Yoann Marquer
email: yoann.marquer@inria.fr

Tania Richmond
email: tania.richmond@inria.fr

Pascal Véron
email: pascal.veron@univ-tln.fr

A Hole in the Ladder: Interleaved Variables in Iterative Conditional Branching (Extended Version)

Keywords: Security and Privacy Protection, Public key cryptosystems, Computer arithmetic, Fault injection

The iterative conditional branchings appear in various sensitive algorithms, like the modular exponentiation in the RSA cryptosystem or the scalar multiplication in ellipticcurve cryptography. In this paper, we abstract away the desirable security properties achieved by the Montgomery ladder, and formalize systems of equations necessary to obtain what we call the semi-interleaved and fully-interleaved ladder properties. This fruitful approach allows us to design novel fault-injection attacks, able to obtain some/all bits of the secret against different ladders, including the common Montgomery ladder. We also demonstrate the generality of our approach by applying the ladder equations to the modular exponentiation and the scalar multiplication, both in the semi-and fully-interleaved cases, thus proposing novel and more secure algorithms.

I. INTRODUCTION

We present common algorithms used to compute the modular exponentiation, based on an iterative conditional branching, where a conditional branching depending on the secret updates the value of a variable x on every iteration of one/several loop(s). Amongst these algorithms the Montgomery ladder, that uses a fresh variable y, satisfies desirable properties against side-channel or fault-injection attacks.

A. Contribution

In this paper, we formalize these properties with equations corresponding to two families of cases: the semi-interleaved ladders where the value of x or y may (depending on the secret) depend only on its previous value, and the fullyinterleaved ladders where the value of x and y both depend on both previous values.

We propose 1) an attacker model using fault-injection able to obtain some bits of the secret in the semi-interleaved cases (including the Montgomery ladder) but none in the fullyinterleaved cases, and 2) a stronger attacker model able to obtain all bits of the secret in the semi-interleaved cases, and even in the fully-interleaved cases if the fault can be injected in the key register.

This work was supported by the EU Horizon 2020 project TeamPlay (https://www.teamplay-h2020.eu), grant number 779882.

We also use our formalization to design novel algorithms for the modular exponentiation, including a semi-interleaved ladder with a mask updated at every iteration, and a fullyinterleaved ladder. We demonstrate the generality of the approach by also applying the ladder equations to the scalar multiplication used in elliptic-curve cryptography (ECC), obtaining a semi-interleaved ladder suitable for practical applications, and a fully-interleaved ladder.

The ladder equations, the first two attacks and the algorithms for the modular exponentiation have been published at ARITH 2020 [START_REF] Marquer | A Hole in the Ladder: Interleaved Variables in Iterative Conditional Branching[END_REF]. This paper is an extended version, including novelties like:

• the third attack (for the second attacker model) against all (including fully-interleaved) ladders (Subsection IV-B), • in the case of the modular exponentiation a proof that the probability to obtain randomly a suitable ladder constant for our fully-interleaved ladder candidate is almost 1 when used in concrete applications like RSA or DSA cryptosystems (Subsections V-D and V-E), • and original semi-and fully-interleaved ladder candidates for the scalar multiplication over elliptic curves (Section VI).

B. Organization of the Paper

As introduction, we present in Section II some related works on the modular exponentiation and the Montgomery ladder. In Section III we formalize the iterative conditional branching to deduce the equations satisfied by the semi-interleaved and fully-interleaved ladders, and thus the requirements for ladderizable algorithms. In Section IV we introduce two attacker models using fault injection techniques, and compare the vulnerability of the non-, semi-and fully-interleaved ladders. Finally, we detail how to produce examples of the semiand fully-interleaved ladders in Section V for the modular exponentiation and in Section VI for the scalar multiplication.

II. RELATED WORKS

In this section, we introduce known algorithms for the modular exponentiation, their relevance regarding security, and the desirable properties of the usual Montgomery ladder.

input public a, n; secret k 1: x ← 1 2: for i = d to 0 do 3:

x ← x2 mod n 4:

if k[i] = 1 then 5:

x ← ax mod n 6: end if 7: end for 8: return x output x = a k mod n TABLE I SQUARE AND MULTIPLY input public a, n; secret k 1: x ← 1 2: for i = d to 0 do 3:

x ← x 2 mod n 4:

if k[i] = 1 then 5:

x ← ax mod n 6: else 7:

y ← ax mod n 8:

end if 9: end for 10: return x output x = a k mod n

TABLE II SQUARE AND MULTIPLY ALWAYS

A. Modular Exponentiation

Let k be a secret key, and k = 0≤i≤d k[i] 2 i be its binary expansion of size d + 1, i.e. k[i] is the bit i of k. The square-and-multiply algorithm described in Table I computes the (left-to-right) modular exponentiation a k mod n, by using a 0≤i≤d k[i]2 i = 0≤i≤d (a 2 i) k [i] . This exponentiation is commonly used in cryptosystems like RSA [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF].

For every iteration, the multiplication ax is computed only if k[i] = 1, which can be detected by observing execution time1 [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF] or power profiles 2 by means of e.g. SPA (Simple Power Analysis3) [START_REF] Kocher | Differential Power Analysis[END_REF], and thus leads to information leakage from both time and power side-channel attacks.

To prevent SPA, regularity of the modular exponentiation algorithms is required, which means that both branches of the sensitive conditional branching perform the same operations, independently from the value of the exponent. Thus, an else branch is added with a dummy instruction [START_REF] Coron | Resistance Against Differential Power Analysis For Elliptic Curve Cryptosystems[END_REF] in the squareand-multiply-always algorithm described in Table II.

But countermeasures developed against a given attack may benefit another one [START_REF] Sung-Ming | A Countermeasure against One Physical Cryptanalysis May Benefit Another Attack[END_REF]. Because the multiplication in the else branch of this algorithm is a dummy operation, a fault injected [START_REF] Ziade | A survey on fault injection techniques[END_REF] in the register containing ax will eventually propagate through successive iterations and alter the final result only if k[i] = 1, thus leaking some information. Therefore, an attacker (see the attacker models in Section IV) able to inject a fault in a given register at a given iteration can obtain the digits of the secret key by comparing the final output with or without fault (technique known as safe-error attack).

B. Montgomery Ladder

This is not the case in the algorithm proposed by Montgomery [START_REF] Montgomery | Speeding the Pollard and Elliptic Curve Methods of Factorization[END_REF] and described in Table III, where a fault injected in a register will eventually propagate to the other one, and thus will alter the final result in any case, preventing the attacker to obtain information. But, as described in Section IV, some information on the last digits may still leak, weakening the protection obtained from the ladder.

input public a, n; secret k 1: x ← 1 2: y ← a mod n 3: for i = d to 0 do 4: if k[i] = 1 then 5:
x ← xy mod n 6:

y ← y 2 mod n 7: else 8:

y ← xy mod n 9:

x ← x 2 mod n 10:

end if 11: end for 12:

return x output x = a k mod n TABLE III MONTGOMERY LADDER 1: x ← init 2: for i = 1 to n do 3:
. . .

4:

if secret then 5:

x ← θ (x) 6: else 7:

x ← ε (x) The Montgomery ladder is algorithmically equivalent [START_REF] Marquer | Algorithmic Completeness of Imperative Programming Languages[END_REF] to the square-and-multiply(-always) algorithm(s), in the sense that x has the same value for every iteration. Actually, some variants [START_REF] Boscher | CRT RSA Algorithm Protected Against Fault Attacks[END_REF] of the square-and-multiply-always algorithm4 may be as resistant as the Montgomery ladder [START_REF] Joye | The Montgomery Powering Ladder[END_REF], both by checking invariants [START_REF] Kiss | Algorithmic Countermeasures Against Fault Attacks and Power Analysis for RSA-CRT[END_REF] violated if a fault is injected. In the case of the Montgomery ladder, the invariant y = ax is satisfied for every iteration. These invariants are important for the self-secure exponentiation countermeasures [START_REF] Giraud | An RSA Implementation Resistant to Fault Attacks and to Simple Power Analysis[END_REF].

Note that the else branch in Table III is identical to the then branch, except that x and y are swapped, which provides also (partial 5) protection against timing and power leakage. Moreover, the variable dependency makes these variables interleaved, so this exponentiation is algorithmically (but partially, as we will demonstrate) protected against safe-error attacks. Finally, as opposed to square-and-multiply-always in Table II, the code in the else branch in Table III is not dead, so will not be removed by compiler optimizations.

III. LADDER EQUATIONS

In this section, we formalize the iterative conditional branching occuring in algorithms like the Montgomery ladder, and deduce the requirements to optimize them with semi-or fully-interleaved ladders.

A. Iterative Conditional Branching

In this paper, we focus on algorithms as in Table IV called iterative conditional branching. It appears in algorithms like square-and-multiply for the modular exponentiation, its counterpart double-and-add for elliptic curve point multiplication [START_REF] Miller | Use of Elliptic Curves in Cryptography[END_REF], [START_REF] Koblitz | Elliptic Curve Cryptosystems[END_REF], or the secure bit permutation in the McEliece cryptosystem [START_REF] Strenzke | Side Channels in the McEliece PKC[END_REF] attacked in [START_REF] Petrvalsky | Differential power analysis attack on the secure bit permutation in the McEliece cryptosystem[END_REF]. It also appears naturally (Table V) when trying to turn a loop on the secret into a conditional branching depending on the secret, that can itself be balanced to remove or reduce the dependency on the secret.

But our approach does not depend on the number/depth of the considered loops, hence the dots in Table IV. We assume only that the conditional branching uses only one variable x, the multivariate case being future work (see Section VII). . . . 5:

if secret then 6:

x ← f (x, y) 7:

y ← ε (y) 8: else 9:

y ← f (y, x) 10:

x ← ε (x) 11:

end if 12:

. . . 13: end for . . . 5:

if secret then 6:

x ← f (x, y) 7:

y ← g (x, y) 8: else 9:

y ← f (y, x) 10:

x ← g (y, x) 11:

end if 12:

. . . 13: end for

B. Semi-Interleaved Ladders

To prevent information leakage from side-channel analysis or fault injections, we use another variable y in the algorithm described in Table VI. As in the Montgomery ladder (see Table III), we need to find two functions and f such that for every iteration:

• y = (x), and • x has the same value for every iteration as in Table IV. y = (x) is satisfied at the initialization. By induction, let's assume y = (x) at the beginning of an iteration. In the then branch 6 we have x ← f (x, y) then y ← ε (y), thus in order to have y = (x) satisfied at the end of an iteration the following equation must hold:

∀x, ε ((x)) = (f (x, (x)))
and to have x updated to θ (x) during the iteration the following equation must hold:

∀x, f (x, (x)) = θ (x)
In the else branch we have y ← f (y, x) then x ← ε (x), thus in order to have y = (x) satisfied at the end of an iteration the following equation must hold:

∀x, f ((x), x) = (ε (x))
and x is already updated to ε (x) during the iteration.

Definition 2 (Semi-Ladderizable). Let A be an algorithm with a univariate iterative conditional branching with two unary functions denoted θ and ε. A is semi-ladderizable if there exists a unary function and a binary function f such that, for every considered value x:

     ε ((x)) = (θ (x)) f (x, (x)) = θ (x) f ((x), x) = (ε (x)) (1) (2) (3)
For the square-and-multiply algorithm we have θ (x) = ax 2 and ε (x) = x 2 , and we know that it can be semi-ladderized by using the Montgomery ladder with (x) = ax and f (x, y) = xy, but we demonstrate in Section V that there are other solutions. Note that to respect the form of the semiinterleaved ladder, we should have written y ← yx and not y ← xy in the else branch 7 of the Montgomery ladder.

C. Fully-Interleaved Ladders

Unfortunately, the semi-interleaved ladder is vulnerable to fault injection techniques, because in every branch at least one variable depends only on its previous value and not the previous value of both variables (see Section IV). Moreover, an attacker able to determine whether the output of one operation is used as the input to another one can [START_REF] Hanley | Exploiting Collisions in Addition Chain-Based Exponentiation Algorithms Using a Single Trace[END_REF] apply collision attacks 8 to deduce whether two following bits are the same. To solve these issues, we propose in Table VII a fully-interleaved ladder using three functions , f and g.

As for the semi-interleaved ladders, y = (x) is satisfied at the initialization. We assume again by induction that y = (x) at the beginning of an iteration. In the then branch we have x ← f (x, y) then y ← g (x, y), thus in order to have y = (x) satisfied at the end of an iteration the following equation must hold:

∀x, g (f (x, (x)), (x)) = (f (x, (x)))

and to have x updated to θ (x) during the iteration the following equation must hold:

∀x, f (x, (x)) = θ (x)
In the else branch we have y ← f (y, x) then x ← g (y, x), thus, in order to have y = (x) satisfied at the end of an iteration, the following equation must hold:

∀x, f ((x), x) = (g (f ((x), x), x))
and to have x updated to ε (x) during the iteration the following equation must hold:

∀x, g (f ((x), x), x) = ε (x)
Definition 3 (Fully-Ladderizable). Let A be an algorithm with a univariate iterative conditional branching with two unary functions denoted θ and ε. A is fully-ladderizable if there exists a unary function and two binary functions f and g such that, for every considered input value x:

         g (θ (x), (x)) = (θ (x)) f (x, (x)) = θ (x) f ((x), x) = (ε (x)) g (f ((x), x), x) = ε (x) (4) (5) (6) (7)
Note that Equation (2) is Equation (5) and Equation (3) is Equation [START_REF] Brier | Correlation power analysis with a leakage model[END_REF]. Without surprise, if g is chosen such that g (x, y) = ε (y) then Equation (1) is a special case of Equation (4), and Equation (7) is satisfied. Thus, semi-interleaved ladders are subcases of fully-interleaved ladders.

D. Ladderizable Algorithms

Theorem 1. Let A be an algorithm with an iterative conditional branching with two unary functions denoted θ and ε. If A is semi-ladderizable with and f , or fully-ladderizable with , f and g, then for every iteration of the ladder variant:

• y = (x) • x is updated as in A: x ← θ (x) if secret ε (x) otherwise
Thus, for every algorithm with an iterative conditional branching, if there exists and f satisfying the equations in Definition 2 then the conditional branching can be rewritten as a semi-interleaved ladder. Even better, if there exists , f and g satisfying the equations in Definition 3 then it can be rewritten as a fully-interleaved ladder.

Because in a semi-or fully-interleaved ladder the operations performed are the same for both the then and the else branches, this transformation is an algorithmic countermeasure against side-channel attacks [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF], [START_REF] Kocher | Differential Power Analysis[END_REF]. We detail in Section IV the impact of the semi-and fully-interleaved ladderization against fault injection techniques. Then, to demonstrate the concept, we construct examples of semi-and fully-interleaved ladders in Sections V and VI.

IV. FAULT INJECTION

In this section, we introduce two attacker models using fault injection techniques, and compare the vulnerability of the non-, semi-and fully-interleaved ladders.

According to [START_REF] Ziade | A survey on fault injection techniques[END_REF] a fault is a physical defect, imperfection or flaw that occurs within some hardware or software component, while an error is a deviation from accuracy or correctness, and is the manifestation of a fault. Hardware/physical faults can be permanent, transient or intermittent, while software faults are the consequence of incorrect design, at specification or at coding time. Fault injection is defined [START_REF] Arlat | Validation de la sûreté de fonctionnement par injection de fautes : méthode, mise en oeuvre, application[END_REF] as the validation technique of the dependability of fault tolerant systems, which consists in performing controlled experiments where the observation of the system's behavior in presence of faults is induced explicitly by the writing introduction (called injection) of faults in the system.

A. First Attacker Model

For the iterative conditional branching (Table IV) and the semi-and fully-interleaved ladders (Tables VI andVII), we assume as in the Montgomery ladder (Table III) that "secret" is the condition k

[i] = 1, where k[i] is the i-th bit of the secret key k.
Definition 4 (First Attacker Model). We assume that:

• The attacker wants to obtain the secret key stored in the chip and copied in the register k. • The attacker can run the program any number of times:

inputting x init and y init , the initial values in the register x and y, obtaining x final and/or y final , the final value(s) returned by the program.

• A run consists of iterations i over 9 1, . . . , n, where:

k[i] is the i-th bit of k, x i (resp. y i) denotes the value in the register x (resp. y) between the iterations i -1 and i.

• The attacker can x i (resp. y i) inject a random fault 10(the affected variable is set to a random value) in the register of x (resp. y) between the iterations i -1 and i.

The attacker might be unlucky and obtain the same value as before, but this is unlikely and can be fixed by several tries, so we will assume for simplicity that the new value is different.

The attacker can run a program for the square-andmultiply(-always) (Tables I andII) algorithm(s) for a given input x init , obtain a value x final , then run the program again with the same input while injecting a fault y i in the register y = ax between the iterations i -1 and i, and obtain a value

x fault . If x fault = x final then k[i] = 0, otherwise k[i] = 1.
This can be done for every iteration (in any order), thus the attacker can obtain that way all the bits of the secret key.

In this algorithm, because the current value in x determines the next value in x, a faulted value x i for an iteration i always propagates to the next iteration x i+1 , which we denote by x i ⇒ x i+1 . To obtain the bit k[i], the attacker has exploited the fact that a fault in y = ax propagates to x, denoted by

y i ⇒ x i+1 , only if k[i] = 1.
As opposed to this nonladderized variant, in Tables VI and VII the values of x and y are interleaved, and the fault propagation patterns are the following:

1) For the semi-interleaved ladder:

x i ⇒ x i+1 and (y i+1 only if k[i] = 0) y i ⇒ y i+1 and (x i+1 only if k[i] = 1)
which means that a fault always propagates to the same register, but propagates to the other depending on the current bit of the secret key.

2) For the fully-interleaved ladder:

x i or y i ⇒ x i+1 and y i+1 which means that any fault in one register propagates in every case to both. The fully-interleaved ladder has a lower fault tolerance, i.e. it is easier to disrupt the computation. This is not convenient for properties like functionality, availability or redundancy, but prevents an attacker from obtaining the secret key, thus increases security. Thus, we reduced the information leakage from fault injection by reducing also the fault tolerance. The semi-interleaved ladder is more robust, but this comes at the price of a fault propagation pattern depending on the secret key, which can be exploited.

Indeed, the attacker can y n as in Figure 1 and compare the x output. We assume, as in the exponentiation examples, that changing a read intermediate value would lead to a different output, because if this was not the case then the attacker should have used better x init and y init inputs. So, if If the obtained bit was 0 as in the left part of Figure 2, the attacker can y n-1 . In that case if

x fault = x final then k[n] = 0, otherwise k[n] = 1.
x fault = x final then k[n -1] = 0, otherwise k[n -1] = 1.
This process can be repeated until a 1 is found. If the obtained bit was 1 as in the right part of Figure 2, the attacker can x n-1 . In that case if

y fault = y final then k[n -1] = 1, otherwise k[n -1] = 0. This process can be repeated until a 0 is found. k x y . . . k[n -1] 0 x n x final y n-1 y n y final 1? k x y . . . k[n -1] 1 x n-1 x n x final y n y final 0? Fig. 2

. Attack the Penultimate Bit

One may think that these processes can be alternated in order to recover all the bits of the secret key, but if there is a bit alternation, i.e. (k[i] , k[i + 1]) = (0, 1) or (1, 0), then the bits before i cannot be obtained, as illustrated in Figures 3 and4. So, the attacker can obtain the final bits 10 . . . 0 if x final can be read, and the final bits 01 . . . 1 if y final can be read.

The vulnerability to fault injection is summarized in Table X. Against the first attacker model described in Definition 4, fully-interleaved ladders are more secure than semiinterleaved ladders, which are more secure than without interleaving at all. But we show in the next subsection that a stronger attacker is able to obtain all the bits of the key from both the semi-and fully-interleaved ladders.

B. Second Model

Definition 5 (Second Attacker Model). We assume that:

• The second attacker has the same goal and means that the attacker in Definition 4. • The second attacker can also k >i = 0 (resp. k >i = 1) stuck-at [START_REF] Ziade | A survey on fault injection techniques[END_REF] 0 (resp. 1) all the bits of the register k between iterations i and i + 1.

This stronger attacker is able to break the semi-interleaved ladders by using the attack protocol described in Table VIII in order to recover all the bits of the secret key 11 . EXE(x init , y init , k >i = 1) at Line 4 means that the studied program is executed with inputs x init , y init and a stuck-at k >i = 1, and EXE(x init , y init , k >i = 1, x i) at Line 5 is the same but with a fault x i . In particular, if both x final and y final can be read, then the Montgomery Ladder (Table III) can be broken (by iterating over 0 to d). This attack does not work against fully-interleaved ladders, but a fully-interleaved ladder is more difficult to obtain (when possible), as discussed in Subsections V-C and VI-C.

Actually, being able to write deterministically in the key register is enough to obtain with a third attack all the bits of the key, even against fully-interleaved ladders. Indeed, let's assume that the second attacker knows the first i bits k

[1] . . . k[i]
, where i = 0 for the initialization. By k >i = 0 (resp. k >i = 1) and k >i+1 = 0 (resp. k >i+1 = 1) the second attacker can compare x fault0 and x final0 (resp. x fault1 and x final1) obtained respectively for k [START_REF] Marquer | A Hole in the Ladder: Interleaved Variables in Iterative Conditional Branching[END_REF]

. . . k[i] 0 0 . . . 0 and k[1] . . . k[i] k[i + 1]
0 . . . 0 (resp. with 1 instead of 0 at the end), and the same for y. Thus, the second attacker can (almost) determine whether k[i + 1] = 1 (resp. 0):

• if x fault0 = x final0 or y fault0 = y final0 then k[i + 1] = 1, • if x fault1 = x final1 or y fault1 = y final1 then k[i + 1] = 0. If x fault0 = x final0 , x fault1 = x final1
, y fault0 = y final0 and y fault1 = y final1 then another inputs x init , y init should be chosen in the protocol described in Table IX.

That way all the bits of the key k can be obtained, except the ones such that for every possible x init , x fault0 = x final0 and x fault1 = x final1 . But this case is unlikely, it does not prevent 1: FIx ← 0 2: for i = n to 1 do 3:

if FIx = 1 then 4:

(x final , y final) ← EXE(x init , y init , k >i = 1) 5:

(x fault , y fault) ← EXE(x init , y init , k >i = 1, x i) 6:

if y fault = y final then 7: the attacker from discovering the other bits, and these bits make no difference in the result, thus probably the attacker does not care. Therefore, the second attacker can obtain all the (relevant) bits of the key, even against semi-and fullyinterleaved ladders. The vulnerabilities against these attacks are summarized in Table X.

k[i] ←

V. EXTENDING THE MONTGOMERY LADDER

The purpose of this section is to provide concrete examples of the ladder equations for cryptography, and to generalize the idea behind the Montgomery ladder to improve its protection against side-channel and fault injection attacks.

We demonstrate by using the modular exponentiation. In the following for any n we consider Z/nZ, i.e. integers modulo n, and denote (Z/nZ) the integers invertible modulo n. We assume that θ (x), ε (x), f (x, y), g (x, y) and (x) are quadratic polynomials with the following coefficients: More general quadratic polynomials, e.g. 2 = 0 or more complex θ (x) and ε (x), can be investigated but the general systems of equations tend to be complicated, and in this section we want to focus on the exponentiation algorithms. To ensure that θ (x) = ax 2 and (x) = 1 x + 0 depends on x, we will assume that a = 0 and 1 = 0. Moreover, in the following we focus on solutions without constraint on a to preserve the generality of the original algorithm.

θ (x) = ax 2 ε (x) = x 2 f (x, y) = f 20 x 2 + f 11 xy + f 02 y 2 + f 10 x + f 01 y + f 00 g (x, y) = g 20 x 2 + g 11 xy + g 02 y 2 + g 10 x + g 01 y + g 00 (x) = 1 x + 0 Obtained Bits
Finally, note that Z/nZ may not be an integral domain i.e. there exists x, y ∈ Z/nZ\{0} such that xy = 0 mod n, which is the case for RSA (see Subsection V-D) with p and q such that n = pq. Because n cannot be easily factorized into p and q, and because we are looking for general solutions for any n, if x = 0 and xy = 0 we will look for solutions y = 0, thus loosing some generality but simplifying the analysis.

A. Both Semi-and Fully-Interleaved Ladders

Equation (2) (resp. Equation (5)) f (x, (x)) = θ (x) for the semi-(resp. fully-) interleaved cases is equivalent to: 6)) f ((x), x) = (ε (x)) for the semi-(resp. fully-) interleaved cases is equivalent to:

     f 20 + f 11 1 + f 02 2 1 = a f 11 0 + 2f 02 1 0 + f 10 + f 01 1 = 0 f 02 2 0 + f 01 0 + f 00 = 0 Equation (3) (resp. Equation (
     f 20 2 1 + f 11 1 + f 02 = 1 2f 20 1 0 + f 11 0 + f 10 1 + f 01 = 0 f 20 2 0 + f 10 0 + f 00 = 0 B. Semi-Interleaved Ladder
The remaining Equation (1) ε ((x)) = (θ (x)) for the semi-interleaved cases is equivalent to:

     2 1 = 1 a 2 1 0 = 0 2 0 = 0 So, because 1 = 0, we assume 1 = a and 0 = 0. Therefore Equation (2) is equivalent to:      f 20 + f 11 a + f 02 a 2 = a f 10 + f 01 a = 0 f 00 = 0
and Equation (3) is equivalent to:

     f 20 a 2 + f 11 a + f 02 = a f 10 a + f 01 = 0 f 00 = 0 input public a, n; secret k 1: x ← 1 2: y ← a mod n 3: c ← a 2 + 1 mod n 4: for i = d to 0 do 5: m ← random([0, n -1]) 6: if k[i] = 1 then 7:
z ← y 2 mod n 8:

x ← ma(x 2 + z) + (1 -mc)xy mod n 9:

y ← z 10: else 11:

z ← x 2 mod n 12:

y ← ma(y 2 + z) + (1 -mc)yx mod n 13:

x ← z 14:

end if 15: end for 16:

return x output x = a k mod n TABLE XI SEMI-INTERLEAVED LADDER FOR THE EXPONENTIATION
From f 10 + f 01 a = f 10 a + f 01 we deduce f 10 (a -1) = f 01 (a -1), which is always true without constraint on a if f 10 = f 01 . Moreover, from f 10 + f 01 a = 0 we obtain f 10 = -f 01 a, thus from f 10 a + f 01 = 0 we obtain f 01 (a 2 -1) = 0, which is always true without constraint on a if f 01 = 0. Therefore we assume f 10 = 0 = f 01 .

From

f 20 + f 11 a + f 02 a 2 = f 20 a 2 + f 11 a + f 02 we deduce f 20 (a 2 -1) = f 02 (a 2 -1), which is always true without constraint on a if f 20 = f 02 . The remaining constraint is f 20 (a 2 + 1) + f 11 a = a, which is equivalent to f 20 = a a 2 +1 (1 -f 11)
. By assuming that the coefficients are integers there exists m such that 1f 11 = m(a 2 + 1). Thus, we have f 20 = ma and f 11 = 1m(a 2 + 1).

Theorem 2. The square-and-multiply algorithm in Table II for the modular exponentiation with θ (x) = ax 2 and ε (x) = x 2 is semi-ladderizable with:

(x) = ax f (x, y) = ma(x 2 + y 2) + (1 -m(a 2 + 1))xy
producing the algorithm in Table XI.

Note that if m = 0 then f (x, y) = xy so this solution is the common Montgomery ladder. Note also that m can be chosen randomly for every iteration, providing a mask for the intermediate values and thus reducing the opportunity of information leakage.

C. Fully-Interleaved Ladder (General Case)

Equation (4) g (θ (x), (x)) = (θ (x)) for the fullyinterleaved cases is equivalent to:

               g 20 a 2 = 0 g 11 1 a = 0 g 11 0 a + g 02 2 1 + g 10 a = 1 a 2g 02 1 0 + g 01 1 = 0 g 02 2 0 + g 01 0 + g 00 = 0
So, because a = 0 and 1 = 0, we assume g 20 = 0 from the first equation, g 11 = 0 from the second, and the remaining constraints are:

     g 02 2 1 + g 10 a = 1 a 2g 02 1 0 + g 01 1 = 0 g 02 2 0 + g 01 0 + g 00 = 0
According to Equation (6) f ((x), x) = (ε (x)) = 1 x 2 + 0 , so by using g 20 = g 11 = 0 we have: g (f ((x), x), x) = (g 02 + g 10 1)x 2 + (g 01)x + (g 10 0 + g 00) Thus, Equation (7) g (f ((x), x), x) = ε (x) for the fullyinterleaved cases is equivalent to:

     g 02 + g 10 1 = 1 g 01 = 0 g 10 0 + g 00 = 0
Because g 20 = g 11 = g 01 = 0 and we require g (x, y) = g 02 y 2 + g 10 x + g 00 to depend on both x and y, we have to assume g 02 = 0 and g 10 = 0. By using g 01 = 0 the remaining constraints from Equation (4) are:

     g 02 2 1 + g 10 a = 1 a g 02 1 0 = 0 g 02 2 0 + g 00 = 0
Because g 02 = 0 and 1 = 0, the second equation implies that 0 = 0. Thus, the remaining constraints from Equation (4) and Equation (7) are:

     g 02 2 1 + g 10 a = 1 a g 02 + g 10 1 = 1 g 20 = g 11 = g 01 = g 00 = 0
By using the second equation g 02 = 1g 10 1 , the first one is equivalent to:

g 10 (a -3 1) = 1 (a -1)
Because g 10 = 0 and 1 = 0, note that a = 3 1 ⇔ a = 1 , in which case 3 1 = 1 , thus a = 1 = ±1. To remove the constraint on a, we assume that a = 3 1 , and thus g 10 and g 02 depends only on a and 1 :

g 10 = 1 a -1 a -3 1 g 02 = 1 -g 10 1 = a 1 -2 1 a -3 1 g (x, y) = g 02 y 2 + g 10 x = 1 a -3 1 a(1 -2 1)y 2 + 1 (a -1)x
Note that because 1 = 0 and g 10 = 0 we have to assume that, as opposed to the semi-interleaved cases, 1 = a.

Moreover, because 0 = 0, the constraints from the common Equations (5) and (6) can be simplified:

               f 20 + f 11 1 + f 02 2 1 = a f 20 2 1 + f 11 1 + f 02 = 1 f 10 + f 01 1 = 0 f 10 1 + f 01 = 0 f 00 = 0 (L 1) (L 2) (L 3) (L 4)
In order to have a non-trivial ladder (x) = 1 x, we will assume that 1 = ±1. With (L 4) -(L 3) we obtain (f 10f 01)(1 -1) = 0 thus f 10 = f 01 , and with (L 3) we have

f 10 (1 + 1) = 0, so f 10 = f 01 = 0. With (L 1) -(L 2) we obtain (f 02 -f 20)(2 1 -1) = a -1 , so f 02 = f 20 + a-1 2
1 -1 . Therefore, remain the following constraints:

                     f 20 (2 1 + 1) + f 11 1 = a -2 1 a -1 2 1 -1 = 1 - a -1 2 1 -1 f 02 = f 20 + a -1 2 1 -1 f 10 = f 01 = f 00 = 0
The first line being obtained from (L 1) and the second from

(L 2). Note that a -2 1 a-1 2 1 -1 = 1 -a-1 2
1 -1 is satisfied and thus is not a constraint. Moreover, because 1 = 0, by using the second line, f 11 can be written as:

f 11 = 1 1 1 - a -1 2 1 -1 -f 20 (2 1 + 1) = 1 1 3 1 -a 2 1 -1 -f 20 (2 1 + 1)
Thus, we have:

f (x, y) = f 20 x 2 + f 11 xy + f 02 y 2 = f 20 x 2 + 1 1 3 1 -a 2 1 -1 -f 20 (2 1 + 1) xy + f 20 + a -1 2 1 -1 y 2 = f 20 x 2 - 2 1 + 1 1 xy + y 2 + 1 2 1 -1 3 1 -a 1 xy + (a -1)y 2
Finally, f 20 has no constraint. It could have been used as a mask for f as in Theorem 2, but unfortunately not for g. So, for sake of simplicity, we assume f 20 = 0 and obtain the following functions:

Theorem 3. The square-and-multiply algorithm in Table II for the modular exponentiation with θ (x) = ax 2 and ε (x) = x 2 is fully-ladderizable with:

(x) = 1 x f (x, y) = 1 2 1 -1 3 1 -a 1 xy -(1 -a)y 2 g (x, y) = 1 3 1 -a a(2 1 -1)y 2 + 1 (1 -a)x input public a, n; secret k 1: do 2: ← random([2, n -2] \ {a}) 3: v 0 ← -a mod n 4: (d 1 , u 1) ← EEA(, n) 5: v 2 ← 2 -1 mod n 6: (d 2 , u 2) ← EEA(v 2 , n) 7: v 3 ← 3 -a mod n 8: (d 3 , u 3) ← EEA(v 3 , n) 9: while v 0 mod n = 0 ∨ d 1 = 1 ∨ d 2 = 1 ∨ d 3 = 1 10: c 0 ← u 1 u 2 v 3 mod n 11: c 1 ← -v 0 u 2 mod n 12: c 2 ← av 2 u 3 mod n 13: c 3 ← v 0 u 3 mod n 14: x ← 1 15: y ← 16: for i = d to 0 do 17: if k[i] = 1 then 18:
x ← c 0 xy + c 1 y 2 mod n 19:

y ← c 2 y 2 + c 3 x mod n 20: else 21:

y ← c 0 yx + c 1 x 2 mod n 22:

x ← c 2 x 2 + c 3 y mod n 23:

end if 24: end for 25:

return x output x = a k mod n TABLE XII FULLY-INTERLEAVED LADDER FOR THE MODULAR EXPONENTIATION (GENERAL CASE)
where

1 1 = a mod n, 2 1 ∈ (Z/nZ) , 3 2 1 -1 ∈ (Z/nZ) and 4 3 1 -a ∈ (Z/nZ) , producing the algorithm in Table XII.
The first constraint on the ladder constant (denoted in the following) can be satisfied by checking whether (a) mod n = 0. The other constraints can be satisfied by using the Extended Euclidean Algorithm (d, u) ← EEA(v, n), where uv = d mod n, such that if d = 1 then v is invertible modulo n and v -1 = u mod n. Because = a mod n, 0 ∈ (Z/nZ) , and if = ±1 then 2 1 -1 ∈ (Z/nZ) , we can assume that ∈ Z/nZ can be chosen in L a,n = [2, n-2]\{a}, then check whether satisfies the constraints of Theorem 3 (Lines 1-9). Actually, we prove in the RSA case (Subsection V-D) and the DSA case (Subsection V-E) that a ladder constant verifying these constraints is almost always obtained after one iteration.

Note that after a suitable is chosen, the coefficients of f and g are constant during the iterations, thus can be precomputed (Lines 10-13). These computations to find suitable constants may cause a significant overhead (Lines 1-15) but that does not depend on the secret, thus trading execution time and energy consumption for more security.

We provide in Table XIII a comparison of complexities for the Montgomery, semi-and fully-interleaved ladders. The complexities are given in terms of cost per key bit, where M stands for multiplication, S for squaring and A for addition/subtraction, all modulo n. These costs are given after memoization, for instance the squarings in Line 18 and Line 19 in Table XII are the same, so could have been memorized by using z ← y 2 and then z used instead of the squares. Because the costs are given per key bit, we did not include the cost of the pre-computations, which is far from negligible for the fully-interleaved ladder in Table XII. D. Fully-Interleaved Ladder (RSA Case)

In the context of RSA [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF], we assume that n = pq, where p, q are distinct primes. The modular exponentiation aims at computing a k mod n, so we assume that the input a is already given modulo n, i.e. 0 ≤ a ≤ n-1. Because 0 k and (±1) k are fairly trivial to compute, to simplify the following reasoning we assume that

2 ≤ a ≤ n -2, so card(L a,n) = n -4, where L a,n = [2, n -2] \ {a}.
To satisfy constraints 1 and 2 of Theorem 3, i.e. = a and ∈ (Z/nZ) , has to be chosen in L a,n such that gcd(, n) = 1. Thus, in the following we will assume that is chosen randomly in L a,n and determine the probability that satisfies the ladder constraints. Within this range, the only integers such that gcd(, n) > 1 are jp for j ∈ [1, q -1] or jq for j ∈ [1, p -1], so the probability to pick randomly a ladder constant not verifying 2 is:

P r(not 2) ≤ (p -1) + (q -1) n -4 ≈ 1 p + 1 q
In RSA context, it means that a random ∈ L a,n is invertible modulo n with probability almost equal to 1. Indeed, according to the National Institute of Standards and Technology (NIST) recommendations [START_REF] Barker | Recommendation for Pair-Wise Key Establishment Using Integer Factorization Cryptography[END_REF], if nBits = log 2 n + 1 denotes the number of bits of n = pq, then p and q should verify:

2 nBits-1 2 < p < 2 nBits 2 2 nBits-1 2 < q < 2 nBits 2
Note that if one can compute such that gcd(, n) > 1 then gcd(, n) = p or q, and is able to factorize The same problem occurs in RSA cryptosystem: if Alice can generate a message m such that gcd(m, n) > 1, where n is Bob's public key, then Alice can factorize n and find Bob's secret key. Such an event could occur with a probability nearly equal to 0.

To satisfy constraint 3 of Theorem 3, i.e. 2 -1 ∈ (Z/nZ) , note that according to the chinese remainder theorem the integers such that 2 -1 is not invertible modulo n verify 2 = 1 mod p and 2 = 1 mod q. There are at most four such integers: 1, n -1, γ, nγ, where γ = 1 mod p and γ = -1 mod q. So, the probability to pick randomly a ladder constant in L a,n not verifying 3 is:

P r(not 3) ≤ 2 n -4
Finally, to satisfy the last constraint 4 of Theorem 3, i.e.

3a ∈ (Z/nZ) , we use the following lemma from Gauss:

Definition 6 (r th Residues). Let n and r ≥ 2 be two integers. An integer a ∈ (Z/nZ) is a r th residue modulo n if there exists an integer ∈ Z/nZ such that r = a mod n, otherwise it is a non-residue modulo n.

Lemma 1 (Gauss [START_REF] Gauss | Disquisitiones Arithmeticae[END_REF]). Let p be a prime and r ≥ 2 be an integer. We denote b = gcd(p -1, r). We have: 1) For every integer a ∈ (Z/pZ) , a is a r th residue modulo p if and only if a p-1 b = 1 mod p, 2) there exists exactly p-1 b r th residues in (Z/pZ) , 3) if a ∈ (Z/pZ) is a r th residue modulo p then there exists exactly b integers ∈ Z/pZ such that r = a mod p.

According to the chinese remainder theorem, 3a is invertible modulo n = pq if and only if 3a is invertible modulo p and 3a is invertible modulo q. Moreover, because p is prime, 3a is invertible mod p if and only if 3 a = 0 mod p, i.e. a is a 3 rd non-residue modulo p. Therefore, the constraint 4 is not satisfied only if a is a 3 rd residue modulo p or q.

For a fixed, because b p = gcd(p -1, 3) = 1 or 3 and b q = gcd(q -1, 3) = 1 or 3, according to Lemma 1 there are at most 9 non invertible 3a integers modulo n, so the probability to pick randomly a ladder constant in L a,n not verifying 4 is:

P r(not 4) ≤ 9 n -4
In the worst case, the unfavorable cases are distinct, thus the probability to pick randomly a suitable ladder constant is:

P r(1 2 3 4) ≥ 1 - p + q -2 n -4 + 2 n -4 + 9 n -4 = 1 - p + q + 9 n -4 ≈ 1 - 1 p - 1 q - 1 n
which is almost equal to 1 in a cryptographic context. Thus, in the RSA case n = pq finding a suitable ladder constant (Lines 1-9) in Table XII costs only one iteration with probability almost equal to 1.

E. Fully-Interleaved Ladder (DSA Case)

In Digital Signature Algorithm (DSA) [START_REF]Digital signature standard (DSS)[END_REF] context (or for Diffie-Hellman key exchange mechanism [START_REF] Rescorla | RFC2631: Diffie-Hellman key agreement method[END_REF]), the exponentiation is computed modulo n = p, where p is prime.

As in the RSA case we prove that finding a suitable ladder constant costs only one iteration with probability almost equal to 1. The argument is similar to the previous one but even simpler. If ∈ L a,n = [2, n-2]\{a} then 1 = a. Moreover = 0 mod n so 2 is invertible modulo n. Finally, = ±1 so 3 2 -1 = 0 mod n thus 2 -1 is invertible modulo n.

Remains the last constraint 4 3a is invertible modulo n. In the following we denote R 3 n (a) that a is a cubic residue modulo n, and let b = pgcd(n -1, 3).

According to Lemma 1, there exists n-1 b cubic residue in (Z/nZ) . -1 and 1 are cubic residue modulo n, as opposed to 0. Thus, the probability that an integer a ∈ [2, n -2] is a cubic residue is:

P r R 3 n (a) = n-1 b -2 n -3 = 1 b - 2 1 -1 b
n -3 According to Lemma 1, if a is a cubic residue then there exists b cubic roots of a in (Z/nZ) . If = 0, ±1 then a = 3 = 0, ±1, which is excluded. If = a then a = a 3 i.e. a(a + 1)(a -1) = 0 mod p, thus a = 0, ±1 which is excluded. So the cubic roots of a are automatically in L a,n = [2, n -2] \ {a}. Thus the probability that an integer ∈ L a,n is a cubic root of a is b n-4 . Therefore, if a is a cubic residue then the probability that ∈ L a,n satisfies the last constraint is:

P r 4 R 3 n (a) = 1 - b n -4
Finally, if a is not a cubic residue then every ∈ L a,n satisfies 4 . Therefore, the probability to pick randomly a suitable ladder constant is:

P r(1 2 3 4) = P r(4) = P r 4 R 3 n (a) × P r R 3 n (a) + P r 4 not R 3 n (a) × P r not R 3 n (a) = 1 - b n -4 1 b - 2 1 -1 b n -3 + 1 1 - 1 b + 2 1 -1 b n -3 = 1 - 1 n -4 + 2(b -1) (n -3)(n -4)
which is almost equal to 1 in a cryptographic context.

VI. SCALAR MULTIPLICATION IN ECC

As in Section V we demonstrate concrete examples of the ladder equations, this time for the scalar multiplication used in elliptic curve cryptography (ECC).

ECC was independently introduced in 1985 by Neal Koblitz [START_REF] Koblitz | Elliptic Curve Cryptosystems[END_REF] and Victor Miller [START_REF] Miller | Use of Elliptic Curves in Cryptography[END_REF]. It is nowadays considered as an excellent choice for key exchange or digital signatures, especially when these mechanisms run on resource-constrained devices. The security of most cryptocurrencies is based on ECC, which has been standardized by the NIST [START_REF]Digital signature standard (DSS)[END_REF], [START_REF] Barker | Recommendation for Pair-Wise Key Establishment Using Dicrete Logarithm Cryptography[END_REF].

Definition 7 (Elliptic Curve). Let p be a prime. An elliptic curve in short Weierstrass form over a finite field F p is defined by the set E(F p) = (x, y) ∈ F p × F p y 2 x 3 + ax + b ∪ O, with a, b ∈ F p satisfying 4a 3 +27b 2 = 0 and O being called the point at infinity.

The set E(F p) is an additive abelian group with an efficiently computable group law. Point addition P + Q or point doubling 2P involves additions and multiplications over F p . The point O is the identity element of the group law. Depending on the parameters a and b of the curve, there exists many formulas to optimize these two operations. A large and updated survey can be found on the elliptic curves explicit formulas database web site: https://www.hyperelliptic.org/EFD/ The main operation in ECC is scalar multiplication kA = A + • • • + A, where A is a point on a curve and k is an integer. It can be performed by using the double-and-add algorithm, similar to the square-and-multiply algorithm in Table II p.2. The initialization x ← 1 is replaced by P ← O, the squaring x ← x 2 is replaced by a doubling P ← 2P and the multiplication x ← ax is replaced by an addition P ← A + P , producing the output P = kA.

Thus, for a fixed point A we consider in this section the following known functions:

θ (P) = 2P + A ε (P) = 2P
And we consider ladder functions of the following form:

f (P, Q) = f P P + f Q Q + f A A g (P, Q) = g P P + g Q Q + g A A (P) = P P + A A
with f P , f Q , P = 0 for both cases, and g P , g Q = 0 for the fully-interleaved ladders case, allowing in principle nonsecure scalar multiplications as intermediate computations for the secure one. The efficiency of the obtained solutions are discussed in Subsection VI-D.

A. Both Semi-and Fully-Interleaved Ladders Equation (2) (resp. Equation (5)) f (x, (x)) = θ (x) and Equation (3) (resp. Equation (6)) f ((x), x) = (ε (x)) for the semi-(resp. fully-) interleaved cases imply that:

f P + f Q P = 2 f Q = (2 -f P) P So (2 -f P)(2 P -1) = 0. If f P = 2 then f Q = 0, thus we assume f P = 2.
To make no assumption about the finite field, we assume for the following P = ±1. They also imply that:

f Q A + f A = 1 f A = (2 -f P) A -A So (2 -f P)(P + 1) A = 1 + A . • If P = -1 then A = -1, f Q = f P -2 and f A =
(f P -2) + 1, thus the candidate ladder functions are:

f (P, Q) = f P (P + Q + A) -(2Q + A) (P) = -(P + A)
• If P = 1 then by assuming that 3 -2f P is invertible we obtain A = 1 3-2f P , f Q = 2f P and f A = 1 -2-f P 3-2f P , thus the candidate ladder functions are:

f (P, Q) = f P (P -Q) + 2Q + 1 -f P 3 -2f P A (P) = P + 1 3 -2f P A B. Semi-Interleaved Ladder
The remaining Equation (1) ε ((x)) = (θ (x)) for the semi-interleaved ladders is already satisfied for the P = -1 case. For the P = 1 case, it implies that (1 3-2f P -1)A = 0, thus to avoid constraint on A we assume f P = 1.

Theorem 4. The double-and-add algorithm with θ (P) = 2P + A and ε (P) = 2P is semi-ladderizable with two solutions:

1)

f (P, Q) = f P (P + Q + A) -(2Q + A) (P) = -(P + A)
where f P = 0, 2, and:

2)

f (P, Q) = P + Q (P) = P + A
The second solution is actually the common Montgomery ladder for the scalar multiplication. The first one for f P = 1 corresponds to the ladder function f (P, Q) = P -Q which is similar to the common Montgomery ladder except that the point Q has an opposite sign.

C. Fully-Interleaved Ladder

In the case P = -1, Equation (4) g (θ (x), (x)) = (θ (x)) for the fully-interleaved ladders is equivalent to:

2g P -g Q = -2 g P -g Q + g A = -2
So g Q = 2(1 + g P) and g A = g P . Thus Equation (7) g (f ((x), x), x) = ε (x) for the fully-interleaved ladders implies that f P g P = 0. Because we assumed f P , g P = 0 and we are looking for a solution independent from the chosen field for the coefficients, we have no solution for this case.

In the case P = 1, Equation (4) g (θ (x), (x)) = (θ (x)) for the fully-interleaved ladders is equivalent to:

   2g P + g Q = 2 g P + g Q 3 -2f P + g A = 1 + 1 3 -2f P So g Q = 2(1 -g P) and g A = 1 + (2f P -1)g P -1
3-2f P . Thus Equation (7) g (f ((x), x), x) = ε (x) for the fully-interleaved ladders implies that 2(f P (g P -1)+1)

3-2f P

A = 0. To avoid constraint on A we assume f P (g P -1) + 1 = 0, i.e. g P = 1 -1 f P . Theorem 5. The double-and-add algorithm with θ (P) = 2P + A and ε (P) = 2P is fully-ladderizable with:

f (P, Q) = f P P -Q - 1 3 -2f P A + 2Q + 1 3 -2f P A g (P, Q) = P + 1 f P -P + 2Q + 1 3 -2f P A - 1 3 -2f P A (P) = P + 1 3 -2f P A
where f P = 0, 1, 2, and where f P and 3 -2f P are invertible.

The ladder functions of this solution for f P = 1 are f (P, Q) = P + Q, g (P, Q) = 2Q and (P) = P + A, i.e. the common Montgomery ladder for the scalar multiplication, but is no longer a fully-interleaved ladder.

D. Application to ECC

The novel candidates are the first semi-interleaved ladder in Theorem 4 requiring a scalar multiplication by f P , and the fully-interleaved ladder in Theorem 5 requiring a scalar multiplication by 1 3-2f P then f P and 1 f P . Scalar multiplications cA for various coefficients c can be precomputed if A was a fixed point, as in the DSA signing step or the first step of Diffie-Hellman protocol. But both candidates involve scalar multiplications for non-fixed points R, linear combination of A, P , and Q.

A scalar multiplication cR for a specific coefficient c can be efficiently computed (i.e. with very few field operations) by using an elliptic curve endowed with an efficient endomorphism. On such curves, there exists a constant λ, depending on the modulus p and the parameters of the curve (see Definition 7), such that λR can be computed with very few multiplications (only one in most cases). This is detailed in [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF], where the authors describe the GLV method used in various standards, like the Bitcoin protocol specification or TLS [START_REF] Nir | RFC8422: Elliptic curve cryptography (ECC) cipher suites for transport layer security (TLS) versions 1.2 and earlier[END_REF].

Another way to optimize the cost of cR is to use a short addition chain [START_REF] Knuth | The Art of Computer Programming: Fundamental Algorithms[END_REF], so that the number of point operations to compute cR is equal to the length of the chain. The problem of computing the shortest addition chain for a given integer is hard [START_REF] Bahig | Improved generation of minimal addition chains[END_REF] but for "small" integers there exists tables giving the corresponding chain, like https://bo.blackowl.org/random/ln.

Therefore, for the first semi-interleaved ladder in Theorem 4, one can use an elliptic curve endowed with an efficient endomorphism λ and assign f P = λ. Or, for a non-specific curve, one can choose f P amongst the integers corresponding to "very short" addition chains. In that case, because as in Theorem 2 f P does not occur in (P), f P can be chosen randomly for every iteration, thus increasing security compared to the common Montgomery ladder. However, this comes at the price of drastically increasing the computational cost of the scalar multiplication.

For the fully-interleaved ladder candidate, neither an efficient endomorphism nor an addition chain can be used. Indeed, that f P R can be efficiently computed does not imply that 1 f P R can also be efficiently computed, because both coefficients are dependent. Therefore, the fully-interleaved ladder candidate might not be applicable in practice to ECC.

VII. CONCLUSION AND FUTURE WORK

We abstracted away the algorithmic strength of the Montgomery ladder against side-channel and fault-injection attacks, by defining semi-and fully-ladderizable algorithms. We designed also fault-injection attacks able to obtain some/all bits of the secret key from the semi-interleaved ladders like the Montgomery ladder, and even from the fully-interleaved ladders if the attacker is able to stuck-at the key register.

As examples, we provided for the modular exponentiation a better semi-interleaved ladder using a random mask updated at every iteration, and a fully-interleaved ladder depending on an appropriate ladder constant. We investigated the properties required by the ladder constant, and discovered that they are almost always satisfied in a cryptographic context.

To demonstrate that generality of our approach, we provided new algorithms for the scalar multiplication in elliptic curves: a novel and effective semi-interleaved ladder, and a fullyinterleaved ladder. The applicability of the last candidate depends on the efficient computations of several dependent coefficients for the scalar multiplications, which is an open and interesting problem.

Finally, we only investigated the univariate case for conditional branching, but the multivariate case may be of interest. For instance, a multi-variable polynomial 0≤n≤d n1+•••+n k =n c n1,...,n k 1≤i≤k x ni i can be represented by a multidimensional array of coefficients, thus the manipulation of ladder equations could be handled by using matrix operations.

Fig. 1 .

 1 Fig. 1. Attack the Last Bit

Fig. 3 .Fig. 4 .

 34 Fig. 3. x or y 01

 final , y final) ← EXE(x init , y init , k >i = 0) 14:(x fault , y fault) ← EXE(x init , y init , k >i = 0, y i) final , y final) ← EXE(x init , y init , k >i = 0) 3:(x fault , y fault) ← EXE(x init , y init , k >i+1 = 0) 4:if x fault = x final or y fault = y final then

			1
	8:		else
	9:		k[i] ← 0
	10:		FIx ← 0
	11:		end if
	12:	else
	13: (x 15: if x fault = x final then
	16:		k[i] ← 0
	17:		else
	18:		k[i] ← 1
	19:		FIx ← 1
	20:		end if
	21:	end if
	22: end for
	23: return k
			TABLE VIII
		PROTOCOL TO ATTACK THE SEMI-INTERLEAVED LADDERS
	1: for i = 0 to n -1 do
	2: (x 5:	k[i + 1] ← 1
	6:	else
	7: (x 10:	k[i + 1] ← 0
	11:		end if
	12:	end if
	13: end for
	14: return k
			TABLE IX
	PROTOCOL TO ATTACK BOTH SEMI-AND FULLY-INTERLEAVED LADDERS

final , y final) ← EXE(x init , y init , k >i = 1) 8:

(x fault , y fault) ← EXE(x init , y init , k >i+1 = 1) 9:

if x fault = x final or y fault = y final then

TABLE XIII COST

 XIII PER BIT OF THE MONTGOMERY, SEMI-AND FULLY-INTERLEAVED LADDERS (AFTER MEMOIZATION)

Even observing the duration of the whole execution can leak the Hamming weight of the secret key, and thus can narrow down the exploration space.

A multiplication can be distinguished from a squaring, hence variants with squaring only have been proposed in[START_REF] Clavier | Square Always Exponentiation[END_REF] and improved in[START_REF] Ha | Power Analysis Attacks on the Right-to-Left Square-Always Exponentiation Algorithm[END_REF].

The power profile depends also on the values in the considered registers, so computing a multiplication in every case is better against SPA but not against CPA (Correlation Power Analysis)[START_REF] Brier | Correlation power analysis with a leakage model[END_REF], even if standard blinding techniques can prevent differential attacks[START_REF] Coron | Resistance Against Differential Power Analysis For Elliptic Curve Cryptosystems[END_REF],[START_REF] Messerges | Power Analysis Attacks of Modular Exponentiation in Smartcards[END_REF].

See[START_REF] Joye | Highly Regular Right-to-Left Algorithms for Scalar Multiplication[END_REF] for highly regular right-to-left variants,[START_REF]Highly Regular m-Ary Powering Ladders[END_REF] for a generalization to any basis and left-to-right/right-to-left variants, and[START_REF] Walter | The Montgomery and Joye Powering Ladders are Dual[END_REF] for their duality.

The variables x and y may have different access time, which hinders protection against cache-timing leakage.

Because the condition depends on the secret, we will not assume that in the then branch the condition is satisifed but not in the else branch, to prevent data dependencies that could be attacked.

The former is actually better regarding vulnerability to the M safe-error[START_REF] Joye | The Montgomery Powering Ladder[END_REF] or collision[START_REF] Kim | Practical Second-Order Correlation Power Analysis on the Message Blinding Method and Its Novel Countermeasure for RSA[END_REF] attacks, showing that our methodology is good practice.

A countermeasure proposed in[START_REF] Le | Randomizing the Montgomery Powering Ladder[END_REF] is to randomly blend variants of the ladder, or compute the exponentiation by taking a random (bounded) walk.

To simplify the notations, we assume in this section that the counter is incremented (from 1 to n with a step 1), but the argument is similar for other initial or final values, a decremented counter, and/or other step values.

In the Montgomery ladder (TableIII) the invariant y = ax is satisfied for every iteration. So, if a random fault is injected in x or y, the violation of the invariant allows the algorithm to detect the fault[START_REF] Giraud | An RSA Implementation Resistant to Fault Attacks and to Simple Power Analysis[END_REF] and thus to enhance the appropriate fault policy, as stopping the program or switching to a random key for the rest of the computation. The same argument holds for our semiand fully-interleaved ladders with the invariant y = (x).

Note that the iterations are reversed in this attack protocol.

ACKNOWLEDGMENTS

The authors want to thank the reviewers of ARITH 2020 for their relevant and very useful comments.