Geodesics and Curvature of the Quotient-Affine Metrics on Full-Rank Correlation Matrices
Abstract
Correlation matrices are used in many domains of neurosciences such as fMRI, EEG, MEG. However, statistical analyses often rely on embeddings into a Euclidean space or into Symmetric Positive Definite matrices which do not provide intrinsic tools. The quotient-affine metric was recently introduced as the quotient of the affine-invariant metric on SPD matrices by the action of diagonal matrices. In this work, we provide most of the fundamental Riemannian operations of the quotient-affine metric: the expression of the metric itself, the geodesics with initial tangent vector, the Levi-Civita connection and the curvature.
Origin | Files produced by the author(s) |
---|