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Abstract

Purpose This paper is devoted to the theoretical and numerical study of a new topological
sensitivity concerning the insertion of a small bolt connecting two parts in a mechanical structure.
First, an idealized model of bolt is proposed which relies on a non-local interaction between the
two ends of the bolt (head and threads) and possibly featuring a pre-stressed state. Second,
a formula for the topological sensitivity of such an idealized bolt is rigorously derived for a
large class of objective functions. Third, numerical tests are performed in 2d and 3d to assess
the efficiency of the bolt topological sensitivity in the case of no pre-stress. In particular, the
placement of bolts (acting then as springs) is coupled to the further optimization of their location
and to the shape and topology of the structure for volume minimization under compliance
constraint.
Design/methodology/approach The methodology relies on the adjoint method and the
variational formulation of the linearized elasticity equations in order to establish the topological
sensitivity.
Findings The numerical results prove the influence of the number and locations of the bolts
which strongly influence the final optimized design of the structure.
Originality/value This paper is the first one to study the topology optimization of bolted
systems without a fixed prescribed number of bolts.
Keywords Topological derivative, Bolt connection, Topology optimization
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1 Introduction
Topological sensitivity analysis establishes a quantity called topological derivative which is a

measure of the sensitivity of some objective function to an infinitesimally small perturbation of the
topology of the system under study. It was first developed for a perturbation which is a small hole,
with a Neumann boundary condition, in a structure governed by the linearized elasticity equations:
its role is to determine if it is favorable or not to add a small hole in the structure during the
optimization process, see [11, 12, 26, 28, 29]. Thereafter, the method has been applied to different
type of boundary conditions on the edge of the hole, like Dirichlet boundary conditions for the
Poisson’s equation in [15] and for elasticity in [13]. The topological sensitivity approach was also
extended to various other types of perturbation, like inclusions instead of holes, and to a wide
range of models, such as sliding contact model for elasticity in [14], Navier-Stokes equations in [5],
Helmholtz equation in [25], crack detection in [6], image processing in [7], inverse problems in [4],
etc... The reader is referred to the textbook [18] for more examples and references.

To be more specific, the topological derivative is obtained by an asymptotic analysis of an
objective function J(Ω), depending on a domain Ω in Rn (n = 2 or 3), with respect to the insertion
of a small hole or a small inclusion ωρ ⊂ Ω with suitable boundary conditions. Given a reference
shape ω (typically the unit ball), the small perturbation ωρ is centered at a point x0 ∈ Ω and has a
fixed shape ω that is rescaled by a small adimensional factor ρ > 0. Define Jρ(Ω) = J(Ω \ ωρ) the
objective function for the perturbed domain, with the convention that J0(Ω) = J(Ω). The function
Jρ is said to admit a topological derivative DJ(x0) at the point x0 for a hole or an inclusion of
shape ω, if the following asymptotic expansion holds for small ρ > 0

Jρ(Ω) = J0(Ω) + s(ρ)DJ(x0) + o(s(ρ)),

where s is a positive real function of ρ satisfying lim
ρ→0

s(ρ) = 0. If the topological derivative DJ(x0)
is negative, it is then favorable to create a small hole or a small inclusion at the point x0.

The goal of the present paper is to extend this definition to the insertion of a small bolt connecting
two regions of a mechanical structure. Our idealization towards a thin bolt is both mechanically
and geometrically driven. It is made of two small balls ωρ of size ρ, distant of a fixed length ` and
aligned in a direction e, connected by a spring of rigidity κ(ρ) = Kρk subjected to a pre-stressed
state, for some k > 1 (see Fig. 1). Note that the length ` of the bolt is fixed, independent of ρ. The
location of one of the balls ωρ is denoted by x0. Our main result in Subsection 3.3 is to derive a
topological derivative DJ(x0, e) for the sensitivity of an objective function J(Ω) upon insertion of a
small bolt. Our proof of the validity of the topological asymptotic expansion in this case is not a
simple generalization of previous studies in this field because of the fixed length of the bolt and the
non-local coupling between the two end points of the bolt, κ(ρ). Another original feature of our
analysis is that the topological derivative DJ(x0, e) depend on two variables, the location x0 and
the orientation e of the bolt.

Bolts are just one example of possible connections between different parts of a structure. Other
possible types of connections are hinges, supports or rigid connections (a clamped or Dirichlet
boundary conditions). Of course, the number and the locations of such mechanical connections
have a dramatic impact on the performance of a structure. Therefore it makes sense to optimize,
not only the location of connections (which can be done with a simple parametric optimization
algorithm), but also their number: this task is performed by using the topological derivative which
allows the addition of new connections where they are best used. The topological derivative concept
has already been used to add simple connections like a clamped boundary or an embedded support
condition. For instance, the topological derivative with respect to a small hole with Dirichlet
boundary condition in linear elasticity is computed in [13]. In [8], a topological derivative approach
is used to create new supports (or springs) in a discrete system of bars for optimizing its buckling
load or one vibration eigenfrequency. The present paper is the first one to consider bolts in topology
optimization: the topological derivative with respect to a small idealized bolt is used to find the
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best location and the optimal orientation of a new bolt. Some preliminary results were announced
in our previous work [23], yet without proofs nor numerical illustrations for a coupled bolts and
structure optimization. Part of this work was the topic of the PhD thesis of the first author [22]
where other numerical examples can be found.

The contents of this paper are the followings. Section 2 defines the mechanical model for an
idealized bolt: it is a two step process, where a first step induces a pre-stress before the second step
of the normal operating mode of the tightened system. The mechanical model and the optimization
problem are also set in Section 2. Section 3 introduces the perturbed domain for the topological
sensitivity analysis with respect to a small bolt and gives our main theoretical results. Section 4
gives the proof of the formula for the topological derivative. Section 5 is devoted to the definition
of a coupled optimization problem for the bolts and the structure. Once a new bolt has been
introduced in a structure, thanks to the help of the topological derivative, its location can be
optimized in a coupled manner with shape or topology optimization of the structure, using a
parametric gradient-based algorithm and the level set method. Finally, Section 6 features numerical
illustrations in 2d and 3d in the simplified case of no pre-stress in the bolt (in such a case the
bolt is acting like a spring). For a 2d academic example of volume minimization under a fixed
compliance constraint, we explore various coupling strategies: optimizing the structure with a fixed
bolt, initially placed by the topological derivative, or optimizing simultaneously the structure and
the bolt location. The addition of a second bolt is also studied. In 3d we content ourselves in testing
the insertion of one or two bolts, without coupling with structure optimization. A more complete
numerical assessment of our topological derivative in 3d with engineering uses cases, featuring a
pre-stressed bolt and a contact model, will appear in [24].

2 Modeling

2.1 Idealized bolt model

The purpose of a bolt is to connect two different parts of a structure. We propose here a
simple setting to model the interface between these parts but more general and realistic cases can
equally be considered (see Remark 1 below for a discussion). Let Ω be a smooth bounded and
connected domain of R3, which is the union of two disjoints and connected parts ΩA and ΩB, with
an interface Γc (see Fig. 2a). Its boundary is made of disjoint parts, ∂Ω = Γ ∪ ΓN ∪ ΓD, where
Γ is the traction-free boundary and Neumann and Dirichlet boundary conditions are respectively
imposed on ΓN and ΓD, which is assumed to be non-empty. The space of admissible displacements
corresponds to zero displacement on ΓD

W = {u ∈ (H1(Ω))3,u = 0 on ΓD}. (2.1)

For a displacement field u, the strain tensor is defined by ε(u) = 1
2(∇u+∇Tu). Each sub-domain

ΩA (resp. ΩB) is filled with a linear isotropic elastic material, with Lamé coefficients µA and λA
(resp. µB and λB). The stress tensor is then given by the Hooke’s law

Aε(u) =
{

2µAε(u) + λAtr(ε(u))I in ΩA,

2µBε(u) + λBtr(ε(u))I in ΩB.

We assume a perfect interface Γc between ΩA and ΩB . Thus, there are usual transmission conditions
between both parts that insure continuity of displacements and normal stress at the interface Γc.
Assuming that there are only surface loads, the domain Ω is ruled by the linear elasticity equations

−div(Aε(u)) = 0 in Ω,
Aε(u)n = g on ΓN ,
Aε(u)n = 0 on Γ,

u = 0 on ΓD.

(2.2)
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Assuming that surface loads g belong to L2(ΓN )3, Lax-Milgram theorem, coupled with Korn’s
inequality, gives the existence and the uniqueness of the solution u ∈ W. In the following, we
assume that u is as smooth as we want, which is always possible by assuming that the loads g are
smooth as well as the domain.

Remark 1. The assumption of a perfect interface between ΩA and ΩB is made here only for the
sake of simplicity. Other settings are admissible for our analysis. Indeed, our main results do
not depend directly on the type of conditions at the interface Γc. For example, one could consider
that Γc is a crack, where homogeneous Neumann boundary conditions hold true (ignoring possible
inter-penetrations). In other words, ΩA and ΩB are two disconnected domains where the solutions
of the linear elasticity equations can independently be computed (at least if both ΩA and ΩB have a
Dirichlet boundary to insure well-posedness). One could further add a small gap between ΩA and
ΩB. Even more realistic is the case where a contact condition, instead of transmission condition,
is imposed on Γc. This settings is studied in [22] Chapter 7, Section 7.3, where it is proved that a
sliding contact condition between both parts does not change the final result as well as the analysis of
the topological sensitivity. Of course, any hybrid combination of these conditions is possible, namely
on different parts of Γc different conditions hold true.

We propose an idealized model of bolt connections through an analytical formulation. Physical
representativeness is kept at first order. This model aims to be computationally cheap and easy to
use for optimization process.

`

eωA

ωB

Head

Root

Threads

Bolt Idealized model

∅ = 2rb

Figure 1: Standard bolt and its idealized model

Briefly stated, the idealized model corresponds to two spheres linked by a one degree of freedom
linear-spring. The bolt is embodied by two spheres symbolizing its head and its threads, respectively
denoted by ωA and ωB (see Fig. 1). These spheres allow efforts transmission and displacements
continuity between the bolt extremities and the jointed parts. They stay at a distance `, in the
direction of a unit vector e, and have a radius rb. We consider long bolts obeying to the Euler-
Bernoulli condition for long beam which is ` � rb. The small bolt is obtained by rescaling the
size of the spheres (but not the separation distance `) with an adimensional factor ρ > 0 that goes
to zero. In the following, the factor ρ will abusively refer to the size of the bolt. The spheres are
elastic, made of the same material as the parts. For the purpose of topological sensitivity analysis,
the idealized model is associated to a rigidity κ(ρ). It models the stiffness along the axis of the
spring, that is to say its tension-compression behavior. The spheres remotely interact with each
other through the linear spring law

F = κ(ρ)L, (2.3)
with F the force and L the lengthening of the bolt root.

Remark 2. An extension of this model with a 6 degrees of freedom linear-spring is described in [22]
Chapter 2, Section 2.3. Such a model is irrelevant in the framework of topological sensitivity analysis
which takes only into account the leading axial rigidity with regards to the size of the spheres.
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The bolt functioning with a pre-stress is described in two steps. In practice, a bolted joint is
carried out by applying a tightening torque to the head of the bolt. It creates a pre-stressed state,
denoted "Step 1". It consists in applying compressively an external pre-tension force of amplitude
Φ(ρ) on the pair of elastic spheres (see Fig. 2a). This force corresponds to the compression of the
tightened parts. For simplicity, this is performed in the absence of other external loads on the
system. The second step, denoted "Step 2", amounts to add external loads g and the one degree
of freedom spring of rigidity κ(ρ) on this tightened system (see Fig. 2b). We denote by T (ρ) the
amplitude of the resulting force acting compressively between both spheres ωA and ωB. That second
step is described by a displacement field that depends on the displacement field of the first step too.

ΩA

ΩB

ωA

ωB

Φ(ρ)e

−Φ(ρ)e

ΓD

ΓN

Γc

(a)

ΩA

ΩB

ωA

ωB

κ(ρ)

g

ΓD

ΓN

Γc

(b)

Figure 2: Step 1 : pre-stressed state (a) and Step 2 : in-service state where ωA and ωB are tightened
(b)

2.2 Optimization problem

Let Ω1 and Ω2 be another partition of Ω (different from ΩA and ΩB), that is Ω̄ = Ω̄1 ∪ Ω̄2 and
Ω1 ∩ Ω2 = ∅. The goal of this partition is to avoid technicalities: bolts can be inserted in Ω2 by the
topological derivative, away from the region Ω1 where the objective function is evaluated (see Fig.
3). This decoupling assumption simplifies the analysis, although it is not strictly necessary. The
objective function is thus

J0(Ω) =
ˆ

Ω1

F (u)dV +
ˆ

ΓN

G(u)dS. (2.4)

The functions F and G are twice differentiable and satisfy the growth conditions

∃α > 0,
{
|F (u)| ≤ α(|u|2 + 1), |F ′(u)| ≤ α(|u|+ 1), |F ′′(u)| ≤ α,
|G(u)| ≤ α(|u|2 + 1), |G′(u)| ≤ α(|u|+ 1), |G′′(u)| ≤ α. (2.5)

Knowing that the interface Γc is fixed, we consider a shape optimization problem

min
Ω∈Uad

J0(Ω),

where Uad is the set of admissible shapes. In the absence of bolts, the computation of the gradient
of the objective function (2.4) requires the introduction of the so-called background adjoint state p,
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associated to (2.2), which solves
−div(Aε(p)) = −F ′(u)1Ω1 in Ω,

Aε(p)n = −G′(u) on ΓN ,
Aε(p)n = −0 on Γ,

p = 0 on ΓD,

(2.6)

where 1Ω1 is the characteristic function of Ω1. Lax-Milgram theorem, coupled with Korn’s inequality,
gives the existence and uniqueness of the solution p ∈ W. We assume that p is as smooth as
required, similarly to the assumptions on u.

3 Topological derivative and main results
We describe the insertion of a small bolt in the assembly with the topological derivative method.

The background domain refers to the system before the insertion of the small idealized bolt. The
perturbed domain refers to the domain with the new small bolt.

Remark 3. The analysis is still accurate and the expression of the topological derivative remains
the same if the background domain already contains bolts (see [22] Chapter 7, Section 7.2, for the
proof).

Ω1 Ω2 ωA

ωB

x0ρ

ρ

`e

ΩA

ΩB

Figure 3: Perturbation of the domain Ω by a
small bolt

κ(ρ)

ωA ωB

Figure 4: Sketch of the non-local rigidity κ(ρ)

We propose to perturb the background domain with two small elastic inclusions, ωA and ωB of
size ρ, linked by a spring of rigidity κ(ρ) subjected to a pre-tension of amplitude Φ(ρ). In the sequel,
we choose the reference shape ω to be the unit ball of R3, which allows us to compute explicitly
the coefficients of the topological derivative. Let ωA be a small inclusion of shape ω, rescaled by
an adimensional factor ρ > 0 and centred at the point x0 ∈ Ω2. The second inclusion, denoted
ωB, is the translation of ωA at a distance ` > 0 and in the unit direction e. More specifically, the
inclusions read

ωA =
{
x ∈ R3,

x− x0
ρ

∈ ω
}

and ωB =
{
x ∈ R3,

x− x0 − `e
ρ

∈ ω
}
. (3.1)

Let us assume the following scaling of the model

κ(ρ) = Kρk and Φ(ρ) = Qρk, (3.2)

with K > 0, Q > 0 and k > 1.
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Remark 4. A complete analysis of all possible scalings is carried out in [22] Chapter 7, Section
7.2, where different powers are used for κ(ρ) = Kρk, Φ(ρ) = Qρq, k > 0 and q > 0.

The idealized bolt is defined with an average approach. Let us define the notation for the average
on ωA of the projection of the displacement field u along e, the axis of the spring,

 
ωA

u · edV = 1
|ωA|

ˆ
ωA

u · edV.

The lengthening, L, of the spring is the difference between the average displacements in ωA and
ωB along its axis. In 2d, this so-called spring can be depicted as an out-of-plane non-local rigidity
linking the two spheres (cf. Fig. 4), acting as a remote interaction law. We define the perforated
domain Ωρ, i.e. the domain Ω without the head and the threads of the idealized bolt

Ωρ = Ω\(ωA ∪ ωB). (3.3)

3.1 Step 1 : pre-tension state

3.1.1 Background domain

For the sake of simplicity, it is assumed here that Step 1 takes place without any previous
bolts and without external loads in background domain. Thus, the background solution u1 is zero.
However, as shown in [22] Chapter 7, Section 7.2, the entire analysis works also in the case of
pre-existing bolts, yielding a non-zero background solution u1.

3.1.2 Perturbed domain

The background domain is perturbed by two small spheres loaded by a pre-tension force of
amplitude Φ(ρ) (see Fig. 2a). The displacement field in the perturbed domain uρ,1 then solves

−div(Aε(uρ,1)) = 0 in Ωρ

−div(Aε(uρ,1)) = Φ(ρ)
|ωA|

e in ωA

−div(Aε(uρ,1)) = −Φ(ρ)
|ωB|

e in ωB

Aε(uρ,1)n = 0 on ΓN
uρ,1 = 0 on ΓD

. (3.4)

Again, Lax-Milgram theorem, with Korn’s inequality, gives the existence and the uniqueness of the
solution uρ,1 ∈ W. In the following, we assume that uρ,1 is smooth enough, at least away from
ωA and ωB (the loads are discontinuous through the spheres boundaries). We also recall that the
transmission condition between ΩA and ΩB insures the continuity of displacements and normal
stress.

3.2 Step 2 : in-service state

3.2.1 Background domain

External loads g are applied in the second step. Then, the background solution u2 solves (2.2).

8



3.2.2 Perturbed domain

The background problem (2.2) is perturbed by two small elastic spheres linked by a one degree
of freedom spring of rigidity κ(ρ) subjected to an apparent force T (ρ) that reads

T (ρ) = −κ(ρ)

 
ωB

uρ,1 · edV −
 
ωA

uρ,1 · edV

+ Φ(ρ). (3.5)

The displacement field uρ,2 solves



−div(Aε(uρ,2)) = 0 in Ωρ

−div(Aε(uρ,2))− κ(ρ)
|ωA|

 
ωB

uρ,2 · edV −
 
ωA

uρ,2 · edV

 e = T (ρ)
|ωA|

e in ωA

−div(Aε(uρ,2)) + κ(ρ)
|ωB|

 
ωB

uρ,2 · edV −
 
ωA

uρ,2 · edV

 e = −T (ρ)
|ωB|

e in ωB

Aε(uρ,2)n = g on ΓN
uρ,2 = 0 on ΓD

. (3.6)

Again, it is assumed that uρ,2 is as smooth as we want, at least away from ωA and ωB , which is the
case when the loads and the domain are smooth. Denote Jρ the objective function (2.4) evaluated
in the perturbed domain

Jρ(Ω) =
ˆ

Ω1

F (uρ,2)dV +
ˆ

ΓN

G(uρ,2)dS. (3.7)

3.3 Main result

Definition 1. The objective function Jρ is said to admit a topological derivative DJ(x0, e) at a
point x0 for a small bolt of direction e and for a pair of inclusions of shape ω, if the following
asymptotic expansion holds for small ρ > 0

Jρ(Ω) = J0(Ω) + s(ρ)DJ(x0, e) + o(s(ρ)), (3.8)

where s(ρ) is a positive scalar function of ρ which satisfies lim
ρ→0

s(ρ) = 0.

If the quantity DJ(x0, e) is negative, it is then favorable to create a small bolt at the point
x0 in the direction e. Of course, in practice there may be some constraints in the optimization
of Jρ, like an extra weight of the bolt compared to the background material. In such a case, the
topological derivative should be computed for the Lagrangian corresponding to this constrained
optimization problem.

Remark 5. In the present study, the displacement field u1 of the background Step 1 is zero.
Nevertheless, we give a general result in the following theorem which applies even if u1 does not
vanish.

Theorem 1. Take ω to be the unit ball of R3. Define

U1 = u1(x0 + `e)− u1(x0),
U2 = u2(x0 + `e)− u2(x0),
P 2 = p2(x0 + `e)− p2(x0),

(3.9)
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where u1, u2 and p2 are respectively the displacement fields of the background Step 1, Step 2 and
the adjoint state of the background adjoint problem of Step 2. The objective function Jρ admits a
topological asymptotic expansion of the form (3.8), for k > 1, that reads

Jρ(Ω) = J0(Ω) + ρk
(
K
(
U2 −U1

)
· e+Q

)
P 2 · e+


O(ρk+2) if k > 4
O(ρ3k/2) if 2 ≤ k ≤ 4
O(ρ2k−1) if 1 < k < 2

. (3.10)

Remark 6. The asymptotic expansion (3.10) of the objective function Jρ is the same whatever the
transmission or boundary conditions at the interface Γc between both parts ΩA and ΩB. It is proved
in [22] Chapter 7, Section 7.3, for the case of a sliding contact model on Γc. Note however that the
condition on the interface Γc appears implicitly in the result through the displacement fields and the
adjoint. Nevertheless it does not change the coefficients of the topological derivative.

Corollary 1. In the absence of pre-tension force, in other word if Q = 0, there is no pre-stressed
state and the small bolt is degenerated into a simple spring. Therefore, the objective function Jρ
admits a topological asymptotic expansion of the form (3.8), that reads

Jρ(Ω) = J0(Ω) + ρkKU · eP · e+


O(ρk+2) if k > 4
O(ρ3k/2) if 2 ≤ k ≤ 4
O(ρ2k−1) if 1 < k < 2

. (3.11)

where U = u(x0 + `e)− u(x0) and P = p(x0 + `e)− p(x0) with u and p respectively solution of
the background problem (2.2) and the associated adjoint problem (2.6).

Remark 7. Theorem 1 and Corollary 1 can be generalized to the 2d case (see [22] Chapter 5,
Section 5.2, for details). For example, formula (3.11) becomes in 2d

Jρ(Ω) = J0(Ω) + ρkKU · eP · e+
{
O(ρk+2) if k ≥ 4
O(ρ3k/2) if 0 < k < 4

. (3.12)

4 Establishment of the topological derivative
This section is devoted to the proof of Theorem 1. The main ideas are as follows. First, formal

expansions (4.1), (4.9), (4.23) of the perturbed fields are established with the help of far field
functions that zoom on each inclusion and ignore the boundary conditions on ∂Ω. These far field
functions are explicitly computed thanks to the spherical shape of the inclusions. Second, rigorous
estimates are established to prove the validity of these asymptotic expansions. Third, these ansatz
are used to compute the topological derivative, at the end of the in-service state (Step 2), from a
Taylor expansion of the objective function. As usual, it requires the introduction of an adjoint, for
which the same type of asymptotic analysis is required. One originality of the following proof is
that the topological derivative is computed for a two steps process, involving two coupled state
equations. In other words, the perturbed displacement field uρ,2 of Step 2, depends, among other
things, on the displacement field uρ,1 of Step 1.

4.1 Approximation of perturbed displacement fields

4.1.1 Step 1

Recall that the background displacement field u1 of Step 1 is zero here. However, it is kept in
the sequel to prove the general expression of the topological derivative. The following asymptotic
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expansion is formally proposed for the perturbed field uρ,1, solution of (3.4),

uρ,1(x) ≈ u1 + va,1
(
x− x0
ρ

)
+ vb,1

(
x− x0 − `e

ρ

)
, (4.1)

where the far field functions va,1 and vb,1 tackle the influence of each separate inclusions ωA and
ωB. They are defined in R3 and decay to zero at infinity since perturbations are getting smaller
far from the inclusions. In other words, these functions are zooming on the inclusions and ignore
boundary conditions on ∂Ω. In (4.1) they are rescaled by ρ, so that va,1 and vb,1 are living around
the same unit size inclusion ω, and respectively solve
−div(Aε(va,1)(ya)) = 0 in R3\ω
−div(Aε(va,1)(ya)) = ξu1(ρ)e in ω

lim
ya→0

va,1(ya) = 0
and


−div(Aε(vb,1)(yb)) = 0 in R3\ω
−div(Aε(vb,1)(yb)) = −ξu1(ρ)e in ω

lim
yb→0

vb,1(yb) = 0
,

(4.2)
where ya = x− x0

ρ
, yb = x− x0 − `e

ρ
and

ξu1(ρ) = Φ(ρ)
ρ|ω|

. (4.3)

Lemma 1. Assume that ω is a ball of radius r1 = 1. Denoting r = ‖y‖, the functions va,1 and vb,1
are explicitly given by

va,1(y) =


r3
1(5r2 − 3r2

1)(µA + λA)
30r5µA(2µA + λA) ξu1 (ρ)e · yy + r3

1((15µA + 5λA)r2 + (µA + λA)r2
1)

30r3µA(2µA + λA) ξu1 (ρ)e in R3\ω

µA + λA
15µA(2µA + λA)ξu1 (ρ)e · yy − (9µA + 4λA)r2 − (25µA + 10λA)r2

1

30µA(2µA + λA) ξu1 (ρ)e in ω

,

vb,1(y) =


− r3

1(5r2 − 3r2
1)(µB + λB)

30r5µB(2µB + λB) ξu1 (ρ)e · yy − r3
1((15µB + 5λB)r2 + (µB + λB)r2

1)
30r3µB(2µB + λB) ξu1 (ρ)e in R3\ω

− µB + λB
15µB(2µB + λB)ξu1 (ρ)e · yy + (9µB + 4λB)r2 − (25µB + 10λB)r2

1

30µB(2µB + λB) ξu1 (ρ)e in ω

.

Remark 8. In 2d, the solutions of the far fields problems (4.2) are obtained with the same
methodology but they behave as O(ln r) at infinity while they behave as O(1/r) at infinity in
3d (see [22] Chapter 5, Section 5.2.3).

Proof. The explicit form of the solutions of (4.2) goes back to [31]. A full proof can be found in
[22] Chapter 5, Section 5.2. In the course of the computation, the following useful formula (for a
later use) is obtained

 
ω

va,1 · edV = ξu1(ρ)
τA

with τA = 15
2
µA(2µA + λA)
(5µA + 2λA)r2

1
, (4.4)

with the same formula for the average of vb,1, replacing A by B and with a negative sign.

We now rigorously justify the ansatz (4.1). Let us introduce some simplifying notations. Denote
by vρ,1 = uρ,1 − u1 the difference between the perturbed and the background displacement fields of
Step 1. Since u1 is zero here, vρ,1 solves (3.4). Introduce the sum

v1(x) = va,1

(
x− x0
ρ

)
+ vb,1

(
x− x0 − `e

ρ

)
, (4.5)

where va,1 and vb,1 are given by Lemma 1. The proposition below is a quantitative version of the
asymptotic expansion (4.1).
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Proposition 1. Let θ ∈ C∞c (Ω) be a cut-off function with compact support U+ ⊂ Ω such that θ ≡ 1
in a neighborhood U− ⊂ U+ of x0 and x0 + `e. There exists a constant C > 0 independent of ρ such
that

vρ,1 = θv1 + δ1,

with a small remainder term δ1 satisfying

‖v1‖L2(Ω) ≤ Cρk, ‖ε(v1)‖L2(Ω) ≤ Cρk−1/2, ‖δ1‖H1(Ω) ≤ Cρk. (4.6)

Remark 9. The role of the cut-off function θ is to make sure that the product θv1 satisfies
homogeneous boundary conditions on the boundary ∂Ω, as does vρ,1. Since θ has a compact support,
it implies that θ ≡ 0 far from x0 and x0 +`e. Consequently, δ1 also contains the far field influence of
the inclusions. The function δ1 is an error term in H1(Ω) since its H1-norm is always asymptotically
smaller than the one of θv1. The L2-norm of δ1 is of the same order as its H1-norm. However, the
L2-norm of v1 is always smaller by a factor √ρ than the L2-norm of its gradient ε(v1).
Proof. The explicit expression of va,1 indicates at infinity that |va,1| = O (|ξu1(ρ)|/r) and |ε(va,1)| =
O
(
|ξu1(ρ)|/r2

)
. The same is true for vb,1 and, by rescaling, it leads to

‖v1‖L∞(Ω\U−) ≤ Cρ|ξu1(ρ)| and ‖ε(v1)‖L∞(Ω\U−) ≤ Cρ|ξu1(ρ)|.

Denote Ωρ−1 the translated and rescaled domain centered at the origin, equal to Ωρ/ρ. Since v1 is
the sum of two rescaled terms va,1 and vb,1 which behave similarly, we have

‖v1‖2L2(Ω) ≤ Cρ
3
ˆ

Ωρ−1

|va,1|2dV + Cρ3
ˆ
ω

|va,1|2dV ≤ Cρ3|ξu1(ρ)|2
r1/ρˆ
r1

dr + Cρ3|ξu1(ρ)|2
r1ˆ

0

r6dr

≤ Cρ2|ξu1(ρ)|2 + Cρ3|ξu1(ρ)|2 ≤ Cρ2|ξu1(ρ)|2 ≤ CΦ(ρ)2 ≤ Cρ2k.

Estimates of the L2-norm of ε(v1) are obtained by a similar argument

‖ε(v1)‖2L2(Ω) ≤ Cρ
ˆ

Ωρ−1

|ε(va,1)|2dV + Cρ

ˆ
ω

|ε(va,1)|2dV ≤ Cρ|ξu1(ρ)|2 ≤ CΦ(ρ)2

ρ
≤ Cρ2k−1.

To obtain an estimate of δ1, write its equation
−div(Aε(δ1)) = divA(v1 ⊗∇θ)s + Aε(v1)∇θ in Ω,

Aε(δ1)n = 0 on ΓN ,
δ1 = 0 on ΓD,

(4.7)

multiply it by δ1 and integrate by partsˆ

Ω

Aε(δ1) : ε(δ1)dV = −
ˆ

Ω

A(v1 ⊗∇θ)s : ε(δ1)dV +
ˆ

Ω

Aε(v1)∇θ · δ1dV. (4.8)

The left hand side of (4.8) is bounded from below using the Poincaré-Korn inequalityˆ

Ω

Aε(δ1) : ε(δ1)dV ≥ C‖ε(δ1)‖2L2(Ω)

for some constant C independent of ρ. Using L∞-norms of v1 and ε(v1) since ∇θ = 0 in the
influence area of the inclusions, the right hand side of (4.8) is bounded from above by

C‖v1‖L∞(Ω\U−)‖ε(δ1)‖L2(Ω) + C‖ε(v1)‖L∞(Ω\U−)‖δ1‖L2(Ω)

≤ Cρ|ξu1(ρ)|‖ε(δ1)‖L2(Ω) ≤ Cρk‖ε(δ1)‖L2(Ω),

by using again the Poincaré-Korn inequality, which yields the desired result.
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4.1.2 Step 2

We perform a similar asymptotic analysis for the perturbed displacement field uρ,2, solution of
(3.6), as we did for uρ,1. We propose the formal ansatz

uρ,2(x) ≈ u2(x) + va,2
(
x− x0
ρ

)
+ vb,2

(
x− x0 − `e

ρ

)
, (4.9)

where va,2 and vb,2 are far field functions satisfying
−div(Aε(va,2)(ya)) = 0 in R3\ω
−div(Aε(va,2)(ya)) = ξu2(ρ)e in ω

lim
ya→0

va,2(ya) = 0
and


−div(Aε(vb,2)(yb)) = 0 in R3\ω
−div(Aε(vb,2)(yb)) = −ξu2(ρ)e in ω

lim
yb→0

vb,2(yb) = 0
,

(4.10)
with

ξu2(ρ) =κ(ρ)
ρ|ω|

 
ω

(vb,2 − va,2) · edV + (u2(x0 + `e)− u2(x0)) · e


− κ(ρ)
ρ|ω|

 
ω

(vb,1 − va,1) · edV + (u1(x0 + `e)− u1(x0)) · e

+ Φ(ρ)
ρ|ω|

.

(4.11)

Because of the specific form (4.11) of the forcing term, the functions va,2 and vb,2 are coupled
together (which was not the case for va,1 and vb,1). Furthermore, the forcing term depends on the
solution at the first step. Indeed, the two last terms of (4.11) come from a zero-order expansion of
the force T (ρ) given by (3.5). They are simply obtained by using the ansatz (4.1) for uρ,1 and the
Taylor expansions of the background solution u1 in a neighborhood of x0 and x0 + `e.

Remark 10. The coefficient ξu2(ρ) defined by (4.11) is not fully explicit since it depends on va,2
and vb,2. However, as we shall see in the following lemma, it admits an explicit formula in terms of
u1 and u2. In truth the notation ξu2(ρ) is slightly misleading since it does not depend solely on u2.
Lemma 2. Assume that ω is a ball of radius r1 = 1. Denoting r = ‖y‖, the functions va,2 and vb,2
are explicitly given by

va,2(y) =


r3
1(5r2 − 3r2

1)(µA + λA)
30r5µA(2µA + λA) ξu2 (ρ)e · yy + r3

1((15µA + 5λA)r2 + (µA + λA)r2
1)

30r3µA(2µA + λA) ξu2 (ρ)e in R3\ω

µA + λA
15µA(2µA + λA)ξu2 (ρ)e · yy − (9µA + 4λA)r2 − (25µA + 10λA)r2

1

30µA(2µA + λA) ξu2 (ρ)e in ω

, (4.12)

vb,2(y) =


− r3

1(5r2 − 3r2
1)(µB + λB)

30r5µB(2µB + λB) ξu2 (ρ)e · yy − r3
1((15µB + 5λB)r2 + (µB + λB)r2

1)
30r3µB(2µB + λB) ξu2 (ρ)e in R3\ω

− µB + λB
15µB(2µB + λB)ξu2 (ρ)e · yy + (9µB + 4λB)r2 − (25µB + 10λB)r2

1

30µB(2µB + λB) ξu2 (ρ)e in ω

,

(4.13)
and

ξu2(ρ) =
κ(ρ)
ρ|ω|

1 + κ(ρ)
ρ|ω|

(
1
τA

+ 1
τB

)((u2(x0 +`e)−u2(x0)) ·e−(u1(x0 +`e)−u1(x0)) ·e
)

+ Φ(ρ)
ρ|ω|

. (4.14)

Proof. The proof is as standard as the one of Lemma 1 thanks to [31]. Similar useful equalities hold
and we have  

ω

va,2 · edV = ξu2(ρ)
τA

and
 
ω

vb,2 · edV = −ξu2(ρ)
τB

. (4.15)

The explicit expression of ξu2(ρ) is a combination of (4.11), (4.15) and results of Lemma 1.
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Remark 11. Our choice (3.2) of scaling laws for κ(ρ) = Kρk and Φ(ρ) = Qρk, with k > 1, is
partly motivated by the fact that both terms in definition (4.14) of ξu2(ρ) have the same order of
magnitude and that asymptotically

ξu2(ρ) = ρk−1

|ω|

(
K
(
(u2(x0 + `e)− u2(x0)) · e− (u1(x0 + `e)− u1(x0)) · e

)
+Q

)
+O(ρ2k−2).

We now rigorously justify the ansatz (4.9). Let us introduce some simplifying notations. Define
the sum

v2(x) = va,2

(
x− x0
ρ

)
+ vb,2

(
x− x0 − `e

ρ

)
, (4.16)

where va,2 and vb,2 are given by Lemma 2. Let vρ,2 = uρ,2 − u2 be the difference between the
perturbed and the background displacement fields of Step 2. It solves

−div(Aε(vρ,2)) = 0 in Ωρ,

−div(Aε(vρ,2))− κ(ρ)
|ωA|

 
ωB

(vρ,2 + u2) · edV −
 
ωA

(vρ,2 + u2) · edV

 e = T (ρ)
|ωA|

e in ωA,

−div(Aε(vρ,2)) + κ(ρ)
|ωA|

 
ωB

(vρ,2 + u2) · edV −
 
ωA

(vρ,2 + u2) · edV

 e = −T (ρ)
|ωB|

e in ωB,

Aε(vρ,2)n = 0 on ΓN ,
vρ,2 = 0 on ΓD.

(4.17)
The proposition below gives a quantitative version of the asymptotic expansion (4.9) as ρ goes to
zero.

Proposition 2. Let θ ∈ C∞c (Ω) be a cut-off function with compact support U+ ⊂ Ω such that θ ≡ 1
in a neighborhood U− ⊂ U+ of x0 and x0 + `e. There exists a constant C > 0 independent of ρ such
that

vρ,2 = θv2 + δ2,

with a small remainder term δ2 satisfying

‖v2‖L2(Ω) ≤ Cρk, ‖ε(v2)‖L2(Ω) ≤ Cρk−1/2, ‖δ2‖H1(Ω) ≤ Cρk.

Proof. The explicit expression of va,2 gives its rate of decay at infinity, from which we deduce by
rescaling ‖v2‖L∞(Ω\U−) ≤ Cρ|ξu2(ρ)| and ‖ε(v2)‖L∞(Ω\U−) ≤ Cρ|ξu2(ρ)|. Using again the explicit
form of va,2 and the scaling laws (3.2), as in the proof of Proposition 1, gives

‖v2‖L2(Ω) ≤ Cρ|ξu2(ρ)| ≤ C κ(ρ)
1 + C κ(ρ)

ρ

+ CΦ(ρ) ≤ Cρk,

‖ε(v2)‖L2(Ω) ≤ C
√
ρ|ξu2(ρ)| ≤ C

κ(ρ)√
ρ

1 + C κ(ρ)
ρ

+ C
Φ(ρ)
√
ρ
≤ Cρk−1/2.

Let us now write the equations satisfied by the error term δ2
−div(Aε(δ2)) = divA(v2 ⊗∇θ)s + Aε(v2)∇θ in Ωρ,

Aε(δ2)n = 0 on ΓN ,
δ2 = 0 on ΓD,

(4.18)
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complemented by the following equation in ωA

−div(Aε(δ2))− κ(ρ)
|ωA|

 
ωB

(δ2 − δ1) · edV −
 
ωA

(δ2 − δ1) · edV

 e
= κ(ρ)
|ωA|

 
ωB

u2 · edV −
 
ωA

u2 · edV − (u2(x0 + `e)− u2(x0)) · e

 e
− κ(ρ)
|ωA|

 
ωB

u1 · edV −
 
ωA

u1 · edV − (u1(x0 + `e)− u1(x0)) · e

 e,
(4.19)

and a similar one in ωB obtained by interchanging the role of ωA and ωB. To obtain an estimate of
δ2 we rely on the variational formulation of (4.18) and (4.19) with δ2 as test function. Before doing
so, let us recognize some simplifications in the right hand side of (4.19) by performing a Taylor
expansion with integral remainder for u2 in a neighbourhood of x0

u2(x) = u2(x0)+∇u2(x0)(x−x0)+
ˆ 1

0
(1− t)(x−x0)TD2(u2(x0 + t(x−x0)))(x−x0)dt, (4.20)

where D2(u2) is the Hessian tensor of the second order derivatives of u2. In particular, it is here
that we need the assumption that u2 is smooth, at least u2 ∈ (C2(Ω))3. Recalling that ω is the unit
ball of R3, it comes

 
ωA

∇u2(x0)(x− x0)dV = 0 and thus

 
ωA

u2 · edV − u2(x0) · e =
 
ωA

RA
u2dV,

where RA
u2 denotes the integral remainder of the Taylor expansion (4.20). Similar functions, RA

u1 ,
RB
u1 and RB

u2 , are set in a neighbourhood of x0 and x0 + `e. All these integral remainders are of
the order of ρ2 in the continuous norm of ωA and ωB.

Eventually, the variational formulation of (4.18) and (4.19) with the test function δ2, where the

term κ(ρ)
4

 
ωB

δ1 · edV −
 
ωA

δ1 · edV


2

has been added on both sides, leads to

ˆ

Ω

Aε(δ2) : ε(δ2)dV + κ(ρ)

 
ωB

δ2 · edV −
 
ωA

δ2 · edV −
1
2

 
ωB

δ1 · edV −
 
ωA

δ1 · edV




2

=−
ˆ

Ωρ

A(v2 ⊗∇θ)s : ε(δ2)dV +
ˆ

Ωρ

Aε(v2)∇θ · δ2dV + κ(ρ)
4

 
ωB

δ1 · edV −
 
ωA

δ1 · edV


2

− κ(ρ)

 
ωB

(RB
u2 −R

B
u1) · edV −

 
ωA

(RA
u2 −R

A
u1) · edV


 
ωB

δ2 · edV −
 
ωA

δ2 · edV

 .
The left-hand side is as usual bounded from below with the Poincaré-Korn inequality∣∣∣∣∣∣∣

ˆ

Ω

Aε(δ2) : ε(δ2)dV

∣∣∣∣∣∣∣ ≥ C‖ε(δ2)‖2L2(Ω).
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The two first terms in the right-hand side are bounded from above, as previously, by

Cρ|ξu2(ρ)|‖ε(δ2)‖L2(Ω) ≤ Cρk‖ε(δ2)‖L2(Ω).

The third term in the right-hand side is estimated by comparing the variational formulation of (3.4)
with δ1 as test function and the variational formulation of (4.7) with vρ,1 as test function. Since
vρ,1 = uρ,1, this comparison yields

−Φ(ρ)

 
ωB

δ1 · edV −
 
ωA

δ1 · edV

 =
ˆ

Ωρ

divA(v1 ⊗∇θ)s · vρ,1dV +
ˆ

Ωρ

Aε(v1)∇θ · vρ,1dV,

the right hand side of which is bounded from above by

C‖∇v1‖L∞(Ω\U−)‖vρ,1‖L2(Ω) + C‖ε(v1)‖L∞(Ω\U−)‖vρ,1‖L2(Ω) ≤ Cρ2|ξu1 |2 ≤ CΦ(ρ)2,

since ∇θ = 0 vanishes in U−. In particular, it implies that∣∣∣∣∣∣∣
 
ωB

δ1 · edV −
 
ωA

δ1 · edV

∣∣∣∣∣∣∣ ≤ CΦ(ρ) ≤ Cρk. (4.21)

The fourth and last term on the right hand side is bounded from above by a combination of
Cauchy-Schwarz inequality giving∣∣∣∣∣∣∣

 
ωB

δ2 · edV −
 
ωA

δ2 · edV

∣∣∣∣∣∣∣ ≤ Cρ−3/2‖ε(δ2)‖L2(Ω)

and the properties of the integral remainder terms in ωA and ωB imply the estimate∣∣∣∣∣∣∣
 
ωB

(RB
u2 −R

B
u1) · edV −

 
ωA

(RA
u2 −R

A
u1) · edV

∣∣∣∣∣∣∣ ≤ Cρ2.

Regrouping all terms finally leads to

‖ε(δ2)‖2L2(Ω) ≤ C
(
ρk‖ε(δ2)‖L2(Ω) + ρ3k + ρk+1/2‖ε(δ2)‖L2(Ω)

)
≤ Cρk‖ε(δ2)‖L2(Ω) + Cρ3k,

from which it is easily deduced that ‖ε(δ2)‖L2(Ω) ≤ Cρk.

4.2 Approximation of the perturbed adjoint state

We now define an adjoint state pρ,2, associated to the perturbed displacement field uρ,2 (3.6)
for the objective function Jρ, defined by (3.7). The perturbed adjoint pρ,2 is the unique solution of

−div(Aε(pρ,2)) = −F ′(u2)1Ω2 in Ωρ,

−div(Aε(pρ,2))− κ(ρ)
|ωA|

 
ωB

pρ,2 · edV −
 
ωA

pρ,2 · edV

 e = 0 in ωA,

−div(Aε(pρ,2)) + κ(ρ)
|ωB|

 
ωB

pρ,2 · edV −
 
ωA

pρ,2 · edV

 e = 0 in ωB,

Aε(pρ,2)n = −G′(u2) on ΓN
pρ,2 = 0 on ΓD.

(4.22)

As for the perturbed displacement field uρ,2, we assume that the perturbed adjoint state pρ,2 is
smooth, at least away from the inclusions ωA and ωB.
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Remark 12. The adjoint problem is adapted to the sensitivity analysis. It has already been noticed
in [3] that the right hand side of (4.22) depends on u2 and not on uρ,2 as expected in the perturbed
domain. Moreover, the adjoint state is not directly affected by the pre-tension state u1.

We perform another asymptotic analysis for the perturbed adjoint , solution of (3.6), as we did
for uρ,1 and uρ,2. We propose the formal ansatz

pρ,2(x) ≈ p2(x) + qa,2
(
x− x0
ρ

)
+ qb,2

(
x− x0 − `e

ρ

)
, (4.23)

where qa,2 and qb,2 are far field functions satisfying
−div(Aε(qa,2)(ya)) = 0 in R3\ω
−div(Aε(qa,2)(ya)) = ξp2(ρ)e in ω

lim
ya→0

qa,2(ya) = 0
and


−div(Aε(qb,2)(yb)) = 0 in R3\ω
−div(Aε(qb,2)(yb)) = −ξp2(ρ)e in ω

lim
yb→0

qb,2(yb) = 0
,

with

ξp2(ρ) =
κ(ρ)
ρ|ω|

1 + κ(ρ)
ρ|ω|

(
1
τA

+ 1
τB

)P 2 · e.

To rigorously justify the ansatz (4.23) we introduce the notations qρ,2 = pρ,2(x) − p2(x) and
q2(x) = qa,2

(
x− x0
ρ

)
+ qb,2

(
x− x0 − `e

ρ

)
.

Proposition 3. Let θ ∈ C∞c (Ω) be a cut-off function with compact support U+ ⊂ Ω such that θ ≡ 1
in a neighbourhood U− ⊂ U+ of x0 and x0 + `e. We have

qρ,2 = θq2 + η2,

where η2 is a small remainder term satisfying

‖q2‖L2(Ω) ≤ Cρk, ‖ε(q2)‖L2(Ω) ≤ Cρk−1/2, ‖η2‖H1(Ω) ≤ Cρk.

Proof. The error term η2 solves
−div(Aε(η2)) = divA(q2 ⊗∇θ)s + Aε(q2)∇θ in Ωρ,

Aε(η2)n = 0 on ΓN ,
η2 = 0 on ΓD.

(4.24)

complemented with the following equation in ωA

−div(Aε(η2))− κ(ρ)
|ωA|

 
ωB

η2 · edV −
 
ωA

η2 · edV

 e
= κ(ρ)
|ωA|

 
ωB

p2 · edV −
 
ωA

p2 · edV − (p2(x0 + `e)− p2(x0)) · e

 e,
and a similar one in ωB obtained by interchanging the role of ωA and ωB . Following the ingredients
of the proof of Proposition 2, substituting u2 with p2 and vρ,2 with qρ,2 and not considering the
pre-stressed state i.e. taking T (ρ) = 0, lead to the desired conclusion.
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4.3 Proof of Theorem 1
We perform a Taylor expansion with exact remainder of the objective function (3.7)

Jρ(Ω) = J0(Ω) +
ˆ

Ω1

F ′(u2) · vρ,2dV +
ˆ

ΓN

G′(u2) · vρ,2dS + 1
2

ˆ

Ω1

vTρ,2F
′′(u2)vρ,2dV + 1

2

ˆ

ΓN

vTρ,2G
′′(u2)vρ,2dS.

In view of assumption (2.5) and the scaling laws (3.2), the exact remainder terms are bounded by∣∣∣∣∣∣∣
ˆ

Ω1

vTρ,2F
′′(u2)vρ,2dV

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
ˆ

ΓN

vTρ,2G
′′(u)vρ,2dS

∣∣∣∣∣∣∣ ≤ Cρ2|ξu2(ρ)|2 ≤ Cρ2k.

Multiplying the adjoint system (4.22) by vρ,2 and comparing to system (4.17) multiplied by the
adjoint pρ,2, we deduce

ˆ

Ω1

F ′(u2) · vρ,2dV +
ˆ

ΓN

G′(u2) · vρ,2dS

=

κ(ρ)

 
ωB

(u2 − uρ,1) · edV −
 
ωA

(u2 − uρ,1) · edV

+ Φ(ρ)


 
ωB

pρ,2 · edV −
 
ωA

pρ,2 · edV

 .
It remains to replace the ρ-dependent functions by their ansatz, uρ,1 = u1 + θv1 + δ1 and pρ,2 =
p2 + θq2 + η2. The topological derivative and the remainder term are then evaluated by estimating
the following 9 terms (one by line)
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ˆ

Ω1

F ′(u2) · vρ,2dV +
ˆ

ΓN

G′(u2) · vρ,2dS

=

κ(ρ)

 
ωB

(u2 − u1) · edV −
 
ωA

(u2 − u1) · edV

+ Φ(ρ)


 
ωB

p2 · edV −
 
ωA

p2 · edV


+

κ(ρ)

 
ωB

(u2 − u1) · edV −
 
ωA

(u2 − u1) · edV

+ Φ(ρ)


 
ωB

q2 · edV −
 
ωA

q2 · edV


+

κ(ρ)

 
ωB

(u2 − u1) · edV −
 
ωA

(u2 − u1) · edV

+ Φ(ρ)


 
ωB

η2 · edV −
 
ωA

η2 · edV


− κ(ρ)

 
ωB

v1 · edV −
 
ωA

v1 · edV


 
ωB

p2 · edV −
 
ωA

p2 · edV


− κ(ρ)

 
ωB

v1 · edV −
 
ωA

v1 · edV


 
ωB

q2 · edV −
 
ωA

q2 · edV


− κ(ρ)

 
ωB

v1 · edV −
 
ωA

v1 · edV


 
ωB

η2 · edV −
 
ωA

η2 · edV


− κ(ρ)

 
ωB

δ1 · edV −
 
ωA

δ1 · edV


 
ωB

p2 · edV −
 
ωA

p2 · edV


− κ(ρ)

 
ωB

δ1 · edV −
 
ωA

δ1 · edV


 
ωB

q2 · edV −
 
ωA

q2 · edV


− κ(ρ)

 
ωB

δ1 · edV −
 
ωA

δ1 · edV


 
ωB

η2 · edV −
 
ωA

η2 · edV

 .
We now estimate those 9 terms in the above right hand side. Most of them are evaluated by rescaling
and by using (4.4) and (4.15). Each leading term will be part of the topological derivative and will
contribute to the scaling term s(ρ).

1st term. We perform Taylor expansions around x0 and x0 + `e with integral remainder terms
like in the proof of Proposition 2 and with the same notations. For the adjoint state p2, the integral
remainders are denoted by RA

p2 and RB
p2 . Recall that these remainders are of order ρ2 for the L∞

norm in ωA and ωB. Using the notations from (3.9) we obtain

19



κ(ρ)

 
ωB

(u2 − u1) · edV −
 
ωA

(u2 − u1) · edV

+ Φ(ρ)


 
ωB

p2 · edV −
 
ωA

p2 · edV


=
(
κ(ρ) (U2 −U1) · e+ Φ(ρ)

)
P 2 · e+ κ(ρ)

 
ωB

(RB
u2 −R

B
u1) · edV −

 
ωA

(RA
u2 −R

A
u1) · edV

P 2 · e

+
(
κ(ρ) (U2 −U1) · e+ Φ(ρ)

) 
ωB

RB
p2 · edV −

 
ωA

RA
p2 · edV


+ κ(ρ)

 
ωB

(RB
u2 −R

B
u1) · edV −

 
ωA

(RA
u2 −R

A
u1) · edV


 
ωB

RB
p2 · edV −

 
ωA

RA
p2 · edV


=
(
κ(ρ) (U2 −U1) · e+ Φ(ρ)

)
P 2 · e+O(ρk+2).

2nd term. Likewise, by Taylor expansion the second term isκ(ρ)

 
ωB

(u2 − u1) · edV −
 
ωA

(u2 − u1) · edV

+ Φ(ρ)


 
ωB

q2 · edV −
 
ωA

q2 · edV


=

κ(ρ)

U2 −U1 +
 
ωB

(RB
u2 −R

B
u1)dV −

 
ωA

(RA
u2 −R

A
u1)dV

 · e+ Φ(ρ)

 
ω

(qb,2 − qa,2) · edV

=−
κ(ρ)
ρ|ω|

(
1
τA

+ 1
τB

)
1 + κ(ρ)

ρ|ω|

(
1
τA

+ 1
τB

)(κ(ρ) (U2 −U1) · e+ Φ(ρ)
)
P 2 · e+O

(
ρ2k+1

)
.

3rd term. The occurrence of η2 indicates that the third term should be a remainder term. From
the variational formulation of (4.24), with η2 as test function, we obtain∣∣∣∣∣∣∣

 
ωB

η2 · edV −
 
ωA

η2 · edV

∣∣∣∣∣∣∣ ≤ Cκ(ρ)−1/2ρ|ξp2(ρ)|. (4.25)

The third term is thus bounded by∣∣∣∣∣∣∣κ(ρ)

 
ωB

(u2 − u1) · edV −
 
ωA

(u2 − u1) · edV

+ Φ(ρ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 
ωB

η2 · edV −
 
ωA

η2 · edV

∣∣∣∣∣∣∣
≤ Cκ(ρ)1/2ρ|ξp2(ρ)|+ CΦ(ρ)κ(ρ)−1/2ρ|ξp2(ρ)| ≤ Cρ3k/2.

4th term. Again, by Taylor expansion

− κ(ρ)

 
ωB

v1 · edV −
 
ωA

v1 · edV


 
ωB

p2 · edV −
 
ωA

p2 · edV


=− κ(ρ)

 
ω

(vb,1 − va,1) · edV

P 2 · e+
 
ωB

RB
p2 · edV −

 
ωA

RA
p2 · edV


=κ(ρ)Φ(ρ)

ρ|ω|

( 1
τA

+ 1
τB

)
P 2 · e+O(ρ2k+1).
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5th term. By a simple rescaling

− κ(ρ)

 
ωB

v1 · edV −
 
ωA

v1 · edV


 
ωB

q2 · edV −
 
ωA

q2 · edV


=− κ(ρ)

 
ω

(vb,1 − va,1) · edV
 
ω

(qb,2 − qa,2) · edV

=− κ(ρ)Φ(ρ)
ρ|ω|

( 1
τA

+ 1
τB

) κ(ρ)
ρ|ω|

(
1
τA

+ 1
τB

)
1 + κ(ρ)

ρ|ω|

(
1
τA

+ 1
τB

)P 2 · e.

6th term. Like for the third term, the occurence of η2 indicates that it should be a remainder term.
Using the estimate (4.25), it follows

κ(ρ)

∣∣∣∣∣∣∣
 
ωB

v1 · edV −
 
ωA

v1 · edV

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 
ωB

η2 · edV −
 
ωA

η2 · edV

∣∣∣∣∣∣∣
≤ Cκ(ρ)1/2Φ(ρ)

ρ
κ(ρ) ≤ Cρ5k/2−1.

7th term. Since it involves δ1, it is a remainder term. Using (4.21) yields

κ(ρ)

∣∣∣∣∣∣∣
 
ωB

δ1 · edV −
 
ωA

δ1 · edV

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 
ωB

p2 · edV −
 
ωA

p2 · edV

∣∣∣∣∣∣∣
≤ Cκ(ρ)Φ(ρ) + Cκ(ρ)Φ(ρ)ρ2 ≤ Cρ2k.

8th term. Similarly to the seventh term

κ(ρ)

∣∣∣∣∣∣∣
 
ωB

δ1 · edV −
 
ωA

δ1 · edV

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 
ωB

q2 · edV −
 
ωA

q2 · edV

∣∣∣∣∣∣∣ ≤ Cρ3k−1.

9th term. This last term is a remainder term which, by (4.21) and (4.25), is bounded by

κ(ρ)

∣∣∣∣∣∣∣
 
ωB

δ1 · edV −
 
ωA

δ1 · edV

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 
ωB

η2 · edV −
 
ωA

η2 · edV

∣∣∣∣∣∣∣
≤ Cκ(ρ)Φ(ρ)κ(ρ)−1/2ρ|ξu2(ρ)| ≤ Cρ5k/2.

Finally, all leading terms are gathered and give 1
κ(ρ) + 1

ρ|ω|
(

1
τA

+ 1
τB

)
−1

(U2 −U1) · eP 2 · e+ Φ(ρ)P 2 · e,

which, using again the scaling laws (3.2), is equal to

ρk
(
K (U2 −U1) · e+Q

)
P 2 · e+O(ρ2k−1).

All remainder terms are gathered and we keep only the largest terms in ρ, which are

O(ρk+2) +O(ρ3k/2) +O(ρ2k−1).

Deciding which term is the largest one yields the three regimes for the error term in (3.10).
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5 Optimization methods

5.1 A coupled optimization problem

The topological derivative provides the optimal location and orientation for a new small bolt. It
is therefore a useful tool to decide if it is beneficial to increase the number of bolts in a constrained
optimization process for a mechanical system. It is even more useful when coupled to a topology
optimization method for the structure. Therefore, we propose a coupled optimization approach
between the topology of a structure and the location and number of its bolt connections. Both design
variables, namely the structural shape and the bolt locations, are optimized with a gradient-based
method. The structure is optimized with the level-set method as presented in Section 5.2, in the
spirit of [2]. The optimization of bolt locations is performed with a parametric gradient-based
algorithm as explained in Section 5.3.

5.2 Shape optimization

5.2.1 Level-set method

In this paper, structures are represented with the level-set method as introduced by [20] (see
also the textbooks [19, 27]). It offers a large flexibility in topological changes and the boundaries of
the structure are explicitly defined. Consider a working domain D ⊂ R3 that contains all admissible
shapes Ω. A shape Ω is parameterized by a function ψ defined on D such that

ψ(x) = 0 ⇐⇒ x ∈ ∂Ω ∩ D,
ψ(x) < 0 ⇐⇒ x ∈ Ω,
ψ(x) > 0 ⇐⇒ x ∈ (D\Ω).

The shape boundary is evolved in time with the following Hamilton-Jacobi equation
∂ψ

∂t
+ V |∇ψ| = 0 on [0,∞[×R3,

ψ(t = 0,x) = ψ0(x),
(5.1)

where V (t,x) is the normal velocity field. Equation (5.1) is solved by linearization as a transport
equation with the method of characteristics (see [9] and the corresponding free software [10]). This
level-set approach is complemented with the ersatz material approach which replaces void by a
weak artificial material, thus avoiding singularity issues when solving the elasticity problem in the
full computational domain D.

5.2.2 Hadamard’s boundary variation method

Hadamard’s boundary variation method is used to compute the velocity field V of (5.1).
Introduced by [16], this method defines a notion of differentiation with respect to the position of a
shape Ω [21, 30]. Let Ω ⊂ R3 be a given reference shape, assumed to be a smooth and bounded open
set. Let θ ∈ W 1,∞(R3,R3) be a displacement field. The idea of Hadamard’s boundary variation
method is to transport the reference domain Ω into an admissible shape Ωθ = (Id+ θ)(Ω). In other
words, the vector field θ moves all points of Ω from a location x to a deformed location x+ θ(x).

Definition 2. Let J(Ω) be a function from the set of admissible shapes to R. The function J(Ω) is
said to be shape differentiable if there exists a continuous linear form J ′(Ω) acting on W 1,∞(R3,R3)
such that

J((Id+ θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ), where lim
θ→0

|o(θ)|
‖θ‖W 1,∞(R3,R3)

= 0. (5.2)
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The function J ′(Ω) is called the shape derivative of the shape functional J . We give a basic
example of shape derivatives which is useful for the sequel (for a proof, see e.g. [1]).

Proposition 4. Let Ω be a smooth, bounded, open set of R3. Let u be the solution of the elasticity
system (2.2). Define a shape functional J , called the compliance, by

J(Ω) =
ˆ

ΓN

g · udS =
ˆ

Ω

Aε(u) : ε(u)dV.

Then, J is shape differentiable and, for any θ ∈ W 1,∞(R3,R3) such that θ = 0 on ΓN ∪ ΓD, its
directional derivative is

J ′(Ω)(θ) = −
ˆ

Γ

Aε(u) : ε(u)θ · ndS,

where n is the outward normal to Ω.

5.3 Location optimization

The bolt has a fixed shape, length and orientation. The only design-variable of the bolt is the
center x0 of its head ωA. Bolt location optimization is performed with a parametric gradient-based
algorithm

xk+1
0 = xk0 − δk

∂J

∂x0
(xk0), (5.3)

where xk0 is the center of the head of the idealized bolt at iteration k, δk > 0 is the descent step and
∂J

∂x0
(xk0) is the partial derivative of the objective function with respect to the location x0, computed

according to Hadamard’s boundary variation method. The spheres representing the head and the
threads are simply translated (they are rotation invariant). Therefore, the deformation vector θ
is constant on ωA. The following result gives the form of the derivative of the bolt constitutive
behavior law and specific mechanical constraints.

Proposition 5. Let ωx0 be a smooth bounded, open set ω ⊂ R3 translated so that its center is
x0 ∈ D. Let f ∈W 1,1(R3,R3) and J a function from D to R defined by

J(x0) =
 
ωx0

fdV = 1
|ω|

ˆ
ωx0

fdV.

Then, J is differentiable and it satisfies

∂J

∂x0
(x0) · θ = J ′(x0)(θ) = θ

|ω|
·
ˆ

∂ωx0

fndS, ∀θ ∈ R3. (5.4)

where n is the outward normal to ωx0.

Proof. To prove (5.4) we identify the function J(x0) with a shape functional J(ωx0). The classical
shape derivative (see [2]) gives, for any θ ∈W 1,∞(R3,R3),

J ′(ωx0)(θ) =

|ω|
´

∂ωx0

fθ · ndS −
( ´
ωx0

fdV

) ´
∂ωx0

θ · ndS


|ω|2

.
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Restricting our attention to constant vector fields θ yields that the directional derivative of the
volume is zero, i.e.

ˆ

∂ωx0

θ · ndS = 0. Thus we deduce the desired formula by the identification, for

constant vectors θ ∈ R3,
J ′(ωx0)(θ) = ∂J

∂x0
(x0) · θ.

6 Numerical illustrations
Although we derived a topological derivative for a pre-stressed bolt, here for the sake of

simplicity, our numerical illustrations are computed without pre-tension. In such a case, the
topological derivative is given by Corollary 1. The reason for not taking into account the pre-stress
here is that it usually induces some inter-penetration of the structure if one does not use a contact
model between the two parts connected by the bolt. Since a contact model add some complexity to
the computations, we prefer not to use it in a first step of assessment and, as a consequence, we
ignore the pre-stress in the bolt, which thus behaves as a spring. Therefore, in all examples below,
the interface Γc is a crack without contact conditions. The interested reader is referred to [24] for
applications of our coupled optimization of both structure and connections with a pre-tensioned
bolt and a sliding contact model. All our numerical results are obtained with the finite element
software FreeFem++ [17].

6.1 2d use case

The present paper gives a complete derivation of the topological derivative in 3d but, as already
said in Remark 7, the same result (Corollary 1) holds true in 2d (see formula (3.12) and [22] Chapter
5, Section 5.2, for details).

6.1.1 Description of the problem

The following academic, but meaningful, 2d use case illustrates the coupled optimization with a
small spring (without pre-tension). The working domain is a plate of 2 units long and 1 unit wide
with an opening gap through its center as displayed in Fig. 5. The mesh contains 69420 triangular
elements with a minimal and maximal size of 3.3 × 10−3 and 1.2 × 10−2. The Young’s modulus
is taken equal to 10 and the Poisson’s coefficient is 0.3. The length of the spring is ` = 0.3 and
its stiffness is K = 5. Once a spring is inserted, its size is ρ = 2.5× 10−2. All material properties
are adimensional and can be changed as the user wants. The plate is clamped on the bottom and
loaded on its upper boundary by a sinusoidal force g = (0, gy), with

gy =


− cos(πx) for 0.5 ≤ x ≤ 1.5

− 3
4 cos(πx) for 1.5 ≤ x ≤ 2

.

This use case, which considers a single part with an opening gap, perfectly fits our framework for
using the topological derivative in order to decide where to put a spring. Actually, the role of the
spring is to close the gap. Moreover, as already said in Remark 1, the asymptotic analysis is valid
regardless of the condition on the interface. Therefore, homogeneous Neumann boundary condition
is applied on the opening gap. Of course, this may lead to some interpenetration which could be
corrected by taking into account a contact model (see [24] for more details).

The topology of the plate is initialized with holes (see Fig. 5b) for the purpose of further
topology optimization. The initial compliance is then J0(Ω) = 0.3210.
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Figure 5: Load case (a) and the initial topology of the structure (b)

6.1.2 Test of the topological derivative

The problem is to place a small spring in order to decrease the compliance J(Ω) =
ˆ

ΓN

g · udS.

Recall that the topological derivative DJ(x0, e) is the same for all values k > 0 of the scaling
parameter for the spring stiffness in 2d, see (3.12). The topological derivative is evaluated to search
for both the optimal location x0 and orientation e. We define a design-space for which both spheres,
ωA and ωB, are entirely inside the structure. Fig. 6a displays the cartography of the topological
derivative where the non-design space is darkened. The minimum of DJ is obtained at the point
x0 = (1.53, 0.43) and for a direction oriented at ϕ = 7π/12rad (or 105◦ with respect to the horizontal
axis) as shown in Fig. 6b.

To test the accuracy of the prediction of the topological derivative, we include the spring model
in the structure, for its given size ρ and for some choice of the scaling exponent k > 0, and we
compte the resulting compliance Jρ(Ω). To be more realistic, a surrounding of material is added
around each inclusion ωA and ωB . This non-design domain is spherical-shaped and twice the size of
the inclusion. Its role is to ensure the correct transmission of efforts into the structure. It is the
slight extra material that modifies the hole next to each inclusion (see Fig. 6b). This non-design
domain is not taken into account by the asymptotic analysis. It is added in the structure after
putting the spring indicated by the topological derivative. Nevertheless, the impact of this extra
material is barely distinguishable.

Although the scaling exponent k > 0 does not play any role in the formula of the topological
derivative DJ(x0, e), it does so in the compliance Jρ(Ω) of the resulting structure, including the
spring. Therefore, it is worth exploring its influence and results are gathered in Table 1. As could
be expected, the most efficient spring corresponds to the smallest value k = 0.5, which brings an
improvement of about 17% of the compliance. Clearly, there is a loss of efficiency for k = 2 and
k = 4. Consequently, the scalings k = 2 and k = 4 will not be taken into account in the following.

DJ(x0, e) x0 ϕ (rad) Jρ(Ω)

k = 0.5 -5.648 (1.53,0.43) 7π
12 0.2674

k = 1 -5.648 (1.53,0.43) 7π
12 0.2803

k = 2 -5.648 (1.53,0.43) 7π
12 0.3174

k = 4 -5.648 (1.53,0.43) 7π
12 0.3207

Table 1: Summary of the topological derivative tests (recall that J0(Ω) = 0.3210)
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(a) (b)

ωA
ωB

Figure 6: For ϕ = 7π
12 rad, cartography of DJ (a) and location of the optimal spring at x0 =

(1.53, 0.43) (b)

According to this first computation, a first spring with k = 0.5 is placed at the point x0,1 =
(1.53, 0.43), oriented by the angle ϕ1 = 7π/12rad, as indicated by the topological derivative. For
this new configuration, a new map of the topological derivative is computed in order to find where it
could be interesting to place a second spring. The cartography of this second topological derivative
is displayed in Fig. 7a. Negative values of DJ , for which ωB,2 would be partially or totally in the
non-design-space, are truncated. They are excluded from the analysis and are displayed in white as
well as the holes of the structure. The topological derivative places the second spring at the point
x0,2 = (1.80, 0.31) with the angle ϕ2 = 13π/36rad as displayed in Fig. 7. With this second spring,
the compliance decreases to Jρ(Ω) = 0.2231.

(a) (b)

ωA1

ωB1

ωA2

ωB2

Figure 7: Cartography of DJ for k = 0.5 to place a second spring (a) and the corresponding optimal
configuration (b)

6.1.3 Coupled optimization of both structure and springs location

The problem is to minimize the volume under an upper bound constraint on the compliance,
equal to 0.35. The volume V (Ω) and the compliance C(Ω,x0) read

V (Ω) =
ˆ

Ω

dV and C(Ω,x0) =
ˆ

ΓN

g · udS,

where x0 is the location of the spring. This optimization problem is formulated as follows

min
Ω∈Uad,x0∈Ω

s.t. C(Ω,x0)≤0.35

V (Ω), (6.1)

where Uad is the set of admissible shapes of the structure. The constraint is taken into account with
the augmented Lagrangian functional J(Ω), so that the problem (6.1) is rewritten as

min
(Ω,x0)

max
α≥0

{
J(Ω,x0) = V (Ω) + α(C(Ω,x0)− 0.35) + β

2 (C(Ω,x0)− 0.35)2
}
, (6.2)
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where α ≥ 0 and β ≥ 0 are respectively Lagrange multiplier and penalty parameter for the constraint.

6.1.4 Optimization with one spring

Two independent computations are presented below. First, we perform a classic topology
optimization of the structure with a fixed spring (placed by the initial topological derivative).
Second, the optimization of the structure is coupled with the parametric optimization of the spring
location.

• Structure optimization with fixed spring

Let us consider the spring given by the topological derivative on the structure initialized with
holes (see Fig. 6b). The structure is classically optimized while the spring location is not a
design-variable yet. Optimal shapes for k = 0.5 and k = 1 are given in Fig. 8 and they share the
same topologies. For k = 0.5, the final volume is V (Ω) = 0.6436. For k = 1, the spring is less stiff
and the structure requires more material to fulfil the compliance constraint. Then, the structure is
heavier with a final volume of V (Ω) = 0.6799.

(a) k = 0.5 (b) k = 1

Figure 8: Optimal shapes for k = 0.5 and k = 1, for a fixed spring

• Coupled optimization structure / location

Let us consider the spring given by the topological derivative on the structure initialized with
holes. Now, the spring location x0 is a design-variable, as well as the structure. Optimal shapes for
k = 0.5 and k = 1 are given in Fig. 9. The case k = 0.5 gives a completely new topology. The final
volume and spring location are V (Ω) = 0.5460 and x0 = (0.75, 0.42). The coupling provides a great
improvement of the volume compared to the classical structure optimization. The case k = 1 leads
to a topology very similar to that of Fig. 8 where the spring was fixed. Nevertheless, the coupling
brings a better weight reduction with a final volume of V (Ω) = 0.6275. Moreover, the spring moves
from an initial location at x0 = (1.54, 0.39) to the final point x0 = (1.34, 0.44), which corresponds
to an amplitude of displacement of 0.21.

6.1.5 Optimization with two springs

This section compares the optimal shapes with two springs resulting from a classic topology
optimization and a coupled optimization of both structure and springs locations. Both spring are
scaled by k = 0.5 and are placed and oriented by the topological derivative. The optimal shape at
Fig. 10a results from the topology optimization with two fixed springs initially placed and oriented
by the topological derivative (see Fig. 7b). The final volume is V (Ω) = 0.6517. The left part of
the structure is of the same kind as the classic optimal shape with one fixed spring (see Fig. 8a).
Springs are connected by means of thin bars. The second spring stiffens the structure and thus
allows a better weight reduction than with only the first spring. Unfortunately, this structure is
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(a) k = 0.5 (b) k = 1

Figure 9: Optimal shapes and spring locations for k = 0.5 and k = 1

heavier than the optimal structure with one spring resulting from a coupled optimization (see Fig.
9a).

Fig. 10b shows the optimal shape and springs locations for a coupled optimization of both
structure and locations. Final springs locations are x0,1 = (1.18, 0.44) and x0,2 = (1.79, 0.31), which
correspond to amplitude of displacement of 0.35 for the first spring and 0.01 for the second one. The
structure has a different topology and a final volume of V (Ω) = 0.5564. This is the best performance
obtained. It illustrates well the relevance and the effectiveness of the coupled optimization.

(a) (b)

Figure 10: Optimal shape with two fixed springs (a) and coupled optimization of both structure
and springs location (b)

6.2 3d use case

6.2.1 Description of the problem

Let us consider two parallelipipedic parts pictured in Fig. 11. They are contiguous but not
bounded to each other: in other words, they are separated by a crack. The mesh contains 293 864
tetrahedral elements with a minimal and maximal size of 1.2×10−2 and 5.9×10−2. The assembly
is clamped on the bottom and on the left side. A force g =

(
0, 5 cos

(
x

2

)
, 0
)

is applied on the
top. Both parts are made of the same material with an adimensional Young’s modulus E = 1 and
Poisson’s coefficient 0.3. Springs are characterized by their size ρ = 5× 10−2, length ` = 5× 10−1

and rigidity K = 2.5.
The problem is to decrease the compliance J(Ω) =

ˆ

ΓN

g · udS of the system by introducing a

first then a second small spring with the topological derivative. The initial compliance of the system
without spring is J0(Ω) = 38.06. No coupling with shape and topology optimization is performed
here and the reader is rather referred to our other work [24] for such examples.
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Figure 11: Setting of the 3d use case

Three different uses of the topological derivative are performed with the couple (x0, e). For graphi-
cal purposes, the orientation e is given is spherical coordinates e =

(
sin(ϕ) cos(Ψ), sin(ϕ) sin(Ψ), cos(ϕ)

)
.

The first test is to search for both the optimal location x0 and optimal orientation e. The second
test consists in fixing a location x0 and finding the orientation e which minimizes DJ . The third
test, on the contrary, finds the best location x0 for a fixed orientation e. The topological derivative
is then computed for all candidate point x0 to place the first small spring. This last computation is
reiterated to search for the best location of a second spring with the same orientation.

6.2.2 Search for the best location x0 and orientation e

This test searches simultaneously for both the optimal location of the spring head x0 and the
best orientation e to decrease the compliance. The topological derivative indicates that the optimal
spring should be placed at the point x0 = (0.90, 0.90, 0.11) with the orientation

(
ϕ,Ψ

)
=
(
π

2 ,−
π

2

)
.

With such a spring, the compliance indeed decreases to Jρ(Ω) = 24.49.

6.2.3 Fix the location x0 and search for the best orientation e

Let us fix the location of the center of the spring head at the point x0 = (0.30, 0.70, 0.125). To
find the best orientation e, the cartography of the topological derivative is plotted on Fig. 12a
in terms of the angles ϕ and Ψ from 0◦ to 360◦ every five degrees. It features two minimum that
correspond to the same orientation indeed. This cartography is computationally cheap since it
requires only the resolution of one elasticity system (the problem is self-adjoint with the compliance
as objective function). Varying the vector e is just some algebraic manipulation in formula (3.11).
As a conclusion, the optimal spring has the orientation

(
ϕ,Ψ

)
=
(
π

2 ,
13π
9

)
as displayed in Fig. 12b.

The compliance with this spring is Jρ(Ω) = 36.78.

6.2.4 Fix the orientation e and search for the best location x0

Let us now fix the spring orientation to be vertical. The cartography of the topological derivative
to place the first spring is displayed in Fig. 13. The optimal small spring is placed at the point
x0,1 = (0.90, 0.90, 0.11). The new compliance is Jρ(Ω) = 24.49, which is quite efficient.

Let us place a second spring with a new evaluation of the topological derivative, taking into
account the first spring. The cartography of the topological derivative and the resulting second
spring are displayed in Fig. 14. The second spring is best located at x0,2 = (0.90, 0.63, 0.14), which
overlaps the first one. It may seem quite deceptive to obtain almost the same location but it
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(a)

(b)

ωA
ωB

Figure 12: Cartography of the topological derivative in terms of angles
(
ϕ,Ψ

)
for fixed x0 =

(0.30, 0.70, 0.125) (a) and the spring at the optimal orientation
(
ϕ,Ψ

)
=
(
π

2 ,
13π
9

)
(b)

(a) (b)

ωA1

ωB1

Figure 13: Cartography of the topological derivative for fixed vertical orientation (a) and the
resulting optimal spring (b)

highlights the need of a stronger spring at the same location. The compliance with two springs is
Jρ(Ω) = 19.07.

To avoid non-physical overlapping of springs, a prescribed minimal distance between springs
locations is enforced. It states that springs must be separated by at least four times the radius ρ in the
direction X. The new cartography and the second optimal spring placed at x0,2 = (0.70, 0.83, 0.14)
are displayed in Fig. 15. The new compliance is Jρ(Ω) = 23.68.
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ωA2
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Figure 14: Cartography of the topological derivative (a) and the resulting second overlapping spring
(b)

(a) (b)

ωA1

ωB1

ωA2

ωB2

Figure 15: Cartography of the topological derivative with a non-overlapping condition (a) and the
resulting second optimal spring (b)
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