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Abstract— Redundant manipulators are usually required to
perform tasks in the operational space, but collision-free path
planning is computed in the configuration space. Limiting the
deviation with respect to the collision-free configuration-space
trajectory may allow the robot to avoid collisions without
modifying the primary task. This paper proposes a method
to guarantee that the solution of the inverse kinematic problem
deviates from the nominal joint-space trajectory less than a
desired threshold. The excursion limitation is ensured by means
of linear constraints and the automatic regulation of the weights
of secondary tasks. Numerical and experimental results prove
the validness of the proposed approach.

I. INTRODUCTION

Kinematically redundant manipulators have high versati-
lity and dexterity thanks to the additional degrees of freedom
they have with respect to the task they are required to
perform. Extra degrees of freedom can be exploited to endow
the robot with desired secondary behaviors. To name a few
examples, the redundancy can be exploited to: maximize
the manipulability along selected axis [1], [2], keep the
joint configuration far from the mechanical limits [3], mimic
anthropomorphic motion [4], activate the least number of
actuators [5], avoid collisions [6], [7], or maximize the
distance from obstacles [8].

The problem of exploiting the redundancy of the robot is
typically addressed when solving the Inverse Kinematic (IK)
problem: a primary task is given in the operational space
(usually, the Cartesian space) and, for all points, the joint
coordinates are computed so that the primary task is met
and the secondary behavior is performed at best [9]. The
most widespread approach consists in solving the IK problem
at differential level to exploit the linear mapping between
joint and task velocities given by the task Jacobian [10].
Joint configurations are then obtained via forward integration
and numerical drifts are recovered by means of a closed-
loop IK algorithm [10]. Up to few years ago, this was done
by pseudo-inverting the Jacobian to find the minimum-norm
solution to the problem and by projecting the velocity related
to the secondary objective into the null space of the Jacobian
[11]. Recently, Quadratic Programming (QP) approaches are
preferred because they allow for considering robot limitations
explicitly (for example, joint configuration, velocity, and
acceleration limits can be written as linear constraints in the
QP problem) [12], [13], [14]. In both cases, the result is that
the robot modifies its posture according to the secondary

objective, as shown for example in Figure 1. On the one
hand, this approach has the great advantage that the IK
problem can be solved at runtime, by taking into account the
current state of the system. For example, the robot can adapt
its posture to the position of the operator without modifying
the primary task [8]. On the other hand, the main drawback is
the lack of a non-collision guarantee. As a matter of fact, the
new robot posture is usually very different from the initial
one and it might be in conflict with obstacles (see Figure
1). Most works on redundancy handling take into account
the collision avoidance problem by maximizing the distance
from the closest obstacle (assumed to be a 3D point or a
simple 3D shape) [6], [15]. This may work in simplified
laboratory examples, but it is hardly scalable to real-case
scenarios. For example, industrial robots are often required
to work in very cluttered environments or to approach objects
with complex surfaces. In these cases, re-configuration based
on the closest-obstacle criterion is prone to failure.

Most times, collision-free path planning is indeed per-
formed in the configuration space. The most widespread
methods are sampling-based (e.g., RRT and its variants [16],
[17], and probabilistic roadmaps [18]) and local algorithms
that search in the neighborhood of an initial solution (e.g.,
CHOMP [19] and STOMP [20]). Notice that this planning
approach does not explicitly exploit redundancy. As a matter
of fact, the presence of redundant degrees of freedom just
results in a larger search space, but secondary objectives
can not be specified. Moreover, the robot motion can not be
modified at high sampling rates during the execution, which
is the main advantage of online IK schemes.

Based on these considerations, [21] suggested to set a
collision-free joint-space trajectory computed by an online
path planner as low-priority task of the IK problem. In
this way, the robot should follow the joint-space reference
when it is not in conflict with other tasks. In that case,
however, the collision-free trajectory results in a soft con-
straint that is soon violated to meet higher-priority tasks
(as also shown in Section IV-A of this paper). Notice that
imposing hard constraints on the joint deviation with respect
to the reference trajectory would result in a possible failure
of the QP problem. This is a well-known issue in online
IK schemes, which require additional viability constraints
to ensure the feasibility of the QP problem when constant
position limits are considered [22], [23]. To the best of



Fig. 1: Effect of usual IK schemes. Orange robot: initial
posture; dark robot: final posture that optimizes secondary
tasks. Robot posture may vary significantly with respect to
the initial one and collision check is no longer guaranteed.

the authors’ knowledge, however, no prior works address
viability of time-varying position limits.

This paper proposes a method to ensure that the IK solu-
tion, computed online, has a bounded deviation with respect
to a given time-varying signal. By using a configuration-
space collision-free trajectory as reference signal, it is possi-
ble to avoid collisions with the surrounding environment.
To do so, the paper devises a viability constraint valid
for time-varying position bounds by extending the viability
conditions of constant bounds [22], [23], and by using a task-
scaling IK approach [24], [25]. Moreover, it devises a closed-
loop algorithm that automatically adapts the weights of the
secondary tasks, in order to regulate the deviation of the
joint position to a given value. Compared to soft constraint-
based approaches (e.g., [3], [8]), the joint movement is
guaranteed to be limited to the maximum range also for
time-varying bounds. The paper also analytically derives a
linear approximation of the new viability constraints, taking
out the need of time-consuming numerical approaches (e.g.,
[23] derives viable polygons for constant bounds by means
of nonlinear programming). Numerical and experimental
results on a 7-degree-of-freedom manipulator show that the
proposed approach is able to hardly limit the excursion with
respect to the nominal joint trajectory where soft-constraint
approaches fail.

The paper is organized as follows. Section II deals with the
formulation of IK problems as QP problems and the related
feasibility issues. Proposed method is described in Section
III; simulation and experimental results are in Section IV.
Conclusions are drawn in Section V. Appendix A derives
the polygonal viable set in closed form.

II. PRELIMINARIES

A. QP-based inverse kinematic problem

Recently, the IK problem of robot manipulators has been
addressed by means of quadratic programming to cope with
robot limits and/or other limitations that can be modeled as

optimization constraints. As an example, consider a manipu-
lator to which a primary task A1q̇+ b1 = 0 and a secondary
task A2q̇+ b2 = 0 are assigned. The primary task is usually
the desired Cartesian trajectory; that is, A1 is the end-effector
Jacobian and −b1 is the desired twist at each time step.
Closed-loop IK schemes modifies b1 to recover from position
errors [10]. Secondary tasks are soft constraints the robot
should fulfill at best (e.g., manipulability maximization [2]
or maximization of the human-robot distance [6]).

At each sampling time t = kT (where T is the sampling
period of the system), the joint velocity is chosen by solving
the following hierarchical QP problem:

q̇ = argmin
u

‖A2u+ b2‖2

subject to A1u = A1u1

u1 = argmin
u′
‖A1u

′ + b1‖2

u ∈ S

(1)

where S is a set of linear inequalities that account for the
robot limits (details on the derivation of S are given in
Section II-C). Problem (1) means that the secondary task
(i.e., the cost function) is optimized by searching in the null
space of the primary task (i.e., first and second constraints
in (1)). This approach has been extended to any number of
prioritized tasks and to inequality tasks in [13].

Hierarchical QP problems in the form of (1) can be solved
by means of a nested approach, that is: i) solve the inner QP
problem and find u1= argminu′‖A1u

′ + b1‖2; ii) use u1 to
solve the outer QP problem (i.e., q̇ = argminu‖A2u+ b2‖2
subject to A1u = A1u1, u ∈ S). Although useful to have
an insight of QP-based IK, this approach is computation-
ally inefficient; dedicated solvers that exploit the geometric
properties of hierarchical QPs are preferred [14], [26], [27].

Methods based on (1) are referred to as local, as they only
take into account tasks and constraints at the current time
instant. Look-ahead and model predictive control approaches
have been also proposed to overcome the drawbacks of local
methods [28], [29], [30].

B. Task scaling inverse kinematics

Recent approaches exploit the path-velocity decomposition
of the trajectory to preserve the geometry of the path by
acting on the timing law when the nominal trajectory would
exceed the robot limits [24], [31]. Problem (1) is modified
by adding a scaling variable s ∈ [0, 1] that scales the
primary task velocity b1 so that the geometric direction is
not changed. The resulting hierarchical QP is:(
q̇
s

)
= argmin

u,s
‖A2u+ b2‖2 + µ(1− s)2

subject to A1u+ b1s = A1u1 + b1s1(
u1

s1

)
= argmin

u′,s′
‖A1u

′ + b1 s
′ ‖2

u ∈ S
0 ≤ s ≤ 1

(2)



where µ >> 1. Problem (2) is similar to (1), but when the
primary task is not feasible with respect to the robot limits, s
results to be smaller than one and the trajectory automatically
slows down to preserve the desired geometrical path.

A receding horizon approach to this problem was also pro-
posed in [25] to overcome the drawbacks of local methods.

C. Viability and feasibility of the inverse kinematic problem

Referring to (1) and (2), S is the set of admissible veloc-
ities that satisfies the robot limits Usually, IK schemes take
into account joint configuration, velocity, and acceleration
limits such that:

qmin ≤ q ≤ qmax

−q̇max ≤ q̇ ≤ q̇max

−q̈max ≤ q̈ ≤ q̈max

(3)

where qmin and qmax are the minimum and maximum joint
configuration limits, q̇max is the maximum joint velocity
vector, and q̈max is the maximum joint acceleration vector.
To ensure the feasibility of the QP problem for all possible
states in S, an additional viability constraint has to be added
as follows [22]:

q +
q̇2

2q̈max
− qmax ≤ 0 (4)

q +
q̇2

2q̈max
− qmin ≥ 0 (5)

Note: products, quotients, and inequalities between vectors
are intended as component-wise.

Equations (4)(5) determine the maximal viable set for a
double integral system with bounded configuration, velocity,
and acceleration. The equation is quadratic in q̇. A viable
set given by a set of linear constraint is helpful to include
such conditions in the online control problem in case of
optimization-based algorithms (e.g., model predictive control
[25], [32]). In [25], a viable set composed of one linear
constraint was derived. The result is that (4)(5) can be
substituted by the following linear constraints:

q̈max q + q̇max q̇ − q̈max qmax ≤ 0 (6)
q̈max q + q̇max q̇ − q̈max qmin ≥ 0 (7)

The problem is analyzed more in details in [23], where a
numerical method to obtain the maximal polygon given the
number of sides is proposed.

Equations (4)–(7) are valid if position constraints are
static; thus, if qmin or qmax varies in time, they are no
longer sufficient. The case of time-varying position limits
is addressed by our method in the next section.

III. PROPOSED METHOD

Consider a joint-space nominal trajectory given by a curve
qnom(s) and a timing law s(t). At sampling time t = kT , we
aim to ensure that:

qnom(t)−∆qmax ≤ q(t) ≤ qnom(t) + ∆qmax ∀ t ≥ kT (8)

where ∆qmax is the vector of maximum allowed joint dis-
placement with respect to the nominal trajectory.

Fig. 2: Viability regions for time-varying joint bounds (only
the first quarter is shown). Green: viability set at time k.
Purple: viability set at time k + 1. At each time instant, the
viability region is determined by an interval of amplitude
2∆qmax centered in the current nominal joint trajectory qnom.

We address this issue by adding a time-varying constraint
to the optimization problems (1) and (2) and by adjusting
the secondary task cost function dynamically.

A. Constraint-based limitation of the joint excursion
Equation (8) can be considered as a time-varying joint-

configuration constraint to be added to (1) and (2). Its
addition requires a further viability analysis of the admissible
set. Similarly to (4), the following viability constraint may
be added to the QP problem (for the sake of brevity only the
right side of (8) is considered):

q(k + 1) +
q̇(k + 1)2

2q̈max
− qlim ≤ 0 (9)

where qlim = qnom(k+ 1) + ∆qmax (hereafter, dependency on
k + 1 will be omitted unless necessary).

Feasibility of the new problem depends on the value of
qnom(k + 1). To clarify this, consider the example in Figure
2, in which joint state (q, q̇) is on the boundary of (4). If
qnom(k+1) < qnom(k), then the viable set shifts to the left and
the current state does not belong to the viable set anymore.
Nonetheless, feasibility can be strongly guaranteed when a
task-scaling IK scheme such as (2) is implemented. In this
case, the desired configuration at time k+ 1 depends on the
scaling factor s, that is:

qnom(k + 1) = qnom(k) + ∆qnom(k) s (10)

from which:

qlim = qnom(k) + s∆qnom(k) + ∆qmax (11)

The decision variable s therefore can slow down the original
trajectory to ensure the feasibility of the problem. Notice that
in the worst case described in Figure 2, the solution s = 0
does not change the viable set from cycle k to cycle k + 1
(red and green areas coincide), keeping the state within the
viable set.



1) Linear approximation of the viable set: Constraint (9)
is nonlinear. Nonetheless, the approximation of the viable set
recalled in Section II-C still holds. For example, the single-
segment constraint (6) becomes:

q̈max q + q̇max q̇ − q̈max qlim ≤ 0 (12)

which is linear in q, q̇, and s.
A less conservative viable set can be obtained by using

more linear constraints. Given the number of constraints N ,
the points Pj , j = 0, . . . , N , that delineate a viable polygonal
set for each joint can be obtained as follows:

Pj =
( q̇max

N
j, qmax −

q̇2
max

2N2q̈max
j(j + 1)

)
(13)

The derivation of (13) is given in Appendix A.

B. Self-regulating weighting of secondary tasks

The mere use of (9) (or its linear approximations) ensures
the viability of the admissible set of QP problem (2).
However, the IK problem is unaware of the nominal joint-
space trajectory and therefore computes the joint variables by
only considering the secondary task(s). As a result, the joint
configurations are likely to reach the maximum excursion
∆qmax and the task-scaling mechanism would slow down
the robot to respect the excursion limit (even up to the
stop of the task, as in the previous example). To avoid this
situation, the IK problem should be aware of the desired
joint-space trajectory. In [8], the joint-space nominal trajec-
tory was considered as the lowest-priority task in the QP
problem. Here, we prefer to adopt a different approach where
the priority of the joint-space nominal trajectory changes
dynamically. Changing priorities between tasks on the fly is
not trivial because an instantaneous swap of the priority of
two tasks generates discontinuities in the joint commands
and abrupt motions of the robot [33]. This issue can be
addressed by gradually swapping the tasks in a weighted
fashion during a transition phase [34], [35]. This is useful
especially when the priorities of the stack of tasks are strict
(e.g., humanoid robots). In industrial robotics, strict priority
is usually only between the primary (i.e., the Cartesian
trajectory) and the successive tasks, whereas secondary tasks
are usually objective behaviors such as dexterity, human-
robot distance maximization, etc. For this reason, we use a
mixed approach where the secondary task A2q̇+ b2 = 0 and
the joint-space nominal trajectory are handled in a weighted
fashion. The hierarchical QP problem (2) therefore becomes:(
q̇
s

)
= argmin

u,s
‖qnom − q‖2 + λ‖A2u+ b2‖2 + µ(1− s)2

subject to A1u+ b1s = A1u1 + b1s1(
u1

s1

)
= argmin

u′,s′
‖A1u

′ + b1 s
′ ‖2

u ∈ S
0 ≤ s ≤ 1

(14)
where λ is a non-negative variable that can be adjusted to
regulate the importance of the joint-space trajectory with

respect to the secondary task. The automatic choice of λ
can be addressed as a regulation problem such that:

max
i

∣∣∣∣∣ ∆qi
∆qref,i

∣∣∣∣∣→ 1 (15)

where ∆q = qnom(k) − q(k) and ∆qref is the vector of
reference values for each joint excursion such that |∆qrefi| ≤
∆qmax,i. Variable λ can be therefore considered as a control
input to drive ∆q to a reference value ∆qref based on the
current value of ∆q. In this work, we used a discrete-time
proportional-integral-derivative control law defined as:

λPID(k) = KP y(k)+KI

k∑
j=0

y(k−j)+KD

(
y(k)−y(k−1)

)
(16)

where y = 1 −maxi

∣∣ ∆qi
∆qref,i

∣∣ and KP , KI , KD are the
proportional, integral, and derivative gains respectively. The
output is saturated between 0 and λmax in such a way that:

λ(k) =


0 if λPID(k) < 0

λmax if λPID(k) > λmax

λPID(k) otherwise
(17)

A conditioned integration anti-windup strategy have been
implemented to avoid windup issues due to saturation.

IV. RESULTS

We performed simulation and experimental tests on a 7-
degree-of-freedom robot composed of a Universal Robots
UR5 manipulator mounted on an actuated linear track. We
consider conservative limits with respect to datasheet values
because of the presence of cabling required by the end-
effector, namely:

qmin = ( qtrack
min , q

robot
min )

qmax = ( qtrack
max , q

robot
max )

q̇max = ( q̇track
max , q̇

robot
max )

(18)

where qtrack
min = 0 m, qtrack

max = 1.55 m, q̇track
max = 0.5 m/s and

qrobot
min = (−2.5, −2.2, −2.5, −π, −π, −3.5) rad

qrobot
max = ( 2.5, 0, 2.5, 2, π, 3.5) rad

q̇robot
max = (1.4, 1.4, 1.4, 1.4, 1.4, 1.4) rad/s

(19)

Acceleration limits have been chosen based on empirical
tests and correspond to:

q̈max = ( q̈track
max , q̈

robot
max ) (20)

where q̈track
max = 1.0 m/s2 and

q̈robot
max = (1.57, 1.57, 1.57, 1.57, 1.57, 1.57) rad/s2.

The task-scaling IK algorithm used in the tests is the look-
ahead method proposed in [25] with a predictive horizon
equal to 0.2 s. Regarding the proposed method, the parame-
ters to be chosen are ∆qmax and ∆qref, where ∆qref < ∆qmax.
Their value is directly related to the maximum deviation with
respect to the collision-free trajectory: the smaller are ∆qmax
and ∆qref, the smaller is the deviation due to the redundancy.
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Fig. 3: Simulation scenario: the robot elbow should point
toward the opposite direction with respect to the working
table.

A. Simulations

Simulation tests have been performed by using a con-
strained kinematic model of the robot in ROS (Robot Oper-
ating System). The tests consist in the execution of a point-
to-point Cartesian trajectory. A joint-space path is planned
by means of the sampling-based algorithm BiTRRT-Connect
available in MoveIt!. This path is collision free and is taken
as the nominal joint-space task qnom. The corresponding
Cartesian path represents the primary task to be followed by
the robot. As secondary task, the robot should keep the elbow
link as far as possible from the working table positioned in
front of it. This is formalized by setting A2 equal to the
second row of the robot elbow Jacobian and −b2 equal to a
velocity directed toward the direction −y of the world frame.
The scenario is shown in Figure 3.

For the purpose of the present work, the actual joint
trajectory q should deviate from qnom less than a given
threshold ∆qmax. Four different cases have been analyzed:
• Case A: typical IK scheme with constant joint bounds

[qmin, qmax] [22]; no deviation with respect to a joint-
space reference is considered;

• Case B: soft-constraint approach [8]; the joint-space
reference trajectory is set as lowest-priority task in the
IK scheme;

• Case C: the self-regulating mechanism described in
Section III-B is used, with ∆qref = 0.15 for all joints.

• Case D: the constraint-based method described in Sec-
tion III-A and the self-regulating method described in
Section III-B are used, with qmax = 0.2 and ∆qref =
0.15 for all joints.

In Cases C and D, the following values of the PID parameters
have been used: KP = 1, KI = 10, and KD = 20.

Figure 4 shows the resulting joint trajectories of Joints
2 and 6, and the ratio maxi |∆qi/∆qmax,i|. Such ratio has
to be less than or equal to one to satisfy the maximum
deviation ∆qmax. As expected, in Case A, the joint trajectory
deviates from the nominal one without control. The soft-
constraint approach (Case B) reduces the deviation from the
nominal joint-space reference (that is set as lowest-priority

task) but the joint trajectories drift away from the reference
as the elbow task has strict higher priority than the joint-
space reference. When the adaptive weighting mechanism is
activated (Case C), the deviation with respect to the nominal
trajectory decreases and eventually converges to ∆qref, but it
is not possible to guarantee a maximum deviation value. As
a matter of fact, although ∆qref = 0.75∆qmax, the maximum
deviation value exceeds ∆qmax during part of the task (at
around 10.5 s). On the contrary, Case D always ensures
the strict satisfaction of the maximum deviation: the joint
trajectory never exits the tube qnom ± ∆qmax and the ratio
is always less than or equal to one. As a drawback, the
scaling mechanism has to be activated to recover feasibility
and this results in the slowdown of the task. As shown in
the figure, the time required to complete the task is around
1.5 times larger than the time taken by Cases A, B, and C.
This phenomenon is relevant especially when ∆qmax is very
small or when ∆qref/∆qmax is close to one, for the joints are
often close to their maximum allowed excursion. It is also
evident that the limitation of the joint range of motion comes
at the cost of a reduced satisfaction of the secondary task;
the smaller is the allowed range of motion, the smaller is the
secondary task satisfaction. In this scenario, the secondary
task minimizes the y-component of the elbow position. Its
level of satisfaction for the different cases is shown in the
following table:

Case A B C D

2nd task satisfaction 100% 58% 39% 27%

where the percentage of the secondary task satisfaction
(compared with the unbounded Case A) is computed as:

2nd task satisfaction = 100 · y
elb
i − yelb

0

yelb
A − yelb

0

(21)

where yelb
i is the average value of the elbow y-coordinate

during the test, i ∈ {A,B,C,D} denotes the case and
yelb

0 refers to the average value of the elbow y-coordinate
corresponding to the joint-space nominal trajectory.

B. Experiments

A human-robot cooperation application has been imple-
mented on the real 7-degree-of-freedom platform composed
of a Universal Robots model UR5, version 3.2, mounted
on a linear track actuated via a linear motor and an Elmo
Gold Cello servo drive. The proposed IK scheme (Case
D in Section IV-A) has been implemented in ROS-control
framework as an intermediate controller between MoveIt! and
the robot controller. The IK scheme generates the reference
signal for the robot controller, which is a cascade of a
joint-position and a joint-velocity control loops. The position
controller is a proportional gain equal to 7, the velocity
controller is the built-in control system of the robot. The
IK output is the reference of the joint-position control loop,
whose control action is sent to the robot velocity controller
via TCP/IP with a frequency of 125 Hz (maximum allowed
by the UR5 controller interface). Similarly, the linear track



0 5 10 15 20

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0 5 10 15 20

0.5

1

1.5

2

0 5 10 15 20
0

2

4

6

(a) Case A: normal IK scheme
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(b) Case B: soft-constraint approach
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(c) Case C: adaptive weights

(d) Case D: adaptive weights and hard constraints

Fig. 4: Simulation results: joint configurations of Joints 2 and 6 (respectively, UR5’s base and wrist2 joints, according to the
manufacturer naming) and ratio maxi |∆qi/∆qmax,i| for Cases A (first row), B (second row), C (third row), and D (fourth
row). Solid blue: actual joint trajectories; solid red: nominal configuration-space trajectories qnom; rose area: allowed joint
deviations qnom ±∆qmax. Cases A and B cannot limit the joint deviation; in Case C the joint deviation converges to ∆qref
but the hard constraint is violated during transients (the ratio is grater than 1 at time 10.5 s); in Case D the joint trajectories
are always within the allowed tube (the ratio is always less than or equal to 1).
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Fig. 5: Experimental results: ratio maxi |∆qi/∆qmax,i| for Case D (solid blue). Ratio equal to 1 (dashed red) represents the
maximum allowed deviation. Thanks to the proposed method (Case D), the ratio is always less than or equal to 1, that is,
the joint trajectories are always within the allowed tube qnom ±∆qmax.



receives the control action with a frequency of 1 kHz by
means of a Ethercat field-bus. The real-time position of the
humans is acquired by means of two Realsense cameras,
model d435. Static obstacles are removed from the point
cloud signal by means of the ROS robot self-filter. The filter
output is re-sampled by using 10 cm3 voxels and sent to the
IK solver with a frequency of 30 Hz.

The robot has to repeat a point-to-point motion in the
Cartesian space, sharing the workspace with two operators.
The secondary task consists in the movement of the robot
elbow in the opposite direction with respect to the position of
the closest body part. Hence, A2 coincides with the first two
rows of the elbow Jacobian and b2 is equal to the unit vector
from the elbow to the human position, multiplied by a gain
equal to 0.4. The maximum and reference joint excursions
are ∆qmax = 0.4 and ∆qref = 0.3. To avoid collisions
with the operators, the speed of the robot is reduced by a
factor between 0 and 1 based on the human-robot relative
distance as in [8]. The speed reduction factor is equal to 1
up to a distance equal to 1 m and is equal to 0 when the
distance is equal to 0.3 m. Intermediate values are obtained
by interpolating via a third-order polynomial.

Figure 5 shows that the ratio maxi |∆qi/∆qmax,i| is always
less than or equal to one, which means that the joint
trajectories always lay within the allowed tube qnom±∆qmax,
according to the theoretical and simulation results.

V. CONCLUSIONS

This paper studied the time-varying limitation of the joint
movements in the inverse kinematic problem of redundant
manipulator. The motivation of the work came from the
need of ensuring a bounded deviation of the joint move-
ment with respect to a given nominal configuration-space
trajectory. The paper showed that such limitation can be
strictly ensured by using a task-scaling inverse kinematics
and by deriving linear constraints with respect to the joint
command variables. Moreover, a self-regulating weighting
strategy was implemented to keep the robot joint close to the
reference signal, so that the scaling mechanism activation is
reduced. The validity of the proposed approach was proved
via simulations and experiments on a 7-degree-of-freedom
industrial manipulator.

APPENDIX

A. Viable polygonal sets for constrained double integral
systems

Imposing the viability of the admissible set is necessary
to ensure the feasibility of the optimal control problem for
all possible states of the system [36]. The equation of the
maximal viable set for a double integral system is quadratic
in the system states. Polygonal viable sets are useful because
they can be easily implemented in optimization-based control
algorithms (e.g., model predictive control [25], [32]). In [23],
a polygonal viable set with a given number of sides is ob-
tained by setting up an optimization problem that maximizes
the area of the polygon. The output of the optimization is the
sequence of points that delineate the polygon. The numerical

Fig. 6: Graphical representation of the polygonal viable set
derivation. The first quarter of the polygon is delineated by
the points {P0, . . . , PN} where Pj = (xj , yj).

approach is time consuming and a change in the joint limits
would require the re-computation of the set. In this work we
derive a viable polygonal set in closed-form.

To this purpose, consider the portion of the convex poly-
gon in the first quarter delineated by the sequence of points
{P0, . . . , PN}, where Pj(xj , yj) (results for the third quarter
of the plane can be derived straightforwardly by mirroring the
solution). Starting from point P0(0, qmax), the maximal viable
polygon can be constructed by maximizing the slope of the
segments in the plane qq̇ (see also Figure 6). The maximum
slope at q̇ = xj depends on the maximum acceleration q̈max
and is equal to −xj/q̈max. Thus, the successive points can
be derived with respect to their xj coordinate, for example:

P1 = (x1, qmax − x2
1/q̈max)

P2 = (x2, qmax − (x2 − x1)x2/q̈max)
(22)

For a generic point Pj it results:

Pj =
(
xj , qmax −

1

q̈max

j∑
i=1

(xi − xi−1)xi

)
(23)

where x0 = 0. The approach in [23] sets up an optimization
problem to minimize the area A in Figure 6. An analytical
solution to the problem is doable only for small values of
N (N ≤ 3). Consider the simpler problem where only the y
coordinate of point PN is maximized, that is:

maximize
xi

qmax −
1

q̈max

N∑
i=1

(xi − xi−1)xi

subject to x0 = 0; xN = q̇max.

(24)

Notice that this problem is a simplification of the original
one, but the approximation is reasonable also in view of
the fact that the maximization of yN tends to maximize
the region where the robot is allowed to work at high
speed. Problem (24) can be solved analytically by imposing
δyN/δxj = 0, that is:

− 1

q̈max

(
2xj − xj−1 − xj+1

)
= 0 (25)



that can be rewritten as

xj+1 − xj = xj − xj−1 (26)

with xN = q̇max. It follows that the points have to be equally
spaced along the axis q̇ . This can be summarized as:

xj =
q̇max

N
j with j = 1, ..., N. (27)

Finally, the points of the polygon can be found by inserting
(27) into (23) to obtain:

Pj =
( q̇max

N
j, qmax −

q̇2
max

2N2q̈max
j(j + 1)

)
(28)

It is interesting to note that:

lim
N→∞

yN = qmax −
q̇2

max

2q̈max
(29)

which means that the polygonal viable set tends to the
maximal viable set given by (4), for N →∞.
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