

Forecasting Regional Wind Production based on weather similarity and site clustering for the EEM20 Competition

Kévin Bellinguer, Valentin Mahler, **Simon Camal**, George Kariniotakis MINES ParisTech - PSL University / ARMINES, Centre PERSEE, Centre for processes, renewable energies and energy systems

Contacts: kevin.bellinguer@mines-paristech.fr valentin.mahler@mines-paristech.fr simon.camal@mines-paristech.fr

International Symposium on Forecasting Online, 26th October 2020

PERSEE is one of the 18 research centers of MINES ParisTech - ARMINES.

- A leading research organization on renewables integration since '80s.
- A long experience on the field of renewable energy forecasting and related applications are a cornerstone of PERSEE's activities since 1990
 - Past projects: ANEMOS, ANEMOS.plus, SafeWind, REstable...
 - Ongoing projects: Smart4RES, REgions, XFLEX Hydro...
 - Industrial and academic collaborations on forecasting

Contribute to our survey to know your needs and interests about future forecasting developments on renewable energy

https://ec.europa.eu/eusurvey/runner/02027011-b975-7860-1c35-4037eb359764

I. The EEM20 competition

- 1) Objectives and available data
- 2) Modelling challenges

II. Our approach

- 1) Model overview
- 2) Focus on dimensionality reduction
- 3) Focus on feature engineering
- III. Results and discussion

IV. Conclusion

Forecast the aggregated hourly wind production in the four price regions of Sweden

- Day-ahead Probabilistic forecast (quantiles)
- 1 year of initial training set, 1 year for the full testing set split in 6 successive tasks

- 10 NWP ensembles at national scale, 4000 turbines = Large data problem
 How to downscale to the most relevant inputs?
- The **installed capacity evolves** over time in all regions

How to adapt the forecasting model to the **dynamic installed capacity**?

Little is known about the contribution of turbines to the aggregated production
Height

Consider **physics** of wind power generation to approximate better local conditions?

How to derive **direct forecasts of regional production** that are precise and reliable?

Select past values of normalized production observed during similar weather conditions

Explore the causes of wind power generation in order to create physically relevant features

Physical phenomena		Model features							
Wind speed at higher altitude	>	 Extrapolation of wind speed (Hellmann exponent) 							
Absolute wind energy		 Maximal recoverable wind energy - cube of wind speed - air density 							
Temporal dependencies (inertia, actions of operators,)		Wind energy at t-1 and t+1							
Spatial dependencies (non-isotropic phenomena,)	>	Wind orientation							
Varying efficiency of the components (mechanical, electrical and electronic)		TemperatureRelative humidity							
Potential operational constraints (low demand, maintenance,)		Hour of the dayDay of the week							

Results and discussion

Evaluation of performances

Score based on pinball loss function

An empirical approach

- Ongoing incremental improvements (only final solution presented)
- Time-constrained competition
- Further study and comparison to state-of-the-art are needed

Backtesting of the best model

Global improvement of the forecasting performances

	Task 1 Jan-Feb	Task 2 Mar-Apr	Task 3 Mai-Jun	Task 4 Jul-Aug	Task 5 Sep-Oct	Task 6 Nov-Dec	Score EEM20
Submitted forecasts	58,96	52,59	38,39	34,73	42,92	55,97	44,92
Forecasts with latest model	58,36	52,11	37,56	33,07	43,03	55,97	44,35

Example of predictions on 4 zones

Evaluation of performances

- Importance quantified by increase in MSE when a given feature is replaced by a random permutation of its values on out-of-bag samples
- Features among the 10 more important for each Region at Task 6 (around 300 features per model)

Reliability diagram

Evolution of the NMAE throughout the competition

- Our strategy: incremental model updates led to improvements
- A promising model for regional wind production forecasts
- Strengths of the model
 - > Potential for real-life applications (open data, simple and quite robust model, reasonable computing time, ...)
 - Potential application to other regions and/or other renewable energy sources (PV, run-of-river hydro)
- Some perspectives
 - Further ideas will be developed in an upcoming paper

Thank you for your attention!

Acknowledgments

- La Compagnie nationale du Rhône (CNR) for supporting the PhD thesis of Kévin Bellinguer
- ADEME and ARMINES for supporting the PhD thesis of Valentin Mahler
- The European Commission for supporting Smart4RES project managed by Simon Camal

ADEME

