ =
R∑
r=1

(ArB
T
r )⊗ cr︸ ︷︷ ︸

Z

+
R∑
r=1

(ArB
T
r )⊗ψr︸ ︷︷ ︸

Ψ

=
R∑
r=1

(ArB
T
r )⊗ c̃r,(2.10)255

256

where c̃r = ψr + cr is the r-th column of C̃.257
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From the above formulations, we can finally express (2.3) as a coupled LL1-BTD:258 {
YH =

∑R
r=1(P 1Ar(P 2Br)

T)⊗ cr + EH ,
YM =

∑R
r=1(ArB

T
r )⊗ P 3c̃r + EM .

(2.11)259

260

Thus the joint unmixing-and-HSR problem consists in finding the LL1 factors {ArB
T
r }Rr=1,261

C, C̃ under the assumption of (2.11), subject to the constraints262

{ArB
T
r }Rr=1 ≥ 0,C ≥ 0, C̃ ≥ 0 .(2.12)263264

3. Recoverability analysis. The unmixing-and-HSR problem aims at recovering an SRI265

Z and a variability tensor Ψ underlying the HSI in MSI, admitting a coupled LL1-BTD as266

in (2.11) under the constraints (2.12). The mixing factors underlying the images must also267

be recovered uniquely. In this section, we provide a noiseless recovery analysis§ for the SRI268

Z and variability tensor Ψ. We show that our results hold for both image recovery and269

estimation of the mixing factors. Although the following results are inspired by those of270

[54, 13], there exist two main differences in our work. First, differently from [13], our model271

accounts for variability. Second, we explicitly address unique recovery of the low-rank LL1272

factors as mixing factors, which was not addressed in [13].273

Theorem 3.1. Assume that the SRIs Z and Z̃ admit BTDs as in (2.6) and (2.10), respec-274

tively, that the HSI and MSI follow the coupled model (2.11), and that EH ,EM = 0. Suppose275

that {Ar,Br}Rr=1,C, C̃ are drawn from any absolutely continuous joint distributions and that276

P 1, P 2, P 3 are full row rank. Let {A∗r ,B∗r}Rr=1,C
∗, C̃∗ denote any solution to the unmixing-277

and-HSR problem. Then with probability one, the true SRI Z and degraded SRI Z̃ •3P 3 are278

uniquely recovered by279

Z =
R∑
r=1

(A∗r(B
∗
r)

T)⊗ c∗r , Z̃ •3 P 3 =
R∑
r=1

(A∗r(B
∗
r)

T) •3 P 3c̃
∗
r ,280

281

if IHJH ≥ LR, IJ ≥ L2R and282

min

(
b I
L
c, R

)
+ min

(
bJ
L
c, R

)
+ min(KM , R) ≥ 2R+ 2.283

284

Moreover, the abundance maps and spectral signatures represented by the LL1 factors285

{S∗r = A∗r ,B
∗
r}Rr=1,C

∗,P 3C̃
∗

are recovered uniquely up to permutation and scaling ambigui-286

ties.287

Let us first recall the following lemma:288

Lemma 3.2. [27, Lemma 1] Let us denote Ã = PA ∈ RI
′×L, where P ∈ RI

′×I is full289

row rank and A ∈ RI×L is drawn from any absolutely continuous joint distribution. Then Ã290

follows an absolutely continuous joint distribution.291

We can now derive the proof for Theorem 3.1.292

§See also [45, S.1] that proposes exact recovery conditions based on the LL1-BTD, from a tensor completion
perspective.
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Proof. Let {Ar,Br}Rr=1,C, C̃ denote the groundtruth factors of the SRI tensors and293

let {A∗r ,B∗r}Rr=1,C
∗, C̃∗ denote a solution to problem the unmixing-and-HSR problem un-294

der constraints (2.12). Moreover, let {Sr}Rr=1 denote the groundtruth abundance maps and295

{S∗r}Rr=1 = {A∗r(B∗r)T}Rr=1. Then for EH ,EM = 0, it holds that296

YH =
R∑
r=1

(P 1Ar(P 2Br)
T)⊗ cr =

R∑
r=1

(P 1A
∗
r(P 2B

∗
r)

T)⊗ c∗r ,(3.1)297

YM =
R∑
r=1

Sr ⊗ P 3c̃r =
R∑
r=1

S∗r ⊗ P 3c̃
∗
r .(3.2)298

299

Since by assumption, {Ar,Br}Rr=1,C, C̃ are drawn from absolutely continuous joint distribu-300

tions and P 1, P 2 and P 3 are full row rank, it follows from Lemma 3.2 that {P 1Ar,P 2Br}Rr=1,301

P 3C̃ follow certain absolutely continuous joint distributions.302

Therefore, by Theorem 1.5, the LL1-BTD of YM is essentially unique almost surely if303

IJ ≥ L2R and304

min

(
b I
L
c, R

)
+ min

(
bJ
L
c, R

)
+ min(KM , R) ≥ 2R+ 2.305

306

This means that307

S∗ = SΠΛ, P 3C̃
∗ = P 3C̃ΠΛ−1,(3.3)308309

where Π is a permutation matrix and Λ is a non-singular diagonal scaling matrix.310

Next, let us define S̃ = (P 2�P 1)S. We can see that S̃∗ = S̃ΠΛ, where S̃∗ =311

(P 2�P 1)S
∗. From [11, Lemma 3.3] and the proof of [13, Theorem II], S̃ has full column312

rank almost surely if IHJH ≥ LR.313

Let us continue by considering Y
(3)
H . From (3.1), we have314

Y
(3)
H = S̃CT = S̃∗(C∗)T = S̃ΠΛ(C∗)T.315316

Since S̃ has full column rank, we thus have317

C∗ = CΠΛ−1.(3.4)318319

Following (3.3) and (3.4), the LL1 factors S,C,P 3C̃ are recovered uniquely up to permutation320

and scaling ambiguities by S∗,C∗ and P 3C̃
∗, respectively.321

Finally, we can express the third unfolding of the SRI Z and degraded Z̃ •3P 3 as322

Z(3) = S∗(C∗)T, (Z̃ •3 P 3)
(3) = S∗(P 3C̃

∗)T,323324

which are the third unfoldings of the tensors in (3.1)–(3.2).325

Remark 3.3. In the proof for Theorem 3.1, we can see that the low-rank factors C, P 3C̃326

and S can be uniquely identified up to permutation and scaling ambiguities. This means that327

they can be interpreted as mixing factors underlying Z and Z̃ •3P 3. Hence Theorem 3.1328

proposes unique recovery conditions for both the fusion and unmixing parts of the problem.329
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Theorem 3.1 indicates that we can only recover P 3C̃ uniquely, up to permutation and330

scaling ambiguities. Following (2.9), the variability matrix ψ can only be recovered from the331

MSI up to the spectral degradation P 3 as332

P 3ψ = P 3(C̃ −C).333334

Thus the proposed model only allows to recover uniquely a spectrally-degraded version of the335

variability tensor, that is, Ψ •3P 3.336

Remark 3.4. In practice, there exist cases where spatial degradation is unknown; previous337

tensor-based HSR methods [27, 38, 13] proposed unique noiseless recovery conditions for the338

SRI in this scenario, also referred to as “spatially-blind”. However, such methods cannot be339

envisioned with the proposed approach. Conversely, since knowledge of P 3 is not required to340

establish the above theorem, it is possible to seek for “spectrally-blind” algorithms, that do341

not require the spectral degradation matrix P 3.342

4. Algorithms. In this section, we propose two algorithms based on the LL1-BTD. The343

first one is unconstrained and solves the HSR problem only. The second one enforced non-344

negativity constraints on the factors of the mixing model and proposes a solution to the joint345

unmixing-and-HSR problem.346

4.1. Unconstrained optimization. In the remaining of this paper, for simplicity, we de-347

note C̃M = [c̃M,1, . . . , c̃M,R] = P 3C̃ and ψM = P 3ψ. Regarding super-resolution, we only348

aim at recovering the SRI Z and variability tensor Ψ. In this framework, the latent LL1349

factors do not need to be interpretable. Thus, we can consider unconstrained optimization.350

As in [27], one possible approach for solving the HSR problem is to consider the following351

optimization problem:352

minimize
A,B,C,C̃M

J (A,B,C, C̃M ) + µ‖C̃M − (P 3C +ψM )‖2F ,

(4.1)

353

s. to ‖cr‖2 = 1, ‖c̃M,r‖2 = 1, where354

J (A,B,C, C̃M ) = ‖YH −
R∑
r=1

(P 1Ar(P 2Br)
T)⊗ cr‖2F + λ‖YM −

R∑
r=1

(ArB
T
r )⊗ c̃M,r‖2F ,355

356

and λ is a balance parameter that controls the weights on the HSI and MSI¶. The regular-357

ization parameter µ controls the weight on the structural constraint C̃M = P 3C +ψM . The358

unit norm constraints on the columns of C and C̃M are enforced to avoid convergence issues,359

and are addressed during optimization with a projected gradient approach. Since (4.1) is a360

non-convex cost function, we adopt a block coordinate descent scheme: the latent factors are361

updated sequentially by solving unconstrained convex quadratic programs.362

Below, we provide the framework of the unconstrained algorithm, named BTD-Var. The363

updates for A, B and C can be seen as generalized Sylvester equations and solved by effi-364

cient solvers, for instance, Hessenberg-Schur or Bartels-Stewart algorithms; see [43] for a full365

overview. The update for C̃M is solved using normal equations. Please refer to Appendix A366

for a full derivation.367

¶As in previous works [27]–[13], we consider that λ = 1 in our experiments.
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Algorithm 4.1 BTD-Var

Input: YH , YM , B, C, C̃M , P 1, P 2, P 3; R, L, iter, λ, µ
Output: Z ∈ RI×J×K , Ψ •3P 3 ∈ RI×J×KM

Initialization: ψM = C̃M − P 3C
for m ∈ {1, . . . , iter} do

for r ∈ {1, . . . , R} do
cr = cr/‖cr‖,
c̃M,r = c̃M,r/‖c̃M,r‖,

end for
A← arg min

A
‖Y (1)

H − (C �p P 2B)ATP T
1 ‖2F + λ‖Y (1)

M −
(
C̃M �p B

)
AT‖2F ,

B ← arg min
B

‖Y (2)
H − (C �p P 1A)BTP T

2 ‖2F + λ‖Y (2)
M −

(
C̃M �p A

)
BT‖2F ,

S ←
[
. . . , vec{ArB

T
r }, . . .

]
,

C ← arg min
C

‖Y (3)
H − (P 2�P 1)SC

T‖2F + µ‖C̃M − (P 3C +ψM )‖2F ,

C̃M ← arg min
C̃M

λ‖Y (3)
H − SC̃T

M‖2F + µ‖C̃M − (P 3C +ψM )‖2F ,

ψM ← C̃M − P 3C.
end for
return Z(3) = SCT, (Ψ •3P 3)

(3) = SψT
M .

The computational cost per iteration of BTD-Var can be decomposed as follows:368

• O(I3 + J3 +K3 + L3R3) for solving the Sylvester equations;369

• O(IJKMR + IHJHKR) for computing the right-hand side in the least squares sub-370

problem.371

4.2. Constrained optimization. Although BTD-Var allows for reconstruction of Z and372

Ψ, it is not guaranteed that its result can be interpretable in a mixing model. Indeed, non-373

negativity constraints must be imposed on factors C and C̃M to provide them with physical374

meaning. Differently from [53], we also impose non-negativity on {Sr}Rr=1, rather than on375

the individual factors Ar and Br. This way, cr and c̃M,r (resp. Sr) can be seen as spectral376

signatures (resp. abundance maps) of the underlying SRI Z and MSI YM .377

The resulting constrained optimization problem is:378

minimize
A,B,{Sr}Rr=1,C,C̃M

J + µ‖C̃M − (P 3C +ψM )‖2F + γ‖Sr −ArB
T
r ‖2F(4.2)379

s. to {Sr = ArB
T
r }Rr=1 ≥ 0,C ≥ 0, C̃M ≥ 0, ‖cr‖2 = 1, ‖c̃M,r‖2 = 1,(4.3)380381

where γ is a regularization parameter that controls the weight on the low-rank constraint.382

Differently from (4.1), in (4.2)–(4.3) the Sr factors are no longer latent variables, and are383

subject to non-negativity constraints. Such constraints can be handled by using alternating384

direction method of multipliers [9, 23]. As in [23], a non-negativity constraint is relaxed by385

considering the surrogate ι+(·) (see Appendix B). Algorithm 4.2 presents the optimization386

framework for (4.2)–(4.3).387

The computational cost per-iteration of CNN-BTD-Var is:388

• O(I3 + J3 +K3 + L3R3) for solving A, B and C;389
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12 C. PRÉVOST, R. A. BORSOI, K. USEVICH, D. BRIE, J. M. BERMUDEZ AND C. RICHARD

Algorithm 4.2 CNN-BTD-Var

Input: YH , YM , A, B, C, C̃M , P 1, P 2, P 3; R, L, iter, λ, µ, γ

Output: S ∈ RIJ×R, C ∈ RK×R, C̃M ∈ RKM×R, Z ∈ RI×J×K , Ψ •3P 3 ∈ RI×J×KM

Initialization: ψM = C̃M − P 3C, {Sr = ArB
T
r }Rr=1

for m ∈ {1, . . . , iter} do
for r ∈ {1, . . . , R} do
cr = cr/‖cr‖,
c̃M,r = c̃M,r/‖c̃M,r‖,

end for
A← arg min

A
‖Y (1)

H − (C �p P 2B)ATP T
1 ‖2F + λ‖Y (1)

M −
(
C̃M �p B

)
AT‖2F

+γ‖Sr −ArB
T
r ‖2F ,

B ← arg min
B

‖Y (2)
H − (C �p P 1A)BTP T

2 ‖2F + λ‖Y (2)
M −

(
C̃M �p A

)
BT‖2F

+γ‖Sr −ArB
T
r ‖2F ,

Sr ← arg min
Sr

γ‖ArB
T
r − Sr‖2F + ι+(Sr), for r ∈ {1, . . . , R},

C ← arg min
C

‖Y (3)
H − (P 2�P 1)SC

T‖2F + µ‖C̃M − (P 3C +ψM )‖2F + ι+(C),

C̃M ← arg min
C̃M

λ‖Y (3)
M − SC̃T

M‖2F + µ‖C̃M − (P 3C +ψM )‖2F + ι+(C̃M ),

ψM ← C̃M − P 3C.
end for
return Z(3) = SCT, (Ψ •3P 3)

(3) = SψT
M .

• O(IJKMR + IHJHKR) for computing the right-hand sides in the least squares sub-390

problems.391

4.3. Initialization. Many options are available to initialize the LL1 factors. Here, as392

suggested in [12, Theorem 4.1], we initialize the A and B factors by generalized eigenvalue393

decomposition of the matrix pencil
(
(YM )T:,:,1, (YM )T:,:,2

)
(see [8, 16]), using the ll1_gevd394

function of TensorLab [46]. The C and C̃M factors are recovered by solving least-squares395

problems. We combine these steps in an algebraic algorithm called BTDRec‖ (Algorithm 4.3):396

Algorithm 4.3 BTDRec

Input: YH , YM , P 1, P 2; R, L

Output: A ∈ RI×RL, B ∈ RJ×RL, C ∈ RK×R, C̃M ∈ RKM×R

A,B
LL1
≈ YM ,

Sr = ArB
T
r for r ∈ {1, . . . , R},

CT = ((P 2�P 1)S)† Y
(3)
H ,

C̃T
M = S†Y

(3)
M .

‖echoing the initialization algorithm in [27] (called TenRec)

This manuscript is for review purposes only.



HSR WITH VARIABILITY: LL1 FUSION AND UNMIXING 13

5. Experiments for image recovery. All simulations were run on a MacBook Pro with397

2.3 GHz Intel Core i5 and 16GB RAM. For basic tensor operations we used TensorLab 3.0398

[46]. The code was implemented in MATLAB and is available online at https://github.com/399

cprevost4/LL1 HSR HU.400

5.1. Degradation model. The real SRI and MSI were acquired with the same spatial401

resolutions by the AVIRIS and Sentinel-2A instruments at different time instants, resulting402

in variability between the images. The spectral bands of Z and YM were normalized such403

that the 0.999 intensity quantile corresponded to a value of 1. This ensured that the unit404

norm constraint for the columns of C and C̃M did not cause any convergence problems. The405

HSI was obtained by spatial degradation of Z by P 1 and P 2, i.e., the SRI Z and the MSI406

YM represented images of the same scene acquired on board of different missions, and Z̃ was407

unknown. Afterwards, the SRI Z was denoised (as described in [40]) to yield the high-SNR408

reference image [50]. We also conducted experiments in a “no-variability” scenario, i.e. we409

considered that the HSI and MSI were obtained by spatial (resp. spectral) degradation of the410

same SRI Z.411

For spatial degradation, we followed the commonly used Wald’s protocol [47]. The matrices412

P 1, P 2 were computed with a separable Gaussian blurring kernel of size q = 9. Downsampling413

was performed along each spatial dimension with a ratio d = 4 between the SRI and HSI, as414

in previous works [27]–[13]. Refer to Appendix C for more details on the construction of P 1,415

P 2. White Gaussian noise with 30dB SNR was added to the HSI and MSI.416

For the spectral degradation matrix P 3, we used the spectral response functions of two417

multispectral instruments∗∗. For images with spectral variability, the Sentinel-2 sensors span418

the electromagnetic spectrum from 412nm to 2022nm and produced a 10-band MSI corre-419

sponding to the wavelengths 433–453nm (atmospheric correction), 458–522nm (soil, vegeta-420

tion), 543–577nm (green peak), 650–680nm (maximum chlorophyll absorption), 698–712nm421

(red edge), 733–747nm (red edge), 773–793nm (leaf area index, edge of NIR), 785–900nm (leaf422

area index), 855–875nm (NIR plateau), 935–955nm (water vapour absorption). The LAND-423

SAT sensor spanned the spectrum from 400nm to 2500nm for the HSI and produced a 6-band424

MSI corresponding to wavelengths 450–520nm (black), 520–600nm (green), 630–690nm (red),425

760–900nm (near-IR), 1550–1750nm (shortwave-IR) and 2050–2350nm (shortwave-IR2). This426

spectral response was used for real images without spectral variability. The spectral degrada-427

tion matrix P 3 was a selection-weighting matrix that selected the common spectral bands of428

the SRI Z̃ and the MSI.429

5.2. Metrics. We compared the groundtruth SRI Z with the recovered SRI Ẑ obtained430

by the algorithms. The main performance metric used in comparisons was the reconstruction431

Signal-to-Noise ratio (R-SNR):432

(5.1) R-SNR = 10log10

(
‖Z‖2F

‖Ẑ −Z‖2F

)
.433

∗∗available for download at https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/
document-library/-/assetpublisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses and https:
//landsat.gsfc.nasa.gov/landsat-8/.
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In addition to R-SNR, we considered different metrics described below:434

(5.2) CC =
1

IJK

(
K∑
k=1

ρ
(
Z :,:,k, Ẑ :,:,k

))
,435

where ρ(·, ·) is the Pearson correlation coefficient between the estimated and original spectral436

slices;437

(5.3) ERGAS =
100

d

√√√√ 1

IJK

K∑
k=1

‖Ẑ :,:,k −Z :,:,k‖2F
µ2k

,438

where µ2k is the mean value of Ẑ :,:,k. ERGAS represents the relative dimensionless global error439

between the SRI and the estimate, which is the root mean-square error averaged by the size440

of the SRI. We also used Spectral Angle Distance (SAD):441

(5.4) SAD =
1

R

R∑
r=1

arccos

(
cTr ĉr

‖cr‖2‖ĉr‖2

)
,442

which computes the spectral angle distance between original and estimated spectra, and can443

be used to assess unmixing performance as well. Performance for recovery of the abundance444

maps was assessed using the root mean-squared error between reference S and estimate Ŝ:445

(5.5) RMSE =
1

R

R∑
r=1

√√√√ 1

IJ

IJ∑
d=1

(
(Sr)d − (Ŝr)d)

)2
.446

Finally, we considered the computational time for each algorithm, given by the tic and toc447

functions of MATLAB.448

5.3. Recovery of the SRI and variability tensor. In this subsection, we assessed the per-449

formances of Algorithm 4.1 (BTD-Var) and Algorithm 4.2 (CNN-BTD-Var) for reconstruction450

of the SRI Z and degraded variability tensor Ψ •3P 3. We ran our algorithms with 20 outer451

iterations at most and 5 inner iterations for CNN-BTD-Var. For initialization, out of 20 trials452

of BTDRec we picked the one that provided the best reconstruction of the HSI and MSI. For453

CNN-BTD-Var, we used µ = γ = 1. We chose the hyperparameters R and L jointly. While454

L was as large as possible inside the identifiability region provided by Theorem 3.1, R was455

selected according to the real number of endmembers, when possible. Other rank-selecting456

algorithms are available for hyperspectral images, see e.g., [2, 19]. Due to page limitations,457

please refer to the Supplementary materials for a thorough discussion on the choice of R and458

L.459

For the SRI Z, we compared our results to matrix-based approaches, including HySure460

[42], CNMF [51] and GLP-HS [1]. We also considered tensor methods, namely STEREO461

[27] for CP decomposition, SCOTT [38] for Tucker and CNN-BTD [53], which is a coupled462

LL1-based algorithm that does not account for spectral variability. Finally, we considered463

matrix and tensor methods accounting for variability, namely FuVar [4] (a matrix-based algo-464

rithm based on the generalized linear mixing model), CT-STAR and CB-STAR [6], which are465
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tensor approaches based on multilinear decomposition accounting for spectrally and spatially466

localized changes. Except for CNMF, the baseline algorithms are unable to perform the un-467

mixing task. For Hysure, CNMF, GLP-HS and FuVar, we chose the ranks and regularization468

parameters according to the original works [42, 51, 4].469

For reconstruction of Ψ •3P 3, we compared the results of our algorithms with those of470

CT-STAR and CB-STAR.471

5.3.1. Lake Tahoe. The first dataset was Lake Tahoe with Z ∈ R100×80×173. The SRI472

Z and MSI YM were respectively acquired on 2014-10-04 and 2017-10-24 by the Sentinel-473

2A sensor, resulting in high variability in the crops and lake areas). We ran STEREO with474

F = 30 and 10 iterations, and SCOTT with R = (40, 40, 7) as in [6]. We ran CT-STAR with475

ranks (18, 15, 10),(3, 3, 1), and CB-STAR with ranks (20, 20, 9),(20, 20, 4). For our algorithms,476

as well as for CNN-BTD, we chose R = 3, L = 20 and λ = 1. Tables 1 and 2 display the477

reconstruction metrics and computation time forZ and Ψ •3P 3 and all considered algorithms.478

The two best results of each column are shown in bold.

Table 1
Reconstruction metrics for Z, Lake Tahoe dataset

Algorithm R-SNR CC SAD ERGAS Time
BTD-Var 15.0746 0.9384 9.7688 5.2081 2.6390

CNN-BTD-Var 16.1371 0.9514 7.2173 4.5902 1.2251
STEREO 5.8368 0.75957 30.7346 15.2801 1.2148
SCOTT 1.918 0.50379 47.1781 23.3815 0.14701

CNN-BTD 6.0332 0.80003 27.7993 14.9491 1.2826
CNMF 12.1314 0.87494 9.2422 7.2804 1.7442

GLP-HS 11.7862 0.87408 11.6106 7.6011 4.507
HySure 9.2687 0.81256 12.8228 10.1511 7.2761
FuVar 14.54 0.92498 6.7013 5.528 761.3932

CT-STAR 11.7676 0.87843 13.3433 7.6236 0.20849
CB-STAR 19.2413 0.97539 6.4649 3.2231 8.3597

Table 2
Reconstruction metrics for Ψ •3 P 3, Lake Tahoe dataset

Algorithm R-SNR CC SAD ERGAS
BTD-Var 13.8652 0.8584 14.7252 11.9947

CNN-BTD-Var 14.7347 0.8654 9.7916 11.8278
CT-STAR 11.4131 0.84542 17.7857 12.8223
CB-STAR 16.6599 0.94161 10.4442 7.8569

479

We can see that algorithms accounting for variability provided the best reconstruction480

metrics: in particular, the high performance of CB-STAR resulted from the fact that the481

algorithm accounts for spectrally and spatially localized changes. BTD-Var and CNN-BTD-482

Var provided slightly higher metrics than FuVar, but with lower computation time. Among483

the matrix-based approaches, CNMF showed the best reconstruction performance. Finally,484

other tensor-based approaches, although fast, yielded worse reconstruction metrics, due to the485

fact that they did not consider the variability. CB-STAR also provided the best metrics for486

reconstruction of Ψ •3P 3. However, its computation time was large. The proposed algorithms487

showed competitive metrics and even slightly outperformed baseline methods in terms of CC,488
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but with slightly higher computation time.489

In addition, we plot in Figure 2 the 40th spectral band of the reference and estimated490

SRI. The proposed approaches recovered the SRI spectral band accurately.
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Figure 2. Single spectral band of the SRI, Lake Tahoe dataset

491

5.3.2. Ivanpah Playa. We also considered Ivanpah Playa with Z ∈ R80×128×173 and large492

acquisition time difference: the SRI and MSI were acquired on 2015-10-26 and 2017-12-17493

respectively, by the Sentinel-2 sensor. We ran STEREO with F = 10 and 10 iterations and494

SCOTT with R = (30, 30, 10). We ran CT-STAR with ranks (10, 15, 8),(3, 3, 2), and CB-495

STAR with ranks (40, 40, 4),(40, 40, 5). For our algorithms and CNN-BTD, we chose R = 4496

and L = 18.497

Tables 3 and 4 show the reconstruction metrics and computation time.

Table 3
Reconstruction metrics for Z, Ivanpah Playa dataset

Algorithm R-SNR CC SAD ERGAS Time
BTD-Var 19.5964 0.8684 2.4533 2.6223 3.2545

CNN-BTD-Var 24.7991 0.9533 1.5943 1.4725 2.2159
STEREO 6.0987 0.76283 29.0278 12.6747 0.93975
SCOTT 2.4445 0.34257 47.9598 19.372 0.2645

CNN-BTD 5.7515 0.33492 28.7006 13.1899 11.8775
CNMF 21.6059 0.90114 1.3019 2.1138 2.6656

GLP-HS 19.433 0.86261 3.3413 2.697 5.9218
HySure 18.4551 0.85218 3.3249 3.0653 10.4606
FuVar 22.0332 0.90354 1.5062 2.0189 526.1659

CT-STAR 21.1186 0.88849 1.9424 2.2386 0.15373
CB-STAR 25.7174 0.96003 1.3269 1.3228 8.2923

Table 4
Reconstruction metrics for Ψ •3 P 3, Ivanpah Playa dataset

Algorithm R-SNR CC SAD ERGAS
BTD-Var 19.3624 0.7057 2.7901 39.5265

CNN-BTD-Var 23.6558 0.9207 1.3826 15.0054
CT-STAR 19.3597 0.73396 2.1977 33.853
CB-STAR 23.4888 0.90832 1.1567 16.9815

498
The best metrics were provided by CB-STAR, then CNN-BTD-Var. BTD-Var had a499

performance comparable to that of GLP-HS for reconstruction of Z. Its performance was500

comparable to that of CT-STAR for Ψ •3P 3. For this dataset as well, the proposed algorithms501

were faster than some other algorithms, including CNMF, CB-STAR, and FuVar. Other502

matrix-based approaches also provided satisfying reconstruction. However, STEREO, SCOTT503

and CNN-BTD provided the worst reconstruction metrics.504
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In Figure 3 we plot the 40th spectral band of the reference SRI and the estimated SRI for505

our algorithms, CNN-BTD, CNMF and CB-STAR for comparison. For this dataset, we can
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Figure 3. Single spectral band of the SRI, Ivanpah Playa dataset

506
see that CNN-BTD-Var yielded a better SRI spectral band reconstruction than BTD-Var.507

5.3.3. Lockwood. The third dataset we considered was Lockwood with Z ∈ R80×100×173.508

The SRI Z and MSI were acquired on 2018-08-20 and on 2018-10-19. This was an example509

where only acquisition variations happened (which affected the image mostly uniformly), thus510

it illustrated the adequacy of the proposed variability model compared to more general ones511

proposed in the literature. We ran STEREO with F = 100 and 10 iterations and SCOTT512

with R = (60, 60, 5). We ran CT-STAR with ranks (30, 30, 8),(3, 3, 2), and CB-STAR with513

ranks (70, 70, 5),(40, 40, 3). For our algorithms, as well as for CNN-BTD, we chose R = 9 and514

L = 16. The reconstruction metrics are displayed in Tables 5 and 6.515

Table 5
Reconstruction metrics for Z, Lockwood dataset

Algorithm R-SNR CC SAM ERGAS Time (sec)
BTD-Var 20.1273 0.918432 2.92921 6.35566 5.46272

CNN-BTD-Var 19.4882 0.906525 3.0299 6.29101 4.11573
STEREO 6.552 0.80196 27.3623 25.1749 1.8835
SCOTT 2.2276 0.79276 28.5771 45.9608 0.2228

CNN-BTD 6.4909 0.81475 27.4245 25.436 2.3082
CNMF 18.7829 0.89063 2.9768 6.7014 4.353

GLP-HS 18.6734 0.88849 3.2079 6.9979 6.8463
HySure 14.125 0.8633 4.4044 11.6 6.9823

CT-STAR 18.4987 0.88287 4.571 8.2657 3.3013
CB-STAR 19.0751 0.89445 3.3707 7.2926 68.0282

Table 6
Reconstruction metrics for Ψ •3 P 3, Lockwood dataset.

Algorithm R-SNR CC SAM ERGAS
BTD-Var 18.8768 0.810171 2.59862 11.9253

CNN-BTD-Var 18.3523 0.818424 2.76538 11.2095
CT-STAR 17.2744 0.73293 4.1677 15.8113
CB-STAR 17.5513 0.7402 3.2858 13.3116

For both Z and Ψ •3P 3, the best reconstruction metrics were generally provided by BTD-516

Var and CNN-BTD-Var. They were followed by CT-STAR and CB-STAR. The slightly better517

results obtained by our algorithms illustrate the fact that the variability model considered in518

[6] can represent spatially localized changes, but is not very appropriate or interpretable for519
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acquisition or illumination variations. In Figure 4 we plot the 40th spectral band of the520

reference and estimated SRI.
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Figure 4. Spectral band no.40 of the SRI, Lockwood.

521

5.4. Recovery without variability. In this subsection, we assessed recovery performance522

for the SRI Z. We considered that the HSI and MSI are both degraded versions of the same523

SRI Z. In other words, we suppose that Z = Z̃, hence there is no spectral variability.524

The dataset we considered was Indian Pines, where Z ∈ R144×144×200 was degraded by a525

LANDSAT sensor for the MSI and a downsampling ratio d = 4 for the HSI. We ran STEREO526

with F = 50, SCOTT with R = (40, 40, 6) and LL1-based algorithms with R = 6 and L = 13.527

We tuned the other algorithms according to original works. The reconstruction metrics for528

the SRI are presented in Table 7.

Table 7
Reconstruction metrics for Z, Indian Pines dataset

Algorithm R-SNR CC SAD ERGAS Time
BTD-Var 26.4299 0.8398 2.2384 1.1750 5.8435

CNN-BTD-Var 25.1166 0.8326 2.4127 1.2675 4.2968
STEREO 27.69 0.86669 1.9461 0.99959 1.8564
SCOTT 26.2451 0.86196 2.2694 1.1208 0.21087

CNN-BTD 25.2263 0.80949 2.5035 1.3497 24.5326
CNMF 27.2552 0.83978 1.9502 1.2056 8.2147

GLP-HS 26.2837 0.83813 2.2794 1.2918 14.2957
HySure 20.4281 0.66661 4.4916 2.5723 25.2202

CT-STAR 24.0398 0.84385 2.4839 1.3151 0.16528
CB-STAR 26.5216 0.86749 2.1265 1.0556 3.6761

529
The best reconstruction metrics were generally provided by STEREO. The proposed al-530

gorithms had performance comparable to that of SCOTT, and computation time comparable531

to that of CB-STAR. The slightly lower performance of constrained algorithms accounting532

for variability can be explained by the use of more flexible models. In this specific scenario,533

other methods based on a more restrictive model fitted the data more tightly. Nonetheless,534

algorithms accounting for variability offered competitive performance in the “no-variability”535

case. However, their computation time was usually higher than that of state-of-the-art tensor536

approaches. In Figure 5 we plot the 40th spectral band of the reference and estimated SRI.537

6. Performance for unmixing of an unknown SRI.538

6.1. Experiments setup. In this section, we assessed the performance of CNN-BTD-Var539

for unmixing of an unknown SRI on synthetic datasets, and real examples from Section 5.540

We compared our results with those of CNMF [51] initialized by VCA [35]. We also541

considered traditional unmixing algorithms: accelerated multiplicative algorithm (MU-Acc)542
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Figure 5. Single spectral band of the SRI, Indian Pines dataset

[21] and BMDR-ADMM [36] (enforcing minimum dispersion constraint on the spectra, and543

sum-to-one on the abundance maps). We ran these algorithms on the recovered SRI Ẑ544

obtained from CB-STAR, which gave the best reconstruction metrics in the previous section.545

For these algorithms, we chose the parameters according to the original works. We set the546

number of materials to R. Since other fusion algorithms were not designed for unmixing, they547

were not directly included in this comparison.548

For each dataset, we compared the abundance maps and spectral signatures obtained by549

the algorithms to references obtained by VCA or groundtruth materials. We also assessed the550

unmixing performance numerically by comparing the SAD, RMSE and computation time for551

the considered algorithms. The best results of each row are shown in bold in the tables.552

6.2. Unmixing with exact LL1 model. We first assessed the unmixing performance with553

synthetic datasets. We tested our approach in the case where the SRI and variability tensor554

admit an exact LL1-BTD. Although these datasets did resemble real spectral images, they555

allowed us to assess unmixing performance in a case where the uniqueness conditions for the556

non-negative matrix factorization model (see [14, 32]) were not fulfilled.557

6.2.1. Generating synthetic datasets. We considered R = 3 spectral signatures cr (r ∈558

{1, . . . , R}) obtained from the Jasper Ridge reference data††, corresponding to vegetation, soil559

and road materials. The SRI Z ∈ RI×J×K (I = J = 90, K = 173) was split into LR equal560

blocks in the spatial dimensions, with L = 3.561

Each abundance map Sr (r ∈ {1, . . . , R}) was a block matrix with I
L ×

J
L blocks. We562

generated a multiplicative variability matrix ψmulti with random real entries drawn from the563

standard uniform distribution in the open interval [0.9, 1.1]. We then computed the altered564

spectra C̃ = ψmulti �C. The variability matrix ψ that we aimed at recovering was obtained565

as ψ = C̃ −C so that it had zero mean.566

Formally, we computed the high-resolution tensors as567

Z =
R∑
r=1

Sr ⊗ cr, Ψ =
R∑
r=1

Sr ⊗ψr, Z̃ = Z + Ψ.568

569

The HSI and MSI were obtained by degradation of the SRIs according to model (2.3). For570

P 1 = P 2, we had q = 9 and d = 3 so that IH = JH = 30. For P 3, we chose the spectral571

response of the Sentinel-2 MS sensor, which led to KM = 10.572

6.2.2. Separable example. In the first example, we generated a dataset for which the573

pure pixel assumption was valid. Thus in each I
L ×

J
L block, at most one material was active,574

as indicated by the numerals in the parcel map shown in Table 8. Each block in the parcel map575

was a patch composed of entries equal to one. The abundance maps resembled agricultural576

††Available for download at http://lesun.weebly.com/hyperspectral-data-set.html.
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Table 8
Parcel map for the first synthetic dataset

1 2 3
3 1 2
2 3 1

fields. This was a case for which non-negative matrix factorization under minimal volume577

constraint was unique [20, 18, 24]. Only unconstrained non-negative matrix factorization was578

not unique.579

We ran CNN-BTD-Var with R = 3 and L = 3; for other algorithms, we used R = 3. The580

spectral signatures cr and abundance maps Sr are shown in Figures 6 and 7, respectively.581

The unmixing metrics and computation time are displayed in Table 9.
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Figure 6. Reference and estimated spectra, synthetic dataset 1

Ref. CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

Figure 7. Reference and estimated abundance maps, synthetic dataset 1

582
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Table 9
Unmixing, synthetic example 1

Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM
SAD 0.012349 0.300049 0.132655 0.351785

RMSE 0.102441 0.274509 0.267861 0.201845
Time (sec) 0.958311 1.43277 1.73498 1.23186

We can see that all spectra and abundance maps were recovered accurately by CNN-583

BTD-Var, with visual quality comparable to that of CNMF and BMDR-ADMM. The proposed584

algorithm gave the best unmixing metrics and computation time. We also see some artifacts in585

the abundance maps recovered by CNMF. Moreover, MU-Acc did not estimate all abundance586

maps correctly for this example.587

6.2.3. Synthetic example with non-identifiable matrix factorization model. In this sec-588

ond example, we designed an example where the separability (or pure pixel) condition [14, 32]589

was not fulfilled. This resulted in the traditional non-negative matrix factorization model590

being non-identifiable. This was in fact a highly mixed situation for which we expected that591

traditional unmixing algorithms fail at performing unmixing on this dataset. However, the592

conditions in Theorem 3.1 were satisfied, which made the LL1 factors unique up to permuta-593

tion and scaling ambiguities. The abundance maps Sr were designed as follows:594

S1 =
1

12

5 7 6
7 3 5
3 0 0

�H, S2 =
1

12

7 5 3
0 6 0
3 5 7

�H, S3 =
1

12

0 0 3
5 3 7
6 7 5

�H,595

596

with H a Gaussian of size 30× 30 with standard deviation σ = 5.597

We ran CNN-BTD-Var with R = 3 and L = 3; for other algorithms, we used R = 3. The598

spectral signatures cr and abundance maps Sr are shown in Figures 8 and 9, respectively.599

The unmixing metrics are shown in Table 10.
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Figure 8. Reference and estimated spectra, synthetic dataset 2

600
The spectral signatures were best reconstructed by CNN-BTD-Var, although CNMF only601

reconstructed the first spectrum correcly. Moreover, only CNN-BTD-Var provided reasonable602
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Ref. CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

Figure 9. Reference and estimated abundance maps, synthetic dataset 2

Table 10
Unmixing, synthetic example 2

Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM
SAD 0.160109 0.386413 0.355248 0.464474

RMSE 0.210952 0.333595 0.253813 0.339372
Time (sec) 0.972156 1.77138 1.57192 1.20186

estimates of the abundance maps, while other algorithms failed. Numerically, the proposed603

algorithm yielded the best unmixing metrics and computation time.604

6.3. Unmixing for real datasets. In this subsection, we assessed unmixing performance605

of CNN-BTD-Var for real datasets Lake Tahoe and Ivanpah Playa. For the two considered606

datasets, we followed the same degradation model as in Section 5. For these experiments,607

the endmembers and abundance maps underlying Z were unknown: as a result, we chose608

as reference the spectra and abundance maps selected manually from the SRI Z‡‡. The609

obtained abundance maps had very close correspondence with visual features in the image.610

The columns of the abundance maps were rescaled with unit norm for comparison.611

6.3.1. Lake Tahoe. We first considered the Lake Tahoe dataset. This dataset was mainly612

composed of R = 3 materials: water (lake), soil and vegetation. As a result, we chose R = 3613

and L = 18 as in the previous subsection. We compared our algorithm with CNMF, MU-Acc614

and BMDR-ADMM with R = 3.615

On Figures 10 and 11, we plot the estimated spectra and abundance maps.616

The proposed approach estimated the spectra accurately. The abundance maps allowed for617

identification of the areas corresponding to different materials, although with lower resolution618

than other methods. Additionally, the abundance maps recovered by CNN-BTD-Var seemed619

to be low-rank. The algorithms CNMF and MU-Acc did not recover the water abundance620

map correctly, and CNMF did not recover the water spectrum. In Table 11, we show the621

‡‡In real applications, the SRI Z is unknown. In this paper, we use it as a reference to evaluate the
performance of our approach.
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Figure 10. Reference and estimated spectra, Lake Tahoe dataset
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Figure 11. Reference and estimated abundance maps, Lake Tahoe dataset

unmixing and computation time for the considered algorithms. CNN-BTD-Var provided the

Table 11
Unmixing, Lake Tahoe dataset

Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM
SAD 0.0794406 0.302813 0.1098101 0.255009

RMSE 0.466916 0.472743 0.637745 0.356724
Time (sec) 1.229906 1.98253 2.0130503 1.71438

622
best SAD and computation time, and the second best RMSE after BMDR-ADMM.623

Additionally, on Figure 12, we plot the reference and estimated C̃M and P 3ψ = C̃M −624

P 3C obtained from CNN-BTD-Var.625

In Figure 12, the water spectrum had high variability for the first MSI spectral band, which626

corresponds to the blue region. For the vegetation and soil spectra, the largest variability was627

found at spectral bands corresponding to the green and orange-red wavelengths. Moreover,628

CNN-BTD-Var recovered the reference C̃M and P 3ψ with a small discrepancy.629

6.3.2. Ivanpah Playa. Next, we considered the Ivanpah Playa dataset. This dataset was630

composed of R = 4 materials: solar panels, dark sand, yellow sand and road. We ran CNN-631

BTD-Var with R = 4, L = 18, and compared the results to other baseline algorithms with632

R = 4.633

In Figures 13 and 14, we plot the reference and estimated spectra and abundance maps.634

In Table 12, we show the unmixing metrics and computation time.635
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Figure 12. Reference and estimated C̃M and P 3ψ, Lake Tahoe dataset
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Figure 13. Reference and estimated spectra, Ivanpah Playa dataset

One difficulty for unmixing was the important similarity between the reference spectra636

(in particular, dark and yellow sand, road materials). This led to almost colinear columns637

in C, which resulted in CNN-BTD-Var giving the worse SAD. This issue was particularly638

visible in Figure 15 with estimated C̃M and P 3ψ. High variability was found for the red and639

near-infrared spectral bands for all materials.640

Despite this difficulty, CNN-BTD-Var yielded the best SAD and RMSE and recovered641

the solar panels and road abundance maps best, while the yellow sand map was slightly642

better for BMDR-ADMM. For this example, the low-rank assumption for abundance maps643

was reasonable: see that corresponding to solar panels. This assumption allowed for better644

visual reconstruction of this abundance map. Contrary to other algorithms, all spectra were645

correctly recovered.646

7. Conclusion. In this paper, we proposed new algorithms for solving the HSR problem647

with variable images, using an LL1-BTD model. First, we showed that in the presence of648

variability, previous tensor models fail at recovering the SRI, since they do not account for649

spectral or spatial variability. Our approach allows to recover the SRI accurately for the650

considered datasets, as well as the degraded variability tensor.651

An appropriate choice of ranks also allows our algorithms to estimate underlying spectra652
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Figure 14. Reference and estimated abundance maps, Ivanpah Playa dataset

Table 12
Unmixing, Ivanpah Playa dataset

Algorithm CNN-BTD-Var CNMF MU-Acc BMDR-ADMM
SAD 0.094346 0.193547 0.134738 0.113456

RMSE 0.006693 0.007067 0.008188 0.007434
Time (sec) 1.30258 1.73402 1.56564 1.679304

and abundance maps of the unknown SRI, with performance comparable to those of tra-653

ditional unmixing algorithms applied on the SRI directly. Non-negativity priors allow the654

low-rank factors of our model to be interpretable, without having a high negative impact on655

the computation time.656

Appendix A. Unconstrained factor updates in Algorithm 4.1.657

In Algorithm 4.1, the least squares program for A can be seen as a generalized Sylvester658

equation of the form X1AX2 +X3AX4 = X5, with659

X1 = P T
1P 1, X2 = (C �p P 2B)T(C �p P 2B), X3 = λII ,660

X4 = (C̃M �p B)T(C̃M �p B), X5 = P T
1 (Y

(1)
H )T(C �p P 2B) + λ(Y

(1)
M )T(C̃M �p B),661662

and can be solved with efficient solvers. The updates for B and C can be solved similarly.663

The pseudo-solution for C̃M is expressed as vec{C̃M} = (XTX)†XTz, with664

X = (
√
λSTS +

√
µIR)� IKM

,665

z = vec{
√
λ(Y

(3)
M )TS +

√
µ(P 3C +ψM )}.666667

668
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Figure 15. Reference and estimated C̃M and P 3ψ, Ivanpah Playa dataset

Appendix B. Updates in Algorithm 4.2.669

Similarly to Algorithm 4.1, the least squares programs for A and B in Algorithm 4.2 can670

be viewed as generalized Sylvester equations of the form X1AX2 + X3AX4 = X5. For671

instance, for A, we have672

X1 = P T
1P 1, X2 = (C �p P 2B)T(C �p P 2B), X3 = II ,673

X4 = λ(C̃M �p B)T(C̃M �p B) + γDiag{BT
1B1, . . . ,B

T
RBR},674

X5 = P T
1 (Y

(1)
H )T(C �p P 2B) + λ(Y

(1)
M )T(C̃M �p B) + γ [S1B1, . . . ,SRBR] ,675676

and likewise for B.677

At each iteration of the alternating directions method of multipliers scheme, we aim at678

solving the following equations:679

(γ + ρ)Sr = γArB
T
r + ρ(Z +U),(B.1)680

µP T
3P 3C +C(ST(P T

2P 2�P
T
1P 1)S + ρIR)681

= (Y
(3)
H )T(P 2�P 1)S + µP T

3 (ψM − C̃M ) + ρ(Z + U),(B.2)682

C̃M (STS + (µ+ ρ)IR) = (Y
(3)
M )TS + µ(P 3C +ψ) + ρ(Z + U).(B.3)683684

For each equation, Z is the projection of the considered variable onto the space of non-negative685

matrices, and U denotes the dual variable for each subproblem [9]. The scalar ρ controls the686

convergence speed of the algorithm and is chosen according to [23].687

Below, we present the framework for solving (B.2): the updates for S and C̃M can be688

handled in a similar fashion.689

Here, the operator [·]+ zeroes out the negative values of the operand.690

Appendix C. Spatial degradation matrices.691

Here, we explain in details how the degradation matrices are constructed. For this ap-692

pendix, we consider that P 1 = P 2. As in previous works, P 1 is constructed as P 1 = S1T 1,693

where T 1 is a blurring matrix and S1 is a downsampling matrix.694

The blurring matrix is constructed from a Gaussian blurring kernel φ ∈ Rq×1 (in our case,695
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Algorithm B.1 Inner update for (B.2)

Input: YH , YM , S, P 1, P 2, P 3; ρ, µ, R, iter
Output: Z ∈ RK×R+
Initialization: Z = U = 0K×M .
for m ∈ {1, . . . iter} do
C ← Solve (B.2) using fast solvers,
Z ← [C − U ]+,
U ← U + Z − C.

end for
return Z.

q = 9) with a standard deviation σ = q
√
2 log 2
4 . For m ∈ {1, . . . , q} and m′ = m−

⌈ q
2

⌉
, we have696

φ(m) =
1√

2πσ2
exp

(
−m′2

2σ2

)
.697

Thus, T 1 ∈ RI×I can be expressed as698

T 1 =



φ(d q2e) ... φ(q) 0 ... 0

...
. . .

. . .
. . .

...

φ(1)
. . .

. . . 0

0
. . .

. . . φ(q)

...
. . .

. . .
. . .

...
0 ... 0 φ(1) ... φ(d q2e)


.699

The downsampling matrix S1 ∈ RIH×I , with downsampling ratio d, is made of IH inde-700

pendant rows such that for i ∈ {1, . . . , IH}, (S1)i,2+(i−1)d = 1 and the other coefficients are701

zeros.702
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[36] L. Nus, Méthodes rapides de traitement d’images hyperspectrales. Application à la caractérisation en789
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