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Abstract—In this paper, we propose to jointly solve the hyper-
spectral super-resolution and hyperspectral unmixing problems
using a coupled LL1 block-tensor decomposition. We focus on
the specific case of spectral variability occurring between the
observed low-resolution images. Exact recovery conditions are
provided. We propose two algorithms: an unconstrained one and
another one subject to non-negativity constraints, to solve the
problems at hand. We showcase performance of the proposed
approach on a set of synthetic and semi-real images.

Index Terms—Hyperspectral super-resolution, spectral vari-
ability, hyperspectral unmixing, image fusion, tensor decomposi-
tions.

I. INTRODUCTION

A. Background

Hyperspectral devices are able to sample the electromag-
netic spectrum for hundred of wavelengths, allowing for the
acquisition of hyperspectral images (HSIs) that possess high
spectral resolution. The composition of each pixel in an HSI
can frequently be approximated by a linear mixture of a small
number of spectral signatures known as endmembers. This
representation is known as the linear mixing model (LMM),
and allows for identification of the materials in a scene, a
process termed unmixing. Many hyperspectral unmixing (HU)
approaches have been proposed (see [1], [2], [3] and references
therein). However, the natural tradeoff between spatial and
spectral resolution forces the HSIs to have few number of
pixels [4]. On the other hand, multispectral devices produce
multispectral images (MSIs) with high spatial resolution, at
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cedric.richard@unice.fr), Lagrange Laboratory (CNRS, OCA).

the cost of the spectral resolution; indeed, MSIs only include
a restricted number of spectral bands.

Recently, the hyperspectral super-resolution (HSR) problem
[5] was formulated to circumvent the physical limitations
of each device. This problem aims at recovering a super-
resolution image (SRI) that possesses both high spatial and
high spectral resolutions from co-registered HSI and MSI of
the same scene, without the need for any higher-resolution
sensor.

Many approaches have been proposed to solve the HSR
problem. Early matrix-based approaches include coupled non-
negative matrix factorization (CNMF) [6], methods based on
solving Sylvester equations [7], Bayesian approaches (HySure)
[8], FUMI [9], to name a few. Motivated by the LMM, most of
these methods are based on a coupled low-rank factorization of
the matricized HSI and MSI. One advantage of using the LMM
is that the latent factors of a properly chosen decomposition
of the recovered SRI can be seen as the spectral signatures
and abundance maps corresponding to the underlying materials
in the image, provided that they are entry-wise non-negative.
For instance, in [10], the HSR problem is solved by recovering
high-resolution spectra from the HSI, and the abundance maps
are estimated jointly from the two low-resolution images. In
[6], high-resolution abundance matrices are recovered from
the MSI while high-resolution spectral signatures are obtained
from the HSI. Thus some matrix approaches are suitable
for the HSR-HU problem, which consists of recovering the
underlying SRI by means of a physically-informed low-rank
approximation. However, for these methods, identifiability of
the mixing model can only be obtained under additional
constraints on the low-rank factors [11], [12]. Regarding the
fusion problem, some matrix-based approaches provide exact
recovery conditions for the SRI in noiseless cases, see for
example [10] that promotes sparsity of the low-rank factors.
However, these recovery guarantees are usually conditioned
to the incorporation of priors on the low-rank factors as
well. In the absence of such hypotheses, a bound on the
recovery error can be obtained [13]. As a result, to the best
of our understanding, recovery conditions for the joint HSR-
HU problem in the literature only consider specific classes of
problems. Furthermore, related algorithms often suffer from
high computational complexity.

More recently, tensor-based approaches were proposed
for solving the HSR problem, exploiting the inherent 3-
dimensional nature of HSIs and MSIs. The works of [14],
[15] formulate the HSR problem as a coupled canonical
polyadic (CP) decomposition (CPD), while a coupled multilin-
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ear Tucker decomposition is used in [16]. These formulations
proved state-of-the-art practical performance as well as exact
noiseless recovery guarantees for the SRI, often at a low
computational cost. However, the latent factors of the CP or
Tucker decompositions lack physical interpretation, and thus
the aforementioned methods cannot be used for hyperspectral
unmixing. Motivated by the usefulness of tensor methods, an
approach based on block-tensor decomposition (BTD) was
recently proposed [17], [18]; the main advantage of this
approach is to link the latent factors of the BTD model to
abundance matrices and spectral signatures used in the HU
task, under additional non-negativity priors on the low-rank
factors.

Most of these approaches however share a common lim-
itation: they assume that the acquisition conditions of the
HSI and MSI are the same. In practice, there exist very few
optical satellites that carry both HS and MS sensors [19],
[20]. Thus, combining an HSI and MSI acquired onboard of
different missions has become a task of prime interest [21],
[22]. Since the HSI and MSI are acquired at different time
instants, they can differ by, e.g., illumination, atmospheric
or seasonal changes [23], which can cause variations in
the underlying spectra of the acquired images, and impact
negatively the fusion and unmixing algorithms. In [24], a
super-resolution method was proposed, combining the HSI and
MSI accounting for seasonal spectral variability. Using a low-
rank matrix formulation, the spectral signatures underlying the
HSI and MSI are allowed to be different from each other,
with variations introduced by a set of multiplicative scaling
factors [25]. This algorithm led to significant performance
improvements when the HSI and MSI are subject to spatially
uniform seasonal or acquisition variations. However, the al-
gorithm in [24] presents high computation times and does
not offer any theoretical guarantees. In [26], two tensor-based
algorithms based on Tucker and block-term decompositions
were proposed, accounting for inter-image variations between
the HSI and MSI. The approaches of [26] proved state-of-the-
art performance for the HSR task, as well as guarantees for
noiseless uniqueness of the target images. Unfortunately, the
decomposition factors were not suitable for unmixing.

In this paper, we propose to formulate the HSR problem
as a coupled BTD of the HSI and MSI, accounting for
spectral variability between the endmembers. Inspired by the
work of [17], [18], we propose some guarantees for noiseless
unique recovery of the SRI and its latent factors based on
the LMM. In particular, our noiseless recovery conditions do
not required additional constraints on the low-rank factors,
contrary to matrix-based models. We also propose a procedure
that aims at recovering the SRI and estimating its latent factors.
Our experiments on a set of synthetic and semi-real datasets
prove competitive performance of the proposed approach for
the HSR and HU tasks, compared to traditional unmixing
algorithms.

This paper is organized as follows. The remainder of
Section I is devoted to tensor algebra preliminaries. Section II
introduces the tensor degradation model, as well as the coupled
low-rank model accounting for spectral variability. Section III
addresses recoverability analysis for the joint HSR-HU task.
Section IV describes the proposed algorithms and their com-
putational complexity. Finally, Sections V and VI contain
numerical experiments for the HSR and HU tasks, respectively.

B. Definitions and notations

In this paper, we mainly follow the notations of [27], [28].
We use the following fonts: lower (a) or uppercase (A) plain
font for scalars, boldface lowercase (a) for vectors, boldface
uppercase (A) for matrices and calligraphic (A) for tensors.
The elements of vectors, matrices and tensors are denoted
as ai, Ai,j and Ai1,...,iN , respectively. For a matrix A, its
transpose is denoted by AT. We use the notation IN for
the N × N identity matrix and 0L×K for the L ×K matrix
of zeros. The notation 1L denotes an all-ones vector of size
L×1. The symbol � and � denote the Kronecker and Khatri-
Rao products, respectively. We denote the Hadamard (element-
wise) product by �. We use vec{·} for the standard column-
major vectorization of a matrix or a tensor.

Each dimension of a tensor is called a mode. A mode-p
fiber of tensor X is a vector of X obtained by fixing all but
the p-th dimension. Similarly, a slab or slice of a tensor X
is a matrix whose columns are the vectors of X obtained by
fixing all but two of its modes. In this paper, we restrict to the
scope of three-dimensional tensors.

Definition I.1. Outer product – The outer product between
three vectors a ∈ RI , b ∈ RJ , c ∈ RK is an order-3 tensor of
rank 1 defined as X = a ⊗ b ⊗ c ∈ RI×J×K . Each element
of X is accessed as Xi,j,k = aibjck.

Definition I.2. Tensor unfoldings – The mode-p unfolding of
a tensor X , denoted by X(p), is the matrix whose rows are
the p-mode fibers of X , ordered according to the vectorization
order. For a third-order tensor X ∈ RI×J×K , we haveX(1) ∈
RJK×I , X(2) ∈ RIK×J and X(3) ∈ RIJ×K .

Definition I.3. Mode product – The mode-p product between
a tensor X and a matrix M is denoted by X •pM and is
evaluated such that each mode-p fiber of X is multiplied
by M . For instance, the elements of the mode-1 product
between X ∈ RI×J×K and M ∈ RL×I are accessed as
(X •1M)`,j,k =

∑
i

Xi,j,kM `,i, ` ∈ {1, . . . , L}. Moreover,

it holds that Y = X •kM ⇔ Y (k) =X(k)MT.

C. Block-term decomposition with ranks (L,L, 1)

In this subsection, we introduce the block-term decomposi-
tion with ranks (L,L, 1), that we will use to build our model.
We also recall some sufficient uniqueness conditions for this
decomposition, as well as useful properties.

Definition I.4. Block-term decomposition – An order-3 tensor
X ∈ RI×J×K generally admits a block-term decomposition
(BTD) with ranks (L,L, 1) (LL1-BTD) as

X =

R∑
r=1

(
ArB

T
r

)
⊗ cr, (1)

where Ar ∈ RI×L, Br ∈ RJ×L, and cr ∈ RK , for
r ∈ {1, . . . , R}. Moreover, we denote A = [A1, . . . ,AR] ∈
RI×LR, B = [B1, . . . ,BR] ∈ RJ×LR and C =
[c1, . . . , cR] ∈ RK×R.

Theorem I.5. [29, Theorem 4.7] Let (A,B,C) denote an
LL1-BTD of a tensor X for r ∈ {1, . . . , R} as in (1). As-



3

sume that (A,B,C) are drawn from certain joint absolutely
continuous distributions. If IJ ≥ L2R and

min

(
b I
L
c, R

)
+min

(
bJ
L
c, R

)
+min(K,R) ≥ 2R+ 2,

then ArB
T
r and cr are essentially unique almost surely for

r ∈ {1, . . . , R}.
Definition I.6. Partition-wise Khatri-Rao product – The
partition-wise Khatri-Rao product between two partitioned
matrices A and C defined as above can be expressed as

C �p A = [c1 �A1, . . . , cR�AR] ∈ RIK×LR.

Property 1. Tensor unfoldings and LL1 – Using the above
notations, the unfoldings of a tensor X admitting an LL1-BTD
as above can be expressed as

X(1) = (C �p B)AT,

X(2) = (C �p A)BT,

X(3) = [(A1 �B1)1L, . . . , (AR �BR)1L]C
T.

II. PROPOSED MODEL

A. Degradation model and indeterminacies
We consider an HSI data cube YH ∈ RIH×JH×K and an

MSI data cube YM ∈ RI×J×KM . While the scalars K and
KM denote the spectral dimensions, (I, J) (resp. (IH , JH))
stand for the spatial dimensions of the data cubes. We suppose
that the spatial resolution of the MSI is higher than that of the
HSI (i.e., IH < I and JH < J), while its spectral resolution is
lower (KM < K). Most previous works [14]–[18] considered
the low resolution images as degraded versions of a single
SRI Z ∈ RI×J×K , that possesses high spatial and spectral
resolutions. This model can be expressed as mode product of
Z with degradation matrices such that:{

YH = Z •1P 1 •2P 2 + EH ,
YM = Z •3P 3 + EM ,

(2)

where the tensors EH and EM are additive noise terms. The
matrix P 3 ∈ RKM×K contains the spectral response functions
(SRF) for each band of the MSI sensor. The spatial degradation
matrices P 1 ∈ RIH×I and P 2 ∈ RJH×J perform Gaussian
blurring and downsampling along each spatial dimension, i.e.
we suppose that the spatial degradation operation is separable,
as in the commonly used Wald’s protocol [30].

However, this model implies that the acquisition conditions
of YH and YM are the same, and thus ignores any variability
phenomenon. Variations in atmospheric, seasonal or illumina-
tion conditions [31], [32] between the HSI and MSI motivate
the need for more flexible models.

As a result, in this paper, we adopt a more general approach.
As in [26], we consider two different SRIs Z ∈ RI×J×K and
Z̃ ∈ RI×J×K , underlying the HSI and MSI, respectively. The
SRIs Z and Z̃ contain possibly different spectral signatures
and can be linked as

Z̃ = Z + Ψ, (3)

where Ψ ∈ RI×J×K is a tensor of variability. This leads to
the following extension of model (2):{

YH = Z •1P 1 •2P 2 + EH ,
YM = Z̃ •3P 3 + EM .

(4)

In this framework, the HSR problem consists in the follow-
ing: {

find Z ∈ RI×J×K and Ψ ∈ RI×J×K ,
such that (3) and (4) are satisfied.

(5)

However, this problem is severely ill-posed. Indeed, the
presence of the variability tensor Ψ makes problem (5) am-
biguous [26], as one cannot separate easily Z and Ψ from Z̃ .
We recall the following theorem [26]:

Theorem II.1. [26, Theorem 1.a)] Suppose that the HSI
and MSI are generated according to eq. (4) and that the
observation noise is zero (i.e. EH ,EM = 0). If either P 1,
P 2 or P 3 have non-trivial nullspace,, then (Z,Ψ) cannot be
uniquely recovered from YH and YM .

Thus, without any prior information to the structure of Z
and Ψ, the target images cannot be recovered uniquely. In
what follows, we introduce a low-rank tensor model to circum-
vent the fundamental ambiguities of the proposed degradation
model. Indeed, while Theorem II.1 indicates conditions under
which (Z,Ψ) cannot be recovered uniquely, a wisely chosen
low-rank decomposition might allow for unique recovery of
portions of the tensors. In [26], approaches based on model
(4) were proposed, using a coupled Tucker approximation.
However, the latent multilinear factors were not interpretable
as a mixing model. In this paper we propose to use LL1-BTD,
whose factors are suitable for physical interpretation.

Different from [26] (where both spatial and spectral vari-
abilities were considered), we consider that variability only
impacts the spectral dimensions of the SRI. This assumption is
reasonable, since spectral variability can occur even with short
acquisition time differences. Addressing spectral variability
only allows to visualize which wavelengths are more impacted
by different acquisition conditions for each specific material.
This hypothesis also allows for design of simple algorithms,
with sometimes less restrictive noiseless recoverability guaran-
tees than the ones from [26]1. As a result, the proposed model
is more suitable for scenarios with low spatial variability. We
will show in Sections V and VI that the proposed model is
able to address large acquisition time differences as well.

B. LL1-BTD mixing model for the underlying SRIs
Each pixel (or mode-3 fiber) of Z (and therefore, of YH )

can be represented as a linear mixture of a small number R
of pure spectral signatures [33]. This property can be incor-
porated in a physically-informed model, allowing to perform
both image fusion and unmixing at the same time. Thus, as in
[17], we can model the third-mode unfolding of Z using the
LMM as:

Z(3) = SCT ∈ RIJ×K , (6)

where C = [c1, . . . , cR] ∈ RK×R is a matrix containing the
spectral signatures of the R endmembers underlying the SRI.
The matrix S = [vec{S1}, . . . , vec{SR}] ∈ RIJ×R contains
the vectorized abundance maps of each material. In the LMM,
C and S are assumed to be entry-wise non-negative.

In some traditional unmixing methods (see e.g. [3]), the
sum-to-one constrained abundance matrices is also enforced.

1In [26], recovery of the full variability tensor using a Tucker approximation
often results in restrictive multilinear ranks.
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However, spatial illumination changes frequently introduce
scaling variations in each pixel. Moreover, non-negativity
constraints can be transformed equivalently to generalized
sum-to-one constraint, as specified in [34]. As a result, we
do not consider this additional constraint in this work.

We assume as in [17] that the abundance maps admit
low rank L. The hypothesis of low-rank abundance matrices
is reasonable, since the two spatial dimensions are often
correlated along the rows and columns, respectively. Thus we
have

Sr ≈ ArB
T
r ∈ RI×J ,

where Ar ∈ RI×L and Br ∈ RJ×L admit rank L.
Reshaping Z(3) into tensor format yields the following:

Z =

R∑
r=1

(ArB
T
r )⊗ cr. (7)

The above model can be seen as an LL1-BTD of the tensor
Z with factors A = [A1, . . . ,Ar], B = [B1, . . . ,Br]
and C = [c1, . . . , cr]. Traditional unmixing algorithms aim
at recovering {Sr = ArB

T
r }Rr=1 and C from the mixed

pixels in Z . Here, since only YH is observed with high
spectral resolution, traditional unmixing is only able to recover
spatially degraded versions of the abundance maps [18]

P 1SrP
T
2 ∈ RIH×JH for r ∈ {1, . . . , R}. (8)

Differently from those works, it is possible to seek for abun-
dance maps at a higher spatial resolution by exploiting the high
spatial resolution of the MSI. However, the spectral variability
between the HSI and MSI has to be modeled first.

C. Modeling spectral variability

In [25], the generalized linear mixing model (GLMM) was
proposed to model the spectra underlying the MSI as

C̃ = ψmulti �C, (9)

where ψmulti ∈ RK×R is a matrix of positive scaling factors.
In this paper, motivated by model (2), we propose to use
an equivalent additive model due to its better mathematical
tractability:

C̃ = ψ +C, (10)

where ψ ∈ RK×R is different from ψmulti.
Since we allow only spectral variability to be present, the

variability tensor Ψ also admits an LL1-BTD with the same
factors A and B as for the SRI Z , but with spectral factor
ψ ∈ RK×R representing spectral variability. This allows to
write Z̃ as

Z̃ =

R∑
r=1

(ArB
T
r )⊗ cr︸ ︷︷ ︸

Z

+

R∑
r=1

(ArB
T
r )⊗ψr︸ ︷︷ ︸

Ψ

Z̃ =

R∑
r=1

(ArB
T
r )⊗ c̃r, (11)

where c̃r = ψr + cr is the r-th column of C̃.

From the above formulations, we can finally express eq. (4)
as a coupled LL1-BTD:{

YH =
∑R
r=1(P 1Ar(P 2Br)

T)⊗ cr + EH ,
YM =

∑R
r=1(ArB

T
r )⊗ P 3c̃r + EM .

(12)

Thus we define the joint HSR-HU problem as:{
find {Ar,Br}Rr=1,C, C̃, such that (12) is satisfied,
s. to {ArB

T
r }Rr=1 ≥ 0,C ≥ 0, C̃ ≥ 0 ,

(13)

where for a matrix X , the notation X ≥ 0 means that X is
entry-wise non-negative.

III. RECOVERABILITY ANALYSIS

In fact, the HSR-HU problem (13) aims at an SRI Z and
a variability tensor Ψ underlying the HSI in MSI, admitting
a coupled LL1-BTD as in (12). Regarding the unmixing task,
the latent factors underlying the images must also be recovered
uniquely. In this section, we provide a noiseless recoverability
analysis for the SRI Z and variability tensor Ψ. We show that
our results hold for both image recovery and estimation of the
latent factors based on the LMM.

Theorem III.1. Assume that the SRIs Z and Z̃ admit BTDs
as in (7) (resp. (11)), that the HSI and MSI follow the
coupled model (12), and that EH ,EM = 0. Suppose that
{Ar,Br}Rr=1,C, C̃ are drawn from any absolutely contin-
uous joint distributions and that P 1, P 2 and P 3 are full
row rank. Let {A∗r ,B

∗
r}Rr=1,C

∗, C̃∗ denote any solution to
problem (13). Then with probability one, the true SRI Z and
degraded SRI Z̃ •3P 3 are uniquely recovered by

Z =

R∑
r=1

(A∗r(B
∗
r)

T)⊗ c∗r ,

Z̃ •
3
P 3 =

R∑
r=1

(A∗r(B
∗
r)

T)⊗ P 3c̃
∗
r ,

if IHJH ≥ LR, IJ ≥ L2R and

min

(
b I
L
c, R

)
+min

(
bJ
L
c, R

)
+min(KM , R) ≥ 2R+ 2.

Let us first recall the following lemma:

Lemma III.2. [14, Lemma 1] Let us denote Ã = PA ∈
RI

′×L, where P ∈ RI
′×I is full row rank and A ∈ RI×L is

drawn from any absolutely continuous joint distribution. Then
Ã follows an absolutely continuous joint distribution.

We can now derive the proof for Theorem III.1.

Proof. Let {Ar,Br}Rr=1,C, C̃ denote the groundtruth factors
of the SRI tensors and let {A∗r ,B

∗
r}Rr=1,C

∗, C̃∗ denote a
solution to problem (13). Moreover, let {Sr}Rr=1 denote the
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groundtruth abundance maps and {S∗r}Rr=1 = {A∗r(B
∗
r)

T}Rr=1.
Then for EH ,EM = 0, it holds that

YH =

R∑
r=1

(P 1Ar(P 2Br)
T)⊗ cr

=

R∑
r=1

(P 1A
∗
r(P 2B

∗
r)

T)⊗ c∗r , (14)

YM =

R∑
r=1

Sr ⊗ P 3c̃r =

R∑
r=1

S∗r ⊗ P 3c̃
∗
r . (15)

Since by assumption, {Ar,Br}Rr=1,C, C̃ are drawn from
absolutely continuous joint distributions and P 1, P 2 and
P 3 are full row rank, it follows from Lemma III.2 that
{P 1Ar,P 2Br}Rr=1,P 3C̃ follow certain absolutely continu-
ous joint distributions.

Therefore, by Theorem I.5, the LL1-BTD of YM is essen-
tially unique almost surely if IJ ≥ L2R and

min

(
b I
L
c, R

)
+min

(
bJ
L
c, R

)
+min(KM , R) ≥ 2R+ 2.

This means that

S∗ = SΠΛ, P 3C̃
∗ = P 3C̃ΠΛ−1,

where Π is a permutation matrix and Λ is a non-singular
diagonal scaling matrix.

Next, let us define S̃ = (P 2 �P 1)S. We can see that

S̃∗ = S̃ΠΛ,

where S̃∗ = (P 2 �P 1)S
∗. From [35, Lemma 3.3] and the

proof of [18, Theorem II], S̃ has full column rank almost
surely if IHJH ≥ LR.

Let us continue by considering Y (3)
H . From (14), we have

Y
(3)
H = S̃CT = S̃∗(C∗)T = S̃ΠΛ(C∗)T.

Since S̃ has full column rank, we thus have C∗ = CΠΛ−1.
Finally, we can express the third unfolding of the SRI Z

and degraded Z̃ •3P 3 as

Z(3) = S∗(C∗)T, (Z̃ •
3
P 3)

(3) = S∗(P 3C̃
∗)T,

which completes the proof.

Remark III.3. In the proof for Theorem III.1, we can see
that the low-rank factors C and P 3C̃, as well as the
vectorized abundance maps S, can be uniquely identified
up to permutation and scaling ambiguities. This means that
our recoverability results also hold for the unmixing task of
the HSR-HU problem (13), as it allows for noiseless unique
recovery of the underlying abundance maps and spectra in Z
and Z̃ •3P 3. Thus Theorem III.1 proposed unique recovery
conditions for the joint HSR-HU problem.

Remark III.4. We can see that knowledge of the spectral
degradation matrix P 3 is not needed2 to establish uniqueness
of the SRI Z . As a result, the proposed approach can be
considered as blind in the spectral dimension. In fact, applying

2Contrary to that of P 1 and P 2.

Theorem I.5 to the MSI YM indicates that we can only recover
P 3C̃ uniquely, up to permutation and scaling ambiguities.

Following (10), the variability matrix ψ can only be recov-
ered from the MSI up to the spectral degradation P 3 as

P 3ψ = P 3(C̃ −C).

Thus the proposed model only allows to recover uniquely a
spectrally-degraded version of the variability tensor, that is,
Ψ •3P 3.

IV. ALGORITHMS

In this section, we propose two spectrally-blind algorithms
based on the LL1-BTD. The first one is unconstrained and
solves the HSR problem only. The second one enforced non-
negativity constraints on the factors of the mixing model and
proposes a solution to the joint HSR-HU problem.

A. Unconstrained optimization

When only interested in the super-resolution problem, we
only aim at recovering the SRI Z and variability tensor Ψ.
In this framework, the latent LL1 factors do not need to be
interpretable. Thus, we can consider unconstrained optimiza-
tion. In the remaining of this paper, for simplicity, we denote
C̃M = [c̃M,1, . . . , c̃M,R] = P 3C̃.

As in [14], one possible approach for solving problem (5)
is to formulate HSR as the following optimization problem:

minimize
A,B,C,C̃M

J (A,B,C, C̃M ), (16)

where

J (A,B,C, C̃M ) = ‖YH −
R∑
r=1

(P 1Ar(P 2Br)
T)⊗ cr‖2F

+ λ‖YM −
R∑
r=1

(ArB
T
r )⊗ c̃M,r‖2F ,

which is a non-convex cost function, and λ is a balance
parameter that controls the respective weights on the HSI
and MSI3. We circumvent this lack of convexity using a
block coordinate descent (BCD) scheme: the latent factors
are updated sequentially by solving unconstrained convex
quadratic programs.

Below, we provide the general framework of the correspond-
ing algorithm, denoted hereafter as BTD-Var.

The normalization step for the C and C̃M factors is meant
to avoid underflow and overflow [36]. The updates for A and
B can be seen as generalized Sylvester equations and solved
by efficient solvers, for instance, Hessenberg-Schur or Bartels-
Stewart algorithms; see [37] for a full overview. The updates
for C and C̃M are solved using normal equations. Please refer
to Appendix A for a full derivation.

The computational cost per iteration of BTD-Var can be
decomposed as follows:
• O(I3 + J3 +L3R3) for solving the Sylvester equations;
• O(IJKMR + IHJHKR) for computing the right-hand

sides in the least squares subproblems.

3As in previous works [14]–[18], we further consider that λ = 1 in our
experiments.
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Algorithm 1: BTD-Var
input : YH , YM , B, C, C̃M , P 1, P 2; R, L, iter
output: Z ∈ RI×J×K , Ψ •3P 3 ∈ RI×J×KM

for m ∈ {1, . . . , iter} do
A← argmin

A
‖Y (1)

H − (C �p P 2B)ATP T
1 ‖2F

+λ‖Y (1)
M −

(
C̃M �p B

)
AT‖2F ,

B ← argmin
B

‖Y (2)
H − (C �p P 1A)BTP T

2 ‖2F
+λ‖Y (2)

M −
(
C̃M �p A

)
BT‖2F ,

Sr ← vec{ArB
T
r } for r ∈ {1, . . . , R},

C ← argmin
C

‖Y (3)
H − (P 2 �P 1)SC

T‖2F ,

C̃M ← argmin
C̃M

λ‖Y (3)
H − SC̃T

M‖2F .

for r ∈ {1, . . . , R} do
cr = cr/‖cr‖,
c̃M,r = c̃M,r/‖c̃M,r‖.

end
Z(3) = SCT, (Ψ •3P 3)

(3)
= S(C̃M − P 3C)T.

end

B. Constrained optimization
Although BTD-Var allows for reconstruction of Z and Ψ,

it is not guaranteed that its result can be used for the HU task.
To that end, non-negativity constraints must be imposed on
factors C and C̃M to provide them with physical meaning.
Moreover, contrary to [17], we also impose non-negativity on
{Sr}Rr=1, rather than on the individual factors Ar and Br.
This way, cr and c̃M,r (resp. Sr) can be seen as spectral
signatures (resp. abundance maps) of the underlying SRI Z
and MSI YM .

The resulting constrained optimization problem is:

minimize
A,B,{Sr}Rr=1,C,C̃M

J (A,B,C, C̃M ) (17)

s. to {Sr = ArB
T
r }Rr=1 ≥ 0,C ≥ 0, C̃M ≥ 0, (18)

While the updates for A and B are the same as in BTD-
Var, the other updates are constrained quadratic programs. The
non-negativity constraints can be handled by using alternating
direction method of multipliers (ADMM) [38], [39]. As in
[39], a non-negativity constraint is relaxed by considering the
surrogate ι+(·) (see Appendix B). Algorithm 2 presents the
optimization framework for (17)–(18).

The computational cost per-iteration of CNN-BTD-Var is:
• O(I3 + J3 + L3R3) for solving A and B;
• O(IJKMR + IHJHKR) for computing the right-hand

sides in the least squares subproblems.

C. Initialization
Many options are available to initialize the LL1 factors.

Here, as suggested in [29, Theorem 4.1], we initialize the
A and B factors by generalized eigenvalue decomposition
(GEVD) of the matrix pencil

(
(YM )T:,:,1, (YM )T:,:,2

)
(see [40],

[41]), using the ll1_gevd function of TensorLab [42]. The
C and C̃M factors are recovered by solving least-squares
problems. We combine these steps in an algebraic algorithm
called BTDRec (Algorithm 3), echoing the initialization algo-
rithm in [14] (called TenRec):

Algorithm 2: CNN-BTD-Var
input : YH , YM , B, C, C̃M , P 1, P 2; R, L, iter
output: S ∈ RIJ×R, C ∈ RK×R, C̃M ∈ RKM×R,

Z ∈ RI×J×K , Ψ •3P 3 ∈ RI×J×KM

for m ∈ {1, . . . , iter} do
A← argmin

A
‖Y (1)

H − (C �p P 2B)ATP T
1 ‖2F

+λ‖Y (1)
M −

(
C̃M �p B

)
AT‖2F ,

B ← argmin
B

‖Y (2)
H − (C �p P 1A)BTP T

2 ‖2F
+λ‖Y (2)

M −
(
C̃M �p A

)
BT‖2F ,

Sr ← ‖ArB
T
r − Sr‖2F + ι+(Sr),

C ← ‖Y (3)
H − (P 2 �P 1)SC

T‖2F + ι+(C),
C̃M ← λ‖Y (3)

M − SC̃T
M‖2F + ι+(C̃M ).

for r ∈ {1, . . . , R} do
cr = cr/‖cr‖,
c̃M,r = c̃M,r/‖c̃M,r‖.

end
Z(3) = SCT, (Ψ •3P 3)

(3)
= S(C̃M − P 3C)T.

end

Algorithm 3: BTDRec
input : YH , YM , P 1, P 2; R, L
output: A ∈ RI×RL, B ∈ RJ×RL, C ∈ RK×R,

C̃M ∈ RKM×R

1. A,B
LL1
≈ YM ;

2. Sr = ArB
T
r for r ∈ {1, . . . , R};

3. CT = ((P 2 �P 1)S)
†
Y

(3)
H ;

4. C̃T
M = S†Y

(3)
M .

V. EXPERIMENTS FOR IMAGE RECOVERY

All simulations were run on a MacBook Pro with 2.3 GHz
Intel Core i5 and 16GB RAM. The code was implemented
in MATLAB. For basic tensor operations we used TensorLab
3.0 [42]. The code is implemented in MATLAB and available
online at https://github.com/cprevost4/LL1 HSR HU.

A. Metrics
We compared the groundtruth SRIZ with the recovered SRI
Ẑ obtained by the algorithms. The main performance metric
used in comparisons was the reconstruction Signal-to-Noise
ratio (R-SNR):

R-SNR = 10log10

(
‖Z‖2F

‖Ẑ −Z‖2F

)
. (19)

In addition to R-SNR, we considered different metrics de-
scribed below:

CC =
1

IJK

(
K∑
k=1

ρ
(
Z :,:,k, Ẑ :,:,k

))
, (20)

where ρ(·, ·) is the Pearson correlation coefficient between the
estimated and original spectral slices;

ERGAS =
100

d

√√√√ 1

IJK

K∑
k=1

‖Ẑ :,:,k −Z :,:,k‖2F
µ2
k

, (21)

https://github.com/cprevost4/LL1_HSR_HU


7

where µ2
k is the mean value of Ẑ :,:,k. ERGAS represents the

relative dimensionless global error between the SRI and the
estimate, which is the root mean-square error averaged by the
size of the SRI. We also used Spectral Angle Distance (SAD):

SAD =
1

R

R∑
r=1

arccos

(
cTr ĉr

‖cr‖2‖ĉr‖2

)
, (22)

which computes the spectral angle distance between original
and estimated spectra, and can be used to assess unmixing
performance as well. Finally, we considered the computational
time for each algorithm, given by the tic and toc functions
of MATLAB.

B. Degradation model
The HSI was obtained by spatial degradation of Z by P 1

and P 2, i.e., the SRI Z and the MSI YM represent images
of the same scene acquired on board of different missions,
and Z̃ is unknown. The spectral bands of Z and YM were
normalized such that the 0.999 intensity quantile corresponded
to a value of 1. Afterwards, the SRI Z was denoised (as
described in [43]) to yield the high-SNR reference image [5].

We also conducted experiments in a “no-variability” sce-
nario, i.e. we consider that the HSI and MSI were obtained
by spatial (resp. spectral) degradation of the same SRI Z .

For spatial degradation, we followed the commonly used
Wald’s protocol [30]. The matrices P 1, P 2 were computed
with a separable Gaussian blurring kernel of size q = 9.
Downsampling was performed along each spatial dimension
with a ratio d = 4 between (I, J) and (IH , JH), as in previous
works [14]–[18]. Refer to Appendix C for more details on the
construction of P 1, P 2. White Gaussian noise with 30dB SNR
was added to the HSI and MSI.

For the spectral degradation matrix P 3, we used the SRF
of two multispectral instruments4. For images with spectral
variability, the Sentinel-2 sensors span the electromagnetic
spectrum from 412nm to 2022nm and produce a 10-band
MSI corresponding to the wavelengths 433–453nm (atmo-
spheric correction), 458–522nm (soil, vegetation), 543–577nm
(green peak), 650–680nm (maximum chlorophyll absorp-
tion), 698–712nm (red edge), 733–747nm (red edge), 773–
793nm (leaf area index, edge of NIR), 785–900nm (leaf
area index), 855–875nm (NIR plateau), 935–955nm (water
vapour absorption). The LANDSAT sensor spans the spectrum
from 400nm to 2500nm for the HSI and produces a 6-
band MSI corresponding to wavelengths 450–520nm (blue),
520–600nm (green), 630–690nm (red), 760–900nm (near-IR),
1550–1750nm (shortwave-IR) and 2050–2350nm (shortwave-
IR2). This spectral response is used for semi-real images
without spectral variability. The spectral degradation matrix
P 3 is a selection-weighting matrix that selects the common
spectral bands of the SRI Z̃ and the MSI.

C. Recovery of the SRI and variability tensor
In this subsection, we assess the performances of Algo-

rithm 1 (BTD-Var) and Algorithm 2 (CNN-BTD-Var) for
reconstruction of the SRI Z and degraded variability tensor
Ψ •3P 3. We ran our algorithms with 20 outer iterations
at most and 5 ADMM iterations for CNN-BTD-Var. For

4available for download at [44] and [45].

initialization, out of 20 trials of BTDRec we picked the one
that provided the best reconstruction of the HSI and MSI.

For the SRI Z , we compared our results to matrix-based
approaches, including HySure [8], CNMF [6] and GLP-HS
[46]. We also considered tensor factorization methods, namely
STEREO [14] for CP decomposition, SCOTT [16] for Tucker
and CNN-BTD [17], which is a coupled LL1-based algorithm
that does not account for spectral variability. Finally, we com-
pared our approach to matrix and tensor methods accounting
for variability, namely FuVar [24] (a matrix-based algorithm
based on the GLMM), CT-STAR and CB-STAR [26], which
are tensor approaches based on multilinear decomposition
accounting for both spatial and spectral variability. It must
be noticed that except for CNMF, the baseline algorithms are
unable to perform the unmixing task. For Hysure, CNMF,
GLP-HS and FuVar, we chose the ranks and regularization
parameters according to the original works [8], [6], [24].

For reconstruction of Ψ •3P 3, we compared the results of
our algorithms with those of CT-STAR and CB-STAR. We
assessed the performance by computing R-SNR, CC, ERGAS
and SAD for each algorithm.

1) Lake Tahoe: The first dataset we considered was Lake
Tahoe with Z ∈ R100×80×173. The SRI Z and MSI YM
were respectively acquired on 2014-10-04 and 2017-10-24 by
the Sentinel-2A sensor, resulting in high variability in the
crops and lake areas). We ran STEREO with F = 30 and
10 iterations, and SCOTT with R = (40, 40, 7) as in [26]. We
ran CT-STAR with ranks (18, 15, 10),(3, 3, 1), and CB-STAR
with ranks (20, 20, 9),(20, 20, 4). For our algorithms, as well
as for CNN-BTD, we chose R = 3, L = 20 and λ = 1.

Tables I and II display the reconstruction metrics and
computation time for Z and Ψ •3P 3 and all considered
algorithms. The two best results of each column are shown
in bold.

TABLE I
RECONSTRUCTION METRICS FOR Z , LAKE TAHOE DATASET

Algorithm R-SNR CC SAD ERGAS Time
BTD-Var 15.0674 0.93829 9.6873 5.2145 1.4818

CNN-BTD-Var 15.1093 0.93574 8.0109 5.1817 0.9025
STEREO 5.8368 0.75957 30.7346 15.2801 1.2148
SCOTT 1.918 0.50379 47.1781 23.3815 0.14701

CNN-BTD 6.0332 0.80003 27.7993 14.9491 1.2826
CNMF 12.1314 0.87494 9.2422 7.2804 1.7442

GLP-HS 11.7862 0.87408 11.6106 7.6011 4.507
HySure 9.2687 0.81256 12.8228 10.1511 7.2761
FuVar 14.54 0.92498 6.7013 5.528 761.3932

CT-STAR 11.7676 0.87843 13.3433 7.6236 0.20849
CB-STAR 19.2413 0.97539 6.4649 3.2231 8.3597

TABLE II
RECONSTRUCTION METRICS FOR Ψ •3 P 3 , LAKE TAHOE DATASET

Algorithm R-SNR CC SAD ERGAS
BTD-Var 13.7482 0.85583 14.8728 12.121

CNN-BTD-Var 13.7643 0.88335 18.9519 10.7103
CT-STAR 11.4131 0.84542 17.7857 12.8223
CB-STAR 16.6599 0.94161 10.4442 7.8569

We can see that algorithms accounting for variability pro-
vided the best reconstruction metrics: in particular, the high
performance of CB-STAR resulted from the fact that the
algorithm takes into account both spatial and spectral vari-
abilities. BTD-Var and CNN-BTD-Var provided metrics com-
parable to those of FuVar, but with lower computation time.
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Fig. 1. Single spectral band of the SRI, Lake Tahoe dataset
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Fig. 2. Single spectral band of the SRI, Ivanpah Playa dataset
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Fig. 3. Single spectral band of the SRI, Indian Pines dataset

Among the matrix-based approaches, CNMF showed the best
reconstruction performance. Finally, state-of-the art tensor-
based approaches, although fast, yielded worse reconstruction
metrics than the aforementioned methods. This was due to the
fact that they do not consider any kind of variability.

CB-STAR also provided the best metrics for reconstruction
of Ψ •3P 3. However, its computation time was large. The
proposed algorithms showed competitive metrics and even
slightly outperformed baseline methods in terms of CC, but
with slightly higher computation time.

In addition, we plot in Figure 1 the 40th spectral band of the
reference SRI, as well as the estimated SRI for our algorithms.
The proposed approaches recovered the SRI spectral band
accurately.

2) Ivanpah Playa: We also considered the Ivanpah Playa
dataset with Z ∈ R80×128×173 and large acquisition time
difference: the SRI and MSI were acquired on 2015-10-26
and 2017-12-17 respectively, by the Sentinel-2 sensor. We ran
STEREO with F = 10 and 10 iterations and SCOTT with R =
(30, 30, 10). We ran CT-STAR with ranks (10, 15, 8),(3, 3, 2),
and CB-STAR with ranks (40, 40, 4),(40, 40, 5). For our al-
gorithms, as well as for CNN-BTD, we chose R = 4 and
L = 18.

Tables III and IV show the reconstruction metrics and
computation time for various algorithms.

The best metrics were provided by CB-STAR, then CNN-
BTD-Var. BTD-Var had a performance comparable to that
of GLP-HS for reconstruction of Z . Its performance was
comparable to that of CT-STAR for Ψ •3P 3. For this dataset
as well, the proposed algorithms were faster than some other
algorithms, including CNMF, CB-STAR, and FuVar. Other
matrix-based approaches also provided satisfying reconstruc-
tion. However, STEREO, SCOTT and CNN-BTD provided the
worst reconstruction metrics.

In Figure 2 we plot the 40th spectral band of the reference
SRI, as well as the estimated SRI for our algorithms, CNN-
BTD, CNMF and CB-STAR for comparison. For this dataset,

TABLE III
RECONSTRUCTION METRICS FOR Z , IVANPAH PLAYA DATASET

Algorithm R-SNR CC SAD ERGAS Time
BTD-Var 19.4098 0.86314 2.4404 2.6771 2.1568

CNN-BTD-Var 22.7305 0.92074 2.6247 1.8919 1.386
STEREO 6.0987 0.76283 29.0278 12.6747 0.93975
SCOTT 2.4445 0.34257 47.9598 19.372 0.2645

CNN-BTD 5.7515 0.33492 28.7006 13.1899 11.8775
CNMF 21.6059 0.90114 1.3019 2.1138 2.6656

GLP-HS 19.433 0.86261 3.3413 2.697 5.9218
HySure 18.4551 0.85218 3.3249 3.0653 10.4606
FuVar 22.0332 0.90354 1.5062 2.0189 526.1659

CT-STAR 21.1186 0.88849 1.9424 2.2386 0.15373
CB-STAR 25.7174 0.96003 1.3269 1.3228 8.2923

TABLE IV
RECONSTRUCTION METRICS FOR Ψ •3 P 3 , LAKE TAHOE DATASET

Algorithm R-SNR CC SAD ERGAS
BTD-Var 19.0156 0.68664 3.3129 43.8732

CNN-BTD-Var 21.75 0.80652 2.0192 25.1069
CT-STAR 19.3597 0.73396 2.1977 33.853
CB-STAR 23.4888 0.90832 1.1567 16.9815

we can see that CNN-BTD-Var yielded a better SRI spectral
band reconstruction than BTD-Var.

D. Recovery without variability

In this subsection, we assess recovery performance for the
SRI Z . We consider a “no-variability” scenario, i.e. the HSI
and MSI are both degraded versions of Z . The dataset we
consider is Indian Pines, where Z ∈ R144×144×200 is degraded
by a LANDSAT sensor for the MSI and a downsampling
ratio d = 4 for the HSI. We ran STEREO with F = 50,
SCOTT with R = (40, 40, 6) and LL1-based algorithms with
R = 6 and L = 13. We tuned the other algorithms according
to original works. The reconstruction metrics for the SRI are
presented in Table V.
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TABLE V
RECONSTRUCTION METRICS FOR Z , INDIAN PINES DATASET

Algorithm R-SNR CC SAD ERGAS Time
BTD-Var 28.0511 0.87064 1.9204 0.98804 8.3579

CNN-BTD-Var 26.2721 0.8327 2.2515 1.2191 3.176
STEREO 27.69 0.86669 1.9461 0.99959 1.8564
SCOTT 26.2451 0.86196 2.2694 1.1208 0.21087

CNN-BTD 25.2263 0.80949 2.5035 1.3497 24.5326
CNMF 27.2552 0.83978 1.9502 1.2056 8.2147

GLP-HS 26.2837 0.83813 2.2794 1.2918 14.2957
HySure 20.4281 0.66661 4.4916 2.5723 25.2202

CT-STAR 24.0398 0.84385 2.4839 1.3151 0.16528
CB-STAR 26.5216 0.86749 2.1265 1.0556 3.6761

The best reconstruction metrics were generally provided
by STEREO and BTD-Var. CNN-BTD-Var had performance
comparable to that of SCOTT, and computation time compa-
rable to that of CB-STAR. The slightly lower performance
of constrained algorithms accounting for variability can be
explained by the use of more flexible models. In this specific
scenario, other methods based on a more restrictive model
fit the data more tightly. Nonetheless, algorithms accounting
for variability offer competitive performance in the “no-
variability” case. However, their computation time is usually
higher than that of state-of-the-art tensor approaches. In Figure
3 we plot the 40th spectral band of the reference and estimated
SRI.

VI. BLIND UNMIXING EXPERIMENTS

A. Experiments setup
In this section, we assessed the performance of CNN-BTD-

Var for hyperspectral unmixing on synthetic datasets, and
semi-real examples from Section V.

We compared our results with those of CNMF [6] initial-
ized by VCA [47]. We also considered traditional unmixing
algorithms: accelerated multiplicative algorithm (MU-Acc)
[48] and BMDR-ADMM [3] (enforcing minimum dispersion
constraint on the spectra, and sum-to-one on the abundance
maps). We ran these algorithms on the recovered SRI Ẑ
obtained from CB-STAR, which gave the best reconstruction
metrics in the previous section. For these algorithms, we chose
the parameters according to the original works. We used the
actual number of materials as R. Since other fusion algorithms
such as FuVar, CT-STAR, CB-STAR are not designed for the
HU task, they were not directly included in this comparison.

For each dataset, we compared reference abundance maps
and spectral signatures to those obtained by the algorithms.

B. Hyperspectral unmixing with exact LL1 model
We first assessed the unmixing performance of our algo-

rithm in a controlled environment with synthetic datasets. That
is, we tested our approach in the case where the SRI and
variability tensor admit an exact LL1-BTD. Although these
datasets do resemble real spectral images, they allow us to
assess unmixing performance of our algorithm in a case where
the uniqueness conditions for the NMF (see [11], [12]) are not
fulfilled.

1) Generating synthetic datasets: We considered R = 3
spectral signatures cr (r ∈ {1, . . . , R}) obtained from the
Jasper Ridge reference data5, corresponding to vegetation, soil

5Available for download here.

and road materials. The SRI Z ∈ RI×J×K (I = J = 90,
K = 173) was split into LR equal blocks in the spatial
dimensions, with L = 3.

Each abundance map Sr (r ∈ {1, . . . , R}) was a block
matrix with I

L ×
J
L blocks.

We generated a multiplicative variability matrix ψmulti with
random real entries drawn from the standard uniform distri-
bution in the open interval [0.9, 1.1]. We then computed the
altered spectra C̃ = ψmulti �C. The variability matrix ψ that
we aimed at recovering was obtained as ψ = C̃ −C so that
it had zero mean.

Formally, we computed the high-resolution tensors as

Z =

R∑
r=1

Sr ⊗ cr, Ψ =

R∑
r=1

Sr ⊗ψr, Z̃ = Z + Ψ.

The HSI and MSI were obtained by degradation of the SRIs
according to model (4). For P 1 = P 2, we had q = 9 and
d = 3 so that IH = JH = 30. For P 3, we chose the SRF
matrix of the Sentinel-2 MS sensor, which led to KM = 10.

2) Separable example: In the first example, we generated
a dataset for which the pure pixel assumption is valid. Thus
in each I

L ×
J
L block, at most one material was active, as

indicated by the numerals in the parcel map shown in Table
VI. Each block in the parcel map was a patch composed of

TABLE VI
PARCEL MAP FOR THE FIRST SYNTHETIC DATASET

1 2 3
3 1 2
2 3 1

entries equal to one. The abundance maps in this case mimic
agricultural fields. This is a case for which the NMF under
minimal volume constraint is unique [49], [50], [51]. Only
unconstrained NMF is not unique.

We ran CNN-BTD-Var with R = 3 and L = 3; for other
algorithms, we used R = 3. The spectral signatures cr and
abundance maps Sr are shown in Figures 4 and 5, respectively.
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Fig. 4. Reference and estimated spectra, synthetic dataset 1

We can see that all spectra and abundance maps were
recovered accurately by CNN-BTD-Var, with visual quality
comparable to that of CNMF and BMDR-ADMM. We also
see some artifacts in the abundance maps recovered by CNMF.
Moreover, MU-Acc did not estimate all abundance maps
correctly for this example.

http://lesun.weebly.com/hyperspectral-data-set.html
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Fig. 5. Reference and estimated abundance maps, synthetic dataset 1

3) Synthetic example with non-identifiable NMF: In this
second example, we aim at designing an example where the
separability (or pure pixel) condition [11], [12] is not fulfilled.
This results in the traditional NMF being non-identifiable.
This is in fact a highly mixed situation for which all existing
approaches will fail. Thus, we expect that traditional unmixing
algorithms fail at performing the HU task on this dataset.
However, the conditions in Theorem III.1 are satisfied, which
makes the LL1 factors unique up to permutation and scaling
ambiguities. The abundance maps Sr are designed as follows:

S1 =
1

12

5 7 6
7 3 5
3 0 0

�H, S2 =
1

12

7 5 3
0 6 0
3 5 7

�H,

S3 =
1

12

0 0 3
5 3 7
6 7 5

�H,

with H a Gaussian of size 30 × 30 with standard deviation
σ = 5. From the above abundance maps, we can see that the
pure pixel assumption is not valid.

We ran CNN-BTD-Var with R = 3 and L = 3; for other
algorithms, we used R = 3. The spectral signatures cr and
abundance maps Sr are shown in Figures 6 and 7, respectively.
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Fig. 6. Reference and estimated spectra, synthetic dataset 2

We can see that the spectral signatures are best reconstructed
by CNN-BTD-Var, although CNMF only reconstructs the first
spectrum correcly. Moreover, only CNN-BTD-Var provides
reasonable estimates of the abundance maps, while other
algorithms fail.

Ref. CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

Fig. 7. Reference and estimated abundance maps, synthetic dataset 2

C. Hyperspectral unmixing for semi-real datasets

In this subsection, we assess HU performance of CNN-
BTD-Var for semi-real datasets Lake Tahoe and Ivanpah
Playa. For the two considered datasets, we followed the same
degradation model as in Section V. For these experiments, the
endmembers and abundance maps underlying Z are unknown:
as a result, we chose as reference the spectra and abundance
maps selected manually from the SRI Z . The obtained abun-
dance maps had very close correspondence with visual features
in the image. The columns of the spectra and abundance maps
were rescaled with unit norm for comparison.

1) Lake Tahoe: We first performed HU on the Lake Tahoe
dataset with Z ∈ R100×80×173. This dataset is mainly com-
posed of R = 3 materials: water (lake), soil and vegetation
(under the form of crop circles). As a result, we chose R = 3
and L = 18 as in the previous subsection. We compared
our algorithm with CNMF, MU-Acc and BMDR-ADMM with
R = 3.

On Figures 8 and 9, we plot the estimated spectra and
abundance maps.
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Fig. 8. Reference and estimated spectra, Lake Tahoe dataset

We notice that the proposed approach estimated the spectra
accurately. However, CNMF failed at recovering the water
spectrum. The abundance maps displayed in Figure 9 allow for
identification of the areas corresponding to different materials,
although with lower resolution than other methods. Addition-
ally, the abundance maps recovered by CNN-BTD-Var seem
to be low-rank. We can see that CNMF and MU-Acc did not
recover the water abundance map correctly.
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Fig. 9. Reference and estimated abundance maps, Lake Tahoe dataset

Additionally, on Figure 10, we plot the reference and
estimated C̃M and P 3ψ = C̃M −P 3C obtained from CNN-
BTD-Var.
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Fig. 10. Reference and estimated C̃M and P 3ψ, Lake Tahoe dataset

In Figure 10, we can see that the water spectrum presents
high variability for the first MSI spectral band, which corre-
sponds to the blue region. For the vegetation and soil spectra,
the most variability can be found at spectral bands correspond-
ing to the green and orange-red wavelengths. Moreover, CNN-
BTD-Var recovers the reference C̃M and P 3ψ with a small
discrepancy.

2) Ivanpah Playa: Next, we considered the Ivanpah Playa
dataset. This dataset is composed of R = 4 materials: solar
panels, dark sand, yellow sand and road. We ran CNN-BTD-
Var with R = 4, L = 18, and compared the results to other
baseline algorithms with R = 4.

In Figures 11 and 12, we plot the reference and estimated
spectra and abundance maps.
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Fig. 11. Reference and estimated spectra, Ivanpah Playa dataset

One difficulty that arises for the HU task is the important
similarity between the reference spectra (in particular, dark
and yellow sand, road materials). This leads to almost colinear
columns in C, which may lead to poorer performance. This
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Fig. 12. Reference and estimated abundance maps, Ivanpah Playa dataset

issue is particularly visible in Figure 13 with estimated C̃M

and P 3ψ.
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Fig. 13. Reference and estimated C̃M and P 3ψ, Ivanpah Playa dataset

In Figure 13, we can see that high variability can be found
for the red and near-infrared spectral bands for all materials.

Despite this difficulty, CNN-BTD-Var recovered the solar
panels and road abundance maps best, while the yellow sand
map was slightly better for BMDR-ADMM. For this example,
the low-rank assumption for abundance maps is reasonable:
see that corresponding to solar panels. This assumption allows
for better visual reconstruction of this abundance map. Con-
trary to other algorithms, all spectra are correctly recovered.

VII. CONCLUSION

In this paper, we proposed new algorithms for solving the
HSR problem with variable images, using an LL1-BTD model.
First, we showed that in the presence of variability, previous
tensor models fail at recovering the SRI, since they do not
account for spectral or spatial variability. Our approach allows
to recover the SRI accurately for the considered datasets, as
well as the degraded variability tensor.

An appropriate choice of ranks also allows our algorithms
to estimate underlying spectra and abundance maps of the
SRI, with performance comparable to those of algorithms that
perform unmixing on the SRI directly. Non-negativity priors
allow the low-rank factors of our model to be interpretable,
without having a high negative impact on the computation
time.

APPENDIX A
UNCONSTRAINED FACTOR UPDATES

The unconstrained least squares program for A can be seen
as a generalized Sylvester equation of the form X1AX2 +
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X3AX4 =X5, with

X1 = P T
1P 1, X2 = (C �p P 2B)T(C �p P 2B),

X3 = λII , X4 = (C̃M �p B)T(C̃M �p B),

X5 = P T
1 (Y

(1)
H )T(C �p P 2B) + λ(Y

(1)
M )T(C̃M �p B),

and can be solved with efficient solvers. The update for B can
be solved similarly.

The pseudo-solution for C is expressed as vec{C} =
(XTX)†XTz, with

X = ST(P T
2P 2 �P

T
1P 1)S� IK ,

z = vec{(Y (3)
H )T(P 2 �P 1)S}.

Similarly, for C̃M , we have

X =
√
λ(STS� IKM

) and z =
√
λ vec{(Y (3)

M )TS}.

APPENDIX B
CONSTRAINED UPDATES IN ALGORITHM 2

At each iteration of the ADMM scheme, we aim at solving
the following equations:

(1 + ρ)Sr = ArB
T
r + ρ(Z +U), (23)

C(ST(P T
2P 2 �P

T
1P 1)S + ρIR)

= (Y
(3)
H )T(P 2 �P 1)S + ρ(Z + U), (24)

C̃M (STS + ρIR) = (Y
(3)
M )TS + ρ(Z + U). (25)

For each equation, Z is the projection of the considered
variable onto the space of non-negative matrices, and U
denotes the dual variable for each subproblem [38]. The scalar
ρ controls the convergence speed of the algorithm and is
chosen according to [39].

Below, we present the ADMM framework for solving (24):
the updates for S and C̃M can be handled in a similar fashion.

Algorithm 4: ADMM update for (24)
input : YH , YM , S, P 1, P 2; ρ, R, iter
output: Z ∈ RK×R+
initialization: Z = U = 0K×M ;
for m ∈ {1, . . . iter} do

C ← Solve eq. (24) using normal equations;
Z ← [C − U ]+;
U ← U + Z − C.

end

Here, the operator [·]+ zeroes out the negative values of the
operand.

APPENDIX C
SPATIAL DEGRADATION MATRICES

Here, we explain in details how the degradation matrices are
constructed. For this appendix, we consider that P 1 = P 2. As
in previous works, P 1 is constructed as P 1 = S1T 1, where
T 1 is a blurring matrix and S1 is a downsampling matrix.

The blurring matrix is constructed from a Gaussian blurring
kernel φ ∈ Rq×1 (in our case, q = 9) with a standard deviation

σ = q
√
2 log 2
4 . For m ∈ {1, . . . , q} and m′ = m −

⌈
q
2

⌉
, we

have
φ(m) =

1√
2πσ2

exp

(
−m′2

2σ2

)
.

Thus, T 1 ∈ RI×I can be expressed as

T 1 =



φ(d q
2e) ... φ(q) 0 ... 0

...
. . . . . . . . .

...

φ(1)
. . . . . . 0

0
. . . . . . φ(q)

...
. . . . . . . . .

...
0 ... 0 φ(1) ... φ(d q

2e)


.

The downsampling matrix S1 ∈ RIH×I , with downsam-
pling ratio d, is made of IH independant rows such that for
i ∈ {1, . . . , IH}, (S1)i,2+(i−1)d = 1 and the other coefficients
are zeros.

REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379, 2012.

[2] M. Parente and A. Plaza, “Survey of geometric and statistical unmixing
algorithms for hyperspectral images,” in 2nd IEEE Workshop on
Hyperspectral Image and Signal Process.: Evolution in Remote Sens.,
2010, pp. 1–4.
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