
HAL Id: hal-03157804
https://hal.science/hal-03157804v2

Preprint submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interleaved Ladders: One more Step on Generalizing the
Montgomery Ladder

Yoann Marquer, Tania Richmond, Pascal Véron

To cite this version:
Yoann Marquer, Tania Richmond, Pascal Véron. Interleaved Ladders: One more Step on Generalizing
the Montgomery Ladder. 2024. �hal-03157804v2�

https://hal.science/hal-03157804v2
https://hal.archives-ouvertes.fr

Interleaved Ladders: One more Step on Generalizing the

Montgomery Ladder

Yoann Marquer1,4, Tania Richmond2,4, and Pascal Véron3

1SnT, SVV, University of Luxembourg, Luxembourg, yoann.marquer@uni.lu
2Institut de Sciences Exactes et Appliquées, Université de la Nouvelle-Calédonie,

France, tania.richmond@unc.nc
3Laboratoire IMath, Université de Toulon, France, pascal.veron@univ-tln.fr

4Most of this work was done while Y. Marquer and T. Richmond were affiliated with
Inria, Univ. Rennes, CNRS, IRISA, France

Abstract

Iterative conditional branchings appear in various
sensitive algorithms, like the modular exponentia-
tion in the RSA cryptosystem or the scalar multi-
plication in elliptic-curve cryptography. The Mont-
gomery ladder is a common example of such al-
gorithm with desirable security properties against
some side-channel and fault-injection attacks. In
this paper, we abstract away and generalize these
security properties by formalizing, using systems of
equations, what we call semi-interleaved and fully-
interleaved ladders. This fruitful approach allows
us to design novel fault-injection attacks, able to
obtain some/all bits of the secret against different
ladders, breaking the common Montgomery ladder.
We also demonstrate the generality of our approach
by applying our ladder equations to the modular
exponentiation and the scalar multiplication, both
in the semi- and fully-interleaved cases, to propose
novel and more secure algorithms.

1 Introduction

1.1 Context

An iterative conditional branching is a loop contain-
ing a conditional branching. Such iterative condi-
tional branching is said sensitive if the condition
of the conditional branching depends on a sensitive
value, like the value of the secret key in a cryptosys-

tem. Sensitive iterative conditional branchings are
frequent (Subsection 3.1) and, unfortunately, usu-
ally prone to vulnerability to side-channel (Subsec-
tion 2.1) or fault-injection (Subsection 2.2) attacks.

The square-and-multiply (Algorithm 1 p.4) and
the Montgomery ladder (Algorithm 3 p.6) are com-
mon examples of sensitive iterative conditional
branchings. As opposed to the square-and-multiply
algorithm, the Montgomery ladder demonstrates
desirable security properties against side-channel
and fault-injection attacks (Subsection 2.3). We
call ladderization the refactoring process trans-
forming, for instance, the vulnerable square-and-
multiply algorithm into the more protected Mont-
gomery ladder.

1.2 Contribution

The purpose of this paper is to solve the compu-
tational problem of ladderizing sensitive iterative
conditional branchings in order to reduce their se-
curity vulnerabilities. This is done by abstract-
ing away the desirable security properties from the
Montgomery ladder and by generalizing ladderiza-
tion to a more general class: the ladderizable algo-
rithms obtained in Theorem 1 p.10.

To our knowledge, this ladderization approach
is the first systematic attempt to generalize these
security properties, by using systems of equations
called the ladder equations. While investigating
this novel problem, we distinguish between semi-

1

mailto:yoann.marquer@uni.lu
mailto:yoann.marquer@uni.lu
mailto:yoann.marquer@uni.lu

interleaved ladders (Subsection 3.2), including the
usual Montgomery ladder, and fully-interleaved
ladders (Subsection 3.3) with a more complex pat-
tern.
Based on the code symmetry of the semi- and

fully-interleaved ladders, the same operations are
performed regardless the sensitive value, so these
algorithms are secure against simple side-channel
attacks depending on these operations, like tim-
ing side-channel attacks [32] or SPA (Simple Power
Analysis) [31].
Based on fault-propagation patterns that prevent

an attacker to compare outputs with or without
fault injection (Section 4), we demonstrate in Ta-
ble 1 p.14 that fully-interleaved ladders are more
secure against fault-injection attacks than semi-
interleaved ladders, which are more secure than al-
gorithms without interleaving. This fruitful investi-
gation leads to the discovery of novel fault-injection
attacks applicable to the common Montgomery lad-
der (Section 4). Moreover, a violation of the ladder
invariant y = ℓ (x) between intermediate variables
x and y allows the protected system to detect a
fault-injection, and thus to trigger countermeasures
(Subsection 2.3).
Solving the ladder equations was feasible by

a solver for the semi-interleaved ladders with
if-then branchings (i.e., without else branch).
Thus, the ladderization refactoring was semi-
automatized in this simple case [11]. But, because
of the complexity of the ladder equations in the gen-
eral case, we focus in this paper on manually solving
the ladder equations for common cryptosystems.
We validate our approach and demonstrate its

generality by obtaining novel and more secure al-
gorithms for the modular exponentiation in the
RSA [45] and DSA [40] cryptosystems (Section 5),
and for the scalar multiplication in elliptic-curve
cryptography [5, 40] (Section 6). In most of the
cases, solving the ladder equations leads to a de-
gree of freedom, that we exploit by blinding inter-
mediate computations using a randomly generated
integer, in order to prevent advanced side-channel
attacks like CPA (Correlation Power Analysis) [10].
We also discuss the feasibility of our solutions. Ta-
bles 2 and 4 summarize their cost compared to the
Montgomery ladder, demonstrating a trade-off be-
tween security and performance.
The ladder equations, the first two fault-injection

attacks and the solutions for the modular exponen-

tiation have already been published [37], but they
are included here so that the paper is entirely self-
contained. This paper extends and complete these
results with the following contributions:

• a third fault-injection attack (for the second
attacker model) against all (including fully-
interleaved) ladders (Subsection 4.2),

• in the case of the modular exponentiation, a)
more performant algorithms for the solutions
than initially published [37] and b) a proof that
the fully-interleaved ladder solution is applica-
ble, more precisely that the probability to ran-
domly obtain a suitable ladder constant (which
was an open problem in [37]) is almost 1 when
used in concrete applications like RSA or DSA
cryptosystems (Subsections 5.5 and 5.6),

• and novel semi- and fully-interleaved ladder al-
gorithms for the scalar multiplication over el-
liptic curves (Section 6).

1.3 Organization of the Paper

We introduce in Section 2 related works on side-
channel and fault-injection attacks, then we use the
case of the modular exponentiation to introduce
security concerns and we present the Montgomery
ladder both the in this case and in the case of scalar
multiplication in elliptic-curve cryptography. We
conclude this section by introducing related works
on parallel computation, in particular in the con-
text of elliptic-curve cryptography. In Section 3, we
formalize the iterative conditional branchings to de-
duce the equations satisfied by the semi-interleaved
and fully-interleaved ladders, and thus the require-
ments for ladderizable algorithms. We state our re-
search questions in Subsection 3.5. In Section 4, we
introduce two attacker models using fault-injection
techniques, and we compare the vulnerability of the
non-, semi- and fully-interleaved ladders to these
attacks. We then detail how to produce examples of
the semi- and fully-interleaved ladders in Section 5
for the modular exponentiation and in Section 6 for
the scalar multiplication. Subsections 5.7 and 6.6
answer the research questions, then Section 7 con-
cludes.

2

2 Related Works

In this section, we first introduce context on side-
channel (Subsection 2.1) and fault-injection attacks
(Subsection 2.2). Then, we explain step-by-step
in Subsection 2.3 the rationale behind known algo-
rithms for the modular exponentiation, and their
respective relevance regarding desirable security
properties. In particular, we introduce in this sub-
section the Montgomery ladder for modular expo-
nentiation, then its variant in Subsection 2.4 for
scalar multiplication. Finally, we briefly describe in
Subsection 2.5 works aiming at improving perfor-
mance using parallel computations, to better com-
pare our solutions with the Montgomery ladder.

2.1 Side-Channel Attacks

A side-channel is a way of transmitting information
(purposely or not) to another system out of the in-
tended communication channels. Side-channel at-
tacks rely on the relationship between information
leaked through a side-channel and the secret data
to obtain confidential information. In particular,
they can be used to break cryptographic protocols
by exploiting information that is observed during
execution of the implementation of an algorithm.
The ability to extract information on the secret

key of a cryptosystem through side-channel obser-
vations has been achieved in practice using:

• Timing side-channel attacks [32] rely on the
correlation between execution time and the
sensitive information. For instance, we illus-
trate in Subsection 2.3 how timing attacks can
be used to obtain the number of 1s in the bi-
nary representation of a secret key.

• Simple Power Analysis (SPA) [31] consists in
observing the power profile of a chip during ex-
ecution to retrieve sensitive information. For
instance, in Figure 1 it is possible to read di-
rectly on the screen of an oscilloscope the first
bits of the secret key.

• More advanced techniques can be applied to
a power side-channel, like Correlation Power
Analysis (CPA) [10] based on the linear cor-
relation between the number of bits flipping
at an iteration and the evolution of the power
consumption.

Countermeasures against simple side-channel at-
tacks like timing attacks or SPA involve code sym-
metry : if the same operations are computed in any
case then the attacker cannot leverage execution
time or a single power trace to gain sensitive infor-
mation.

But code symmetry is not sufficient against more
advanced attacks like CPA. Against such attacks, a
more advanced countermeasure like blinding is re-
quired. The idea is to hide the correlation between
intermediate values and the sensitive information
by using a random value during intermediate com-
putations.

For instance, in the context of the RSA [45] cryp-
tosystem, let k be the private key and e be the
public key such that, for every integer x, xke =
x mod n. A message m is encrypted using the
public key e into a ciphertext c = me mod n and
publicly sent to the chip. Then, without coun-
termeasure, the chip uses the private key k to
decrypt the ciphertext into the original message
ck = mke = m mod n. But in the case of a blinding
countermeasure the chip picks a random integer r
invertible modulo n and decrypt cre instead of c.
Indeed, (cre)k = (mr)ke = mr mod n. Then, be-
cause r is invertible, from mr the message m can
be computed by the chip. So, during the compu-
tation of (cre)k, the intermediate values depend on
the random integer r, and the attacker is not able
to distinguish bit flips due to the message or due to
the random variable. In this article, we call such a
random integer used in blinding techniques a blind-
ing integer.

2.2 Fault Injection Attacks

A fault is a physical defect, imperfection or flaw
that occurs within some hardware or software com-
ponent, while an error is a deviation from accu-
racy or correctness, and is the manifestation of a
fault [50]. Hardware (also called physical) faults
can be permanent, transient or intermittent, while
software faults are the consequence of incorrect de-
sign, at specification or at coding time. Fault in-
jection is defined as the validation technique of the
dependability of fault tolerant systems, which con-
sists in performing controlled experiments where
the observation of the system’s behavior in pres-
ence of faults is induced explicitly by the writing
introduction (called injection) of faults in the sys-

3

tem [2]. Fault injection techniques can be grouped
into invasive and non-invasive techniques, the lat-
ter being able to hide their presence so as to have
no effect on the system other than the faults they
inject [50].

We illustrate in Subsection 2.3 a non-invasive
technique called safe-error attack [24], which con-
sists in 1) running the source code with a given
input to get the corresponding output, then 2) run
it again with the same input but while introducing
a transient fault when the execution reaches a par-
ticular location to get another output, and finally
3) compare both outputs to see if the fault injec-
tion altered the execution, and thus retrieve some
information about the execution.

In this paper, we do not assume a specific mean
(hardware, software, simulation, emulation, etc.)
for fault injection and we consider only two types
of fault injections: random fault (the affected vari-
able is set to a random value) and zeroing/one-ing
fault (all bits are set to 0 or 1). We detail attacker
models and fault-propagation patterns in Section 4.

2.3 Modular Exponentiation

Modular exponentiation algorithms compute
ak mod n, where k is a secret key and a, n are
public values. They are commonly used in cryp-
tosystems like RSA [45], and we use them as
running example. We denote by k =

∑
0≤i≤d k[i] 2

i

the binary expansion of size d+1 of the secret key,
where k[i] is the bit i of k.

The square-and-multiply Algorithm 1 computes
the left-to-right modular exponentiation using

a
∑

0≤i≤d k[i]2i =
∏

0≤i≤d(a
2i)k[i]. For every itera-

tion, the squaring x2 is computed at Line 3 in ev-
ery case while the multiplication ax is computed at
Line 5 only if the current secret bit is k[i] = 1. This
dependency on the secret key can be detected by
observing side-channels.

Observing the execution time [32] leaks the num-
ber of multiplications performed during the execu-
tion, hence the Hamming weight (i.e., the number
of non-zero bits) of the secret key. This narrows
down the search space, compared to brute-force at-
tacks.

Observing the power profile during the execu-
tion leaks even more information than observing
execution time, as demonstrated in Simple Power

Algorithm 1 Square and Multiply

input public a, n; secret k
1: x← 1
2: for i = d to 0 do
3: x← x2 mod n
4: if k[i] = 1 then
5: x← ax mod n
6: end if
7: end for
8: return x

output x = ak mod n

Algorithm 2 Square and Multiply Always

input public a, n; secret k
1: x← 1
2: for i = d to 0 do
3: x← x2 mod n
4: if k[i] = 1 then
5: x← ax mod n
6: else
7: y ← ax mod n
8: end if
9: end for

10: return x
output x = ak mod n

Analysis (SPA) [31]. We illustrate in Figure 1 a
profile obtained in the screen of an oscilloscope.
The x-axis corresponds to timestamps, while the
y-axis corresponds to positions in the screen of the
oscilloscope, linearly correlated with the differen-
tial voltage from a baseline, measured on the chip
during execution. An iteration requires only one
operation if the secret bit is k[i] = 0 and two op-
erations1 if the secret bit is k[i] = 1. Hence, based
on the length of each period of power consumption,
an attacker can read the first bits of the secret key
on the screen of the oscilloscope2.

To prevent SPA, regularity of the modular expo-
nentiation algorithms is required, which means that
both branches of the sensitive conditional bran-

1Actually, a multiplication can be distinguished from a
squaring, so variants with squaring only have been proposed
in [12] and improved in [20], but this is out of the scope of
this paper.

2To improve readability of the plot, we padded the end
of iterations so that each one has the same execution time,
making easier to distinguish long from shot periods of power
consumption.

4

Figure 1: Power profile for the first 32 iterations of Algorithm 1. Based on the length of pe-
riods of power consumption (long for 1 and short for 0), an attacker can read the 32 first bits
10010110010000000001100000011101 of the secret key on the screen of the oscilloscope.

ching perform the same operations, independently
from the value of the secret key. Thus, an obvi-
ous solution is to add an else branch containing
a dummy instruction [14] at Line 7 of the square-
and-multiply-always Algorithm 2.

But power profiles also depend on values in the
considered registers, so computing a multiplication
in every case is better against SPA but not against
more advanced side-channel attacks like CPA [10].
Fortunately, standard blinding techniques can pre-
vent differential [14, 38] or correlation power anal-
ysis [10]. We use such a blinding technique in Sub-
section 5.2 and Subsection 6.2 to improve security
in most solutions.

Moreover, countermeasures developed against a
given attack may benefit another one [48]. The
multiplication in the else branch of the square-
and-multiply-always algorithm is a dummy oper-
ation in the sense that if the current secret bit is
k[i] = 0 then the result is not used by the rest of the
computation. Thus, a random fault injected [50] in
the register containing ax will propagate through

successive iterations and alter the final result only
if the current secret bit is k[i] = 1. So, an attacker
(see the attacker models in Section 4) able to inject
a fault in a register at a given iteration can apply
such a process called a safe-error attack to obtain
any digit of the secret key by comparing the final
output with or without fault.

Such simple safe-error attack cannot happen in
the case of the Algorithm 3 proposed by Mont-
gomery [33], where a fault injected in a register
will eventually propagate to the other one. Thus,
the fault alters the final result in any case, pre-
venting the attacker to obtain information. But,
as we detail in Section 4, some information on the
last digits may still leak, weakening the protection
obtained from this ladder.

The Montgomery ladder is algorithmically equiv-
alent [36] to the square-and-multiply(-always) algo-
rithm(s), in the sense that x has the same value for
every iteration. Actually, some variants [9] of the

5

Algorithm 3Montgomery Ladder for the Modular
Exponentiation

input public a, n; secret k
1: x← 1
2: y ← a mod n
3: for i = d to 0 do
4: if k[i] = 1 then
5: x← xy mod n
6: y ← y2 mod n
7: else
8: y ← xy mod n
9: x← x2 mod n

10: end if
11: end for
12: return x
output x = ak mod n

square-and-multiply-always algorithm3 may be as
resistant as the Montgomery ladder [24], by check-
ing invariants [28] violated if a fault is injected. For
instance, in the case of the Montgomery ladder,
the invariant y = ax is satisfied for every iteration.
These invariants are important because their viola-
tion in case of fault injection can be detected by the
algorithm itself, which then is able to trigger self-
secure countermeasures [18], as discussed briefly in
Subsection 4.3.

Note that the else branch in Algorithm 3 is
identical to the then branch except that x and
y are swapped which, because of code symmetry,
provides also (partial4) protection against timing
and power leakage. Moreover, the variable depen-
dency makes these variables interleaved, so this ex-
ponentiation is algorithmically (but partially, as we
demonstrate in Section 4) protected against safe-
error attacks. Finally, as opposed to square-and-
multiply-always in Algorithm 2, the code in the
else branch of Algorithm 3 is not dead, so will
not be removed by compiler optimizations.

Thus, such algorithmic properties provide some
protection against side-channel and fault-injection
attacks, and are therefore security properties which
are desirable in more algorithms. We formalize

3See [22] for highly regular right-to-left variants, [23] for
a generalization to any basis and left-to-right/right-to-left
variants, and [49] for their duality.

4For instance, the variables x and y may have different
access time, which would hinder protection against cache-
timing leakage.

these properties in Section 3, then we propose se-
cure algorithms for the modular exponentiation in
Section 5.

2.4 Elliptic-curve cryptography
(ECC)

ECC was independently introduced in 1985 by Vic-
tor Miller [39] and Neal Koblitz [30]. It is nowadays
considered as an excellent choice for key exchange
or digital signatures, especially when these mech-
anisms run on resource-constrained devices. The
security of most cryptocurrencies is based on ECC,
which has been standardized by the NIST [5, 40].

Definition 1 (Elliptic Curve). Let p be a
prime. An elliptic curve in short Weierstrass
form over a finite field Fp is the set E(Fp) ={
(x, y) ∈ Fp × Fp | y2 = x3 + ax+ b

}
∪ {O} with

parameters a, b ∈ Fp satisfying 4a3 + 27b2 ̸= 0 and
O being called the point at infinity.

The set E(Fp) is an additive Abelian group with
an efficiently computable group law. The pointO is
the identity element of the group law. Point addi-
tion P +Q or point doubling 2P involves additions
and multiplications over Fp. Depending on the pa-
rameters a and b of the curve, there exists many
formulas5 to optimize these two operations.
The main operation in ECC is scalar multiplica-

tion kA = A + · · · + A, where A is a point on a
curve and k is an integer. It can be performed by
using the double-and-add Algorithm 4, similar to
the square-and-multiply Algorithm 2. The initial-
ization x← 1 in square-and-multiply is replaced by
P ← O6 in double-and-add, the squaring x← x2 is
replaced by a doubling P ← 2P and the multiplica-
tion x← ax is replaced by an addition P ← A+P ,
producing the output P = kA.
As the double-and-add Algorithm 4 for the scalar

multiplication is the counterpart of the square-and-

5A large and updated survey on the elliptic curves explicit
formulas database web site [46].

6Definition 1 corresponds to the common representation
of the elliptic curves in affine coordinates, but the point O
at infinity cannot be represented in this coordinate system.
Nevertheless, for efficiency reasons, operations on elliptic
curves are computed in practice using projective coordinates
[13], where O can be represented. Hence, Algorithm 4 is
practical. Describing the various projective systems is out
of the scope of this paper, hence we presented only the affine
coordinates for the sake of simplicity.

6

Algorithm 4 Double-and-Add

input publicA; secret k
1: P ← O
2: for i = d to 0 do
3: P ← 2P
4: if k[i] = 1 then
5: P ← A+ P
6: end if
7: end for
8: return P

output P = kA

Algorithm 5 Montgomery Ladder for the Scalar
Multiplication

input publicA; secret k
1: P ← O
2: Q← A
3: for i = d to 0 do
4: if k[i] = 1 then
5: P ← P +Q
6: Q← 2Q
7: else
8: Q← Q+ P
9: P ← 2P

10: end if
11: end for
12: return P
output P = kA

multiply Algorithm 1 for the modular exponentia-
tion, a variant of the Montgomery ladder is also
available in Algorithm 5 for the scalar multiplica-
tion, providing another example of ladderization.

We propose secure algorithms for the scalar mul-
tiplication in Section 6.

2.5 Parallel Computations

Finally, we compare the secure algorithms we ob-
tain in this paper with the Montgomery ladder, re-
spectively in Section 5 for the modular exponenti-
ation and in Section 6 for the scalar multiplication.
Restricting such a comparison in terms of perfor-
mance to sequential computations only would not
reflect the current state of the art.

Indeed, parallel implementations of algorithms
on multicore systems was investigated for scalar
multiplication [25, 15]. Parallelism was lever-

aged in Graphical Processing Units (GPUs) to
drastically increase the number of operations per
second performed for the elliptic-curve factoriza-
tion method [7]. Moreover, efficient elliptic curve
point multiplications were obtained using an algo-
rithm where both the pre-computation and post-
computation stages are performed in parallel, on
machines with up to eight cores [6]. Finally, leve-
raging an approach based on the residue number
system, a parallel algorithm was proposed for el-
liptic curve point multiplication, efficient on more
than four cores [1].

Therefore, when comparing our solutions to the
Montgomery ladder in Subsections 5.4 and 6.5,
we consider both sequential and parallel computa-
tions.

3 Ladder Equations

In this section, we formalize the desirable security
properties occurring in algorithms like the Mont-
gomery ladder (Algorithm 3) by using systems of
equations we call ladder equations. These con-
straints are sufficient to refactor iterative condi-
tional branchings (Subsection 3.1) as in the square-
and-multiply algorithm (Algorithm 1 p.4) into
semi- (Subsection 3.2) or fully-interleaved (Subsec-
tion 3.3) ladders, to make them more secure. The
algorithms satisfying these constraints are called
ladderizable and are characterized in Theorem 1
(Subsection 3.4). Finally, in Subsection 3.5 we state
our research questions and we provide first answers.

3.1 Iterative Conditional Branch-
ings

In this paper, we focus on code patterns like Algo-
rithm 6, which consists in a conditional branching
in (potentially nested) loop branching(s) and which
we call an iterative conditional branching. More-
over, if the condition involves a sensitive value, i.e.,
which depends on confidential information, we call
it a sensitive iterative conditional branching. It-
erative conditional branching appear in algorithms
like the square-and-multiply Algorithm 1 p.4 for
the modular exponentiation, its counterpart the
double-and-add Algorithm 4 p.7 for the elliptic
curve point multiplication [39, 30], or the secure
bit permutation in the McEliece cryptosystem [47],

7

Algorithm 6 Iterative Conditional Branching

1: x← init
2: for i = 1 to n do

3:
. . .

4: if secret then
5: x← θ (x)
6: else
7: x← ε (x)
8: end if

9:
...

10: end for

Algorithm 7 Loop bounded by a sensitive variable

1: assert(secret ≤ bound)
2: for i = 0 to secret do

3:
...

4: end for

attacked in [43]. It also appears naturally when one
tries to turn a loop on sensitive information as in
Algorithm 7 into a safe loop containing a sensitive
conditional branching as in Algorithm 8, that can
itself be balanced to obfuscate the dependency on
the secret. So, iterative conditional branchings are
frequent in cryptosystems. Hence, making them at
least as secure as the Montgomery ladder is desir-
able.
Note that our approach does not depend on the

number or depth of the considered loops, hence the
dots in Algorithm 6. We assume only that the
conditional branching uses only one variable x, the
multivariate case being left for future work.

Definition 2 (Iterative Conditional Branching).
An algorithm like Algorithm 6 is said with a (uni-
variate) iterative conditional branching with two
(unary) functions θ and ε.

3.2 Semi-Interleaved Ladders

To prevent information leakage from side-channel
(Subsection 2.1) or fault injection (Subsection 2.2)
attacks, we use a fresh variable y in the semi-
interleaved ladder presented in Algorithm 9. As
in the Montgomery ladder in Algorithm 3 p.6, we
look for two functions ℓ and f such that for each
iteration:

• the invariant y = ℓ (x) holds, and

Algorithm 8 Equivalent iterative conditional
branching

1: for i = 0 to bound do
2: if i ≤ secret then

3:
...

4: end if
5: end for

Algorithm 9 Semi-Interleaved ladders

1: x← init
2: y ← ℓ (init)
3: for i = 1 to n do
4: . . .
5: if secret then
6: x← f (x, y)
7: y ← ε (y)
8: else
9: y ← f (y, x)

10: x← ε (x)
11: end if
12: . . .
13: end for

• x has the same value for every iteration as in
Algorithm 6.

the Montgomery ladder being a particular case,
where ℓ (x) = ax and, depending on the secret bit,
x is updated by either θ (x) = ax2 or ε (x) = x2.

We determine by induction the constraints that
ℓ and f should satisfy. In Algorithm 9, y = ℓ (x)
holds at the initialization. Then, we assume by
induction that y = ℓ (x) holds at the beginning of
an iteration.

In the then branch7 we have x ← f (x, y) then
y ← ε (y), thus in order to satisfy the invariant
y = ℓ (x) at the end of an iteration, the following
equation must hold:

∀x, ε (ℓ (x)) = ℓ (f (x, ℓ (x)))

where x is quantified over the considered values e.g.,
modular integers for the modular exponentiation or
points in elliptic-curve cryptography. In order to

7The condition depends on the secret, hence exploiting
the condition to determine ℓ and f could lead to data de-
pendencies that could be attacked. Thus, we do not assume
in the then branch that the condition is satisfied and we
do not assume in the else branch that the negation of the
condition is satisfied.

8

Algorithm 10 Fully-Interleaved ladders

1: x← init
2: y ← ℓ (init)
3: for i = 1 to n do
4: . . .
5: if secret then
6: x← f (x, y)
7: y ← g (x, y)
8: else
9: y ← f (y, x)

10: x← g (y, x)
11: end if
12: . . .
13: end for

have x updated to θ (x) during the iteration, the
following equation must hold:

∀x, f (x, ℓ (x)) = θ (x)

In the else branch we have y ← f (y, x) then x←
ε (x), thus in order to satisfy y = ℓ (x) at the end
of an iteration the following equation must hold:

∀x, f (ℓ (x), x) = ℓ (ε (x))

and x is already updated to ε (x) during the itera-
tion. Therefore, we obtained the ladder equations
for the semi-interleaved ladders:

Definition 3 (Semi-Ladderizable). Let A be an
algorithm with a univariate iterative conditional
branching with two unary functions denoted θ and
ε. A is semi-ladderizable if there exists a unary
function ℓ and a binary function f such that, for
every considered input value x:

ε (ℓ (x)) = ℓ (θ (x))

f (x, ℓ (x)) = θ (x)

f (ℓ (x), x) = ℓ (ε (x))

(1a)

(1b)

(1c)

For instance, in the square-and-multiply Algo-
rithm 1, we have θ (x) = ax2 and ε (x) = x2, and we
know that this iterative conditional branching can
be semi-ladderized by using the Montgomery ladder
Algorithm 3 with ℓ (x) = ax and f (x, y) = xy, but
we demonstrate in Section 5 that there are other
solutions.
Note that, to respect the form of the semi-

interleaved ladder, we should have written y ← yx

instead of y ← xy in the else branch of the
Montgomery ladder Algorithm 3. The former is
actually better regarding vulnerability to the M
safe-error [24] or collision [27] attacks, demonstrat-
ing that the ladderization approach provides good
practice.

Note also that the invariant function ℓ (x) = ax
of the Montgomery ladder can directly be read in
the then branch of Algorithm 1. This was lever-
aged in a previous study [11] to automatically infer
f (x, y) = xy and thus to automatically refactor the
code to make it more secure. But this was done
only in the simplest case of the semi-interleaved
ladders with if-then branchings (so without else
branch). In this paper we address the general case
by manually solving these ladders equations for
common cryptographic examples: the modular ex-
ponentiation in the RSA and DSA cryptosystems in
Section 5, and the scalar multiplication in elliptic-
curve cryptography in Section 6.

3.3 Fully-Interleaved Ladders

Unfortunately, the semi-interleaved ladder (Algo-
rithm 9) is vulnerable to fault injection attacks,
as we demonstrate in Section 4, because in every
branch at least one variable (x or y) depends only
on its previous value and not on the previous value
of both variables. Moreover, an attacker able to
determine whether the output of one operation is
used as the input to another can apply collision at-
tacks8 to infer whether two following bits are the
same [21].

To tackle these challenges, we propose in Algo-
rithm 10 a fully-interleaved ladder using three func-
tions ℓ, f , and g. As in the previous subsection, we
look for functions satisfying that for each iteration:

• the invariant y = ℓ (x) holds, and

• x has the same value for every iteration as in
Algorithm 6.

Similarly to the semi-interleaved ladders, we de-
termine by induction the constraints that the func-
tions ℓ, f , and g have to satisfy. Again, y = ℓ (x)
is satisfied at the initialization. Then, we assume

8A possible countermeasure is to randomly blend variants
of the ladder, or compute the exponentiation by taking a
random (bounded) walk [35].

9

by induction that y = ℓ (x) at the beginning of an
iteration.

In the then branch we have x ← f (x, y) then
y ← g (x, y), thus in order to have y = ℓ (x) satisfied
at the end of any iteration, the following equation
must hold:

∀x, g (f (x, ℓ (x)), ℓ (x)) = ℓ (f (x, ℓ (x)))

and in order to have x updated to θ (x) during the
iteration, the following equation must hold:

∀x, f (x, ℓ (x)) = θ (x)

In the else branch we have y ← f (y, x) then
x← g (y, x), thus, in order to have y = ℓ (x) satis-
fied at the end of an iteration, the following equa-
tion must hold:

∀x, f (ℓ (x), x) = ℓ (g (f (ℓ (x), x), x))

and in order to have x updated to ε (x) during the
iteration, the following equation must hold:

∀x, g (f (ℓ (x), x), x) = ε (x)

Therefore, we obtain the ladder equations for the
fully-interleaved ladders:

Definition 4 (Fully-Ladderizable). Let A be an
algorithm with a univariate iterative conditional
branching with two unary functions denoted θ and
ε. A is fully-ladderizable if there exists a unary
function ℓ and two binary functions f and g such
that, for every considered input value x:


g (θ (x), ℓ (x)) = ℓ (θ (x))

f (x, ℓ (x)) = θ (x)

f (ℓ (x), x) = ℓ (ε (x))

g (f (ℓ (x), x), x) = ε (x)

(2a)

(2b)

(2c)

(2d)

Note that Equation (1b) is Equation (2b) and
Equation (1c) is Equation (2c). Without surprise,
if g is chosen such that g (x, y) = ε (y) then Equa-
tion (1a) is a special case of Equation (2a), and
Equation (2d) is satisfied. Thus, semi-interleaved
ladders are subcases of fully-interleaved ladders for
g (x, y) = ε (y).

3.4 Ladderizable Algorithms

From Subsections 3.2 and 3.3 we obtained ladder
equations, sufficient to guarantee that, for each it-
eration, the invariant holds and the considered vari-
able x is correctly updated. We use these con-
straints to define the class of the ladderizable algo-
rithms, i.e., the algorithms that can be refactored
to be more secure using ladderization:

Theorem 1. Let A be an algorithm with an itera-
tive conditional branching with two unary functions
denoted θ and ε. If A is semi-ladderizable with ℓ
and f , or fully-ladderizable with ℓ, f and g, then
for every iteration of the ladderized variant:

• y = ℓ (x)

• x is updated as in A and takes on the value:

x←
{

θ (x) if secret
ε (x) otherwise

Thus, for every algorithm with an iterative condi-
tional branching, as in Algorithm 6, if there exists ℓ
and f satisfying the ladder equations in Definition 3
then the conditional branching can be refactored as
in Algorithm 9 as a semi-interleaved ladder. Even
better, if there exists ℓ, f and g satisfying the ladder
equations in Definition 4 then it can be refactored
as in Algorithm 10 as a fully-interleaved ladder. In
any case, the obtained algorithm is algorithmically
equivalent [36] in the sense that for every iteration
the considered variable x has the same value for
both original and ladderized variants.

3.5 Research Questions

In this paper we aim to answer the following re-
search questions regarding the ladderization ap-
proach:

• RQ1: To which extent can the algorithmic
strength of the Montgomery ladder be gener-
alized to other algorithms?

• RQ2: How secure are interleaved ladders com-
pared to the Montgomery ladder?

• RQ3: How feasible are interleaved ladders in
practice and, if so, how performant are they
compared to the Montgomery ladder?

10

Theorem 1 provides a theoretical answer toRQ1.
We abstracted away the Montgomery ladder to the
largest class of algorithms possible while preserv-
ing, through the ladder equations, its desirable se-
curity properties.

The protection against side-channel attacks
comes from the code symmetry. In semi- or fully-
interleaved ladders the else branch is identical to
the then branch, except that x and y are swapped.
So, the same operations are performed regard-
less the secret value, and both ladder types are
secure against side-channel attacks depending on
these operations, like simple timing attacks [32] or
SPA [31]. Therefore, the ladderization refactor-
ing is an algorithmic countermeasure against these
side-channel attacks. Moreover, Subsections 5.2
and 6.2 demonstrate solutions with blinding inte-
gers which are randomly generated and thus pro-
vide protection against more complex side-channel
attacks like CPA [10].

The protection against fault-injection attacks is
investigated in Section 4. Then, to provide a more
concrete answer to RQ1, we construct examples of
semi- and fully-interleaved ladders in Section 5 for
the modular exponentiation and in Section 6 for
the scalar multiplication.

4 Vulnerability against Fault
Injection Attacks

To investigate the vulnerability protection of the
interleaved ladders (Section 3), we introduce in
Subsections 4.1 and 4.2 two attacker models us-
ing fault injection techniques. As described in the
background (Subsection 2.2), we consider only two
types of fault injections: random fault (the affected
variable is set to a random value) and zeroing/one-
ing fault (some/all bits are set to 0 or 1). Inject-
ing a random fault requires dedicated material and
knowledge, and zeroing/one-ing bits is even more
costly. But the feasibility of these (attacker) tech-
niques does not impact the feasibility of the (de-
fender) ladderization approach (RQ3), hence we
do not consider in this paper the cost for the at-
tacker.

We describe the fault-propagation patterns of the
non-, semi- and fully-interleaved ladders in Subsub-
section 4.1.1, then we describe the first attack in

Subsubsection 4.1.2, the second attack in Subsub-
section 4.2.1, and the third attack in Subsubsec-
tion 4.2.2. Finally, we compare the vulnerability
of the non-, semi- and fully-interleaved ladders in
Subsection 4.3 and we provide there more answers
to our research questions.

4.1 First Attacker Model

For ease of presentation, we assume as in the
Montgomery ladder (Algorithm 3) that “secret” in
the iterative conditional branching (Algorithm 6)
and the semi- and fully-interleaved ladders (Algo-
rithms 9 and 10) is the condition k[i] = 1, where
k[i] is the bit i of the secret key k. But the approach
would be similar for any other sensitive condition.

We start by the first attacker model, which uses
only random faults.

Definition 5 (First Attacker Model). We assume
that:

• The attacker wants to obtain the secret key
stored in the chip and copied in the register k.

• The attacker can run the program any number
of times:

– inputting xinit and yinit, the initial values
in the registers x and y,

– obtaining xfinal and/or yfinal, the final
value(s) returned by the program.

• A run consists of iterations i over9 1, . . . , n,
where:

– k[i] is the bit i of k,

– xi (resp. yi) denotes the value in the reg-
ister x (resp. y) between iterations10 i−1
and i.

• The attacker can Exi (resp. Eyi) inject a ran-
dom fault (i.e., set the affected variable to a
random value) in the register x (resp. y) be-
tween iterations i− 1 and i.

9To simplify the notations, we assume in this section that
the counter is incremented (from 1 to n with a step 1), but
the approach is similar for other initial or final values, a
decremented counter, and/or other step values.

10Iteration 0 being the initialization.

11

After injecting a random fault in a register, the
attacker might be unlucky and obtain the same
value as before in this register. But this is unlikely
(especially considering the size of modern crypto-
graphic keys and messages) and can be mitigated
by performing several tries. So, we assume for the
sake of simplicity that the new value is always dif-
ferent. We also assume that this new value leads
to a different final value. Otherwise, the attacker
should try different xinit and yinit inputs.

4.1.1 Fault-Propagation Patterns

As described in Subsection 2.3, the attacker can
perform a safe-error attack :

• run a program for the square-and-multiply(-
always) Algorithm 1 (resp. Algorithm 2) for a
given input xinit, obtaining a value xfinal,

• then run the program again with the same in-
put while injecting a fault Eyi in the register
y = ax between iterations i−1 and i, obtaining
a value xfault.

If xfault = xfinal then k[i] = 0, otherwise k[i] = 1.
Hence, this safe-error attack leaks the value of this
secret bit. The same attack can be repeated for
every iteration, thus the attacker can obtain that
way all the bits of the secret key.

In the square-and-multiply(-always) algorithm,
because the current value of x determines the next
value of x, a faulted value Exi for an iteration i al-
ways propagates to the next iteration Exi+1, which
we denote by Exi ⇒ Exi+1. To obtain the bit k[i],
the attacker has exploited the fact that a fault
in register y = ax propagates to x, denoted by
Eyi ⇒ Exi+1, only if k[i] = 1.

As opposed to this non-ladderized variant, in Al-
gorithms 9 and 10 the values of x and y are inter-
leaved and the fault-propagation patterns are the
following:

1. For the semi-interleaved ladder:

Exi ⇒ (Exi+1 and (Eyi+1 only if k[i] = 0))
Eyi ⇒ (Eyi+1 and (Exi+1 only if k[i] = 1))

which means that a fault always propagates to
the same register, but propagates to the other
depending on the current bit of the secret key.

k

x

y

. . . k[n− 1] k[n]

Exfinal

Eyn Eyfinal

1?

Figure 2: Fault-injection Eyn on the last bit k[n]:
if the final x value has changed then k[n] = 1, oth-
erwise k[n] = 0.

2. For the fully-interleaved ladder:

(Exi or Eyi)⇒ (Exi+1 and Eyi+1)

which means that any fault in one register
propagates in every case to both.

The fully-interleaved ladder has a lower fault tol-
erance i.e., it is easier to disrupt the computation.
This is not convenient for properties like functio-
nality, availability, or redundancy, but this pre-
vents an attacker from obtaining the secret key, i.e.,
this increases security. In other words, the ladder-
ization refactoring reduces the information leakage
from fault injection by reducing also the fault toler-
ance. The semi-interleaved ladder is more robust,
but this comes at the price of a fault-propagation
pattern depending on the secret key, which can be
exploited by our first attack.

4.1.2 First Fault-Injection Attack

The attacker can Eyn inject a random fault in reg-
ister y just before the last iteration, as in Figure 2,
then compare the x output. If xfault = xfinal then
k[n] = 0, otherwise k[n] = 1. Thus, the attacker
can obtain k[n], the last bit of the secret key.

If the obtained bit was 0 as in Figure 3, the at-
tacker can Eyn−1. In that case if xfault = xfinal then
k[n− 1] = 0, otherwise k[n− 1] = 1. This process
can be repeated until a 1 is found.

If the obtained bit was 1 as in Figure 4, the at-
tacker can Exn−1. In that case if yfault = yfinal then
k[n− 1] = 1, otherwise k[n− 1] = 0. This process
can be repeated until a 0 is found.

One may think that these processes can be al-
ternated in order to recover all the bits of the
secret key, but if there is a bit alternation i.e.,
(k[i] , k[i+ 1]) = (0, 1) or (1, 0), then the bits be-
fore i cannot be obtained, as illustrated in Figures 5
and 6. The attacker could obtain that way all the

12

k

x

y

. . . k[n− 1] 0

Exn Exfinal

Eyn−1 Eyn Eyfinal

1?

Figure 3: The obtained bit k[n] was 0. Fault-
injection Eyn−1 on k[n− 1]: if the final x value has
changed then k[n− 1] = 1, otherwise k[n− 1] = 0.

k

x

y

. . . k[n− 1] 1

Exn−1 Exn Exfinal

Eyn Eyfinal
0?

Figure 4: The obtained bit k[n] was 1. Fault-
injection Exn−1 on k[n− 1]: if the final y value has
changed then k[n− 1] = 0, otherwise k[n− 1] = 1.

bits only if the key is trivial, and it seems improb-
able that the attacker can obtain that way more
than a small number of bits. In short, the attacker
can obtain the final bits 10 . . . 0 if xfinal can be read,
and the final bits 01 . . . 1 if yfinal can be read.

The vulnerability to fault injection is summa-
rized in Table 1. Against the first attack, fully-
interleaved ladders are more secure than semi-
interleaved ladders, which are more secure than
without interleaving at all. But we demonstrate
in the next subsection that a stronger attacker is
able to obtain all the bits of the key from both the
semi- and fully-interleaved ladders.

4.2 Second Attacker Model

As opposed to the first attacker model, which uses
only random faults, the second attacker model uses
both random and zeroing/one-ing faults, thus al-
lowing a wider range of attacks.

Definition 6 (Second Attacker Model). We as-
sume that:

• The second attacker has the same goal and
means as the attacker in Definition 5.

• The second attacker can also Ek>i = 0 (resp.
Ek>i = 1) stuck-at 0 (resp. 1) all the bits [50]
of the register k between iterations i and i+1.

k

x

y

0 1

Exi Exi+1 Exi+2

Eyi+1 Eyi+2

k

x

y

0 1

Exi+2

Eyi+1 Eyi+2Eyi

Figure 5: Fault-injection attack Exi or Eyi before
the bit alternation 01: in both cases the fault prop-
agates to both Exi+2 and Eyi+2.

k

x

y

1 0

Exi Exi+1 Exi+2

Eyi+2

k

x

y

1 0

Exi+1 Exi+2

Eyi+1Eyi Eyi+2

Figure 6: Fault-injection attack Exi or Eyi before
the bit alternation 10: in both cases the fault prop-
agates to both Exi+2 and Eyi+2.

4.2.1 Second Fault-Injection Attack

The second attack is similar to the first one, but
it leverages zeroing/one-ing faults to circumvent
the bit alternation preventing the first attack from
breaking the semi-interleaved ladders. Indeed, after
retrieving the last bits of the secret key and reach-
ing a bit alternation 01 (resp. 10), the attacker
can:

• run the program on the unknown bits then,
when reaching the known bits, zeroing (resp.
one-ing) all the secret bits to obtain the final
values xfinal and yfinal,

• run the program on the unknown bits then,
just before the last unknown bits, inject a
random fault and finally, when reaching the
known bits, zeroing (resp. one-ing) all the se-
cret bits to obtain the faulted values xfault and
yfault.

Then, as in the first attack, the faulted values can
be compared to the final values to determine the
current secret bit. Finally, by repeating this process
from the last to the first bit, the attacker can obtain
all the bits of the secret key.

Therefore, this stronger attacker is able to
break the semi-interleaved ladders by using the
attack protocol represented11 in Algorithm 11,

11Note that the iterations are reversed in the attack pro-
tocol compared to the execution of the studied device.

13

Table 1: Vulnerability against fault-injection at-
tacks

Obtained Bits
Model 1 Model 2

Interleaving Attack 1 Attack 2 Attack 3
non all all all
semi some all all
fully none none all

where EXE(xinit, yinit, Ek>i = 1) at Line 4 means
that the studied program is executed with in-
puts xinit, yinit and a stuck-at Ek>i = 1, and
EXE(xinit, yinit, Ek>i = 1, Exi) at Line 5 is the
same but with a random fault Exi. In partic-
ular, if both xfinal and yfinal can be read, then
the Montgomery Ladder can be broken by iterat-
ing over 0 to d in Algorithm 3 p.6. This attack
does not work against fully-interleaved ladders, but
a fully-interleaved ladder is more difficult to ob-
tain (when even possible), as discussed in Subsec-
tions 5.3 and 6.3. As before, the vulnerabilities
against this attack are summarized in Table 1.

4.2.2 Third Fault-Injection Attack

According to Kerckhoffs principle [26], an attacker
is assumed to know the architecture and the pro-
gram, and thus is able to duplicate the setup of the
targeted chip for a chosen value of the secret key.
Thus, the attacker should be able to input k at will
and even to inject random faults in the register k,
as in registers x and y.

This assumption does not change the initial at-
tacker model in Definition 5 because injecting a
random fault in k between the iterations i−1 and i
is equivalent, if the last i−1 bits are known, to input
k with the known bits and generate randomly the
beginning of the key. But this assumption changes
the second attacker model in Definition 6, who is
now able to test the bits of the key from left to
right.

Actually, being able to write deterministically in
the key register is enough to obtain with a third
attack all the bits of the key, even against fully-
interleaved ladders. Indeed, we consider the sec-
ond attacker knows the first i bits k[1] . . . k[i], where
i = 0 for the initialization when no bit is known. By
Ek>i = 0 (resp. Ek>i = 1) zeroing (resp. one-ing)

the last i bits and Ek>i+1 = 0 (resp. Ek>i+1 = 1)
zeroing (resp. one-ing) the last i + 1 bits, the
second attacker can compare xfault0 and xfinal0

(resp. xfault1 and xfinal1) obtained respectively
for k[1] . . . k[i] 0 0 . . . 0 and k[1] . . . k[i] k[i+ 1] 0 . . . 0
(resp. with 1s instead of 0s at the end), and the
same for y. Thus, the second attacker can (almost)
determine whether k[i+ 1] = 1 (resp. 0):

• if xfault0 ̸= xfinal0 or yfault0 ̸= yfinal0 then
k[i+ 1] = 1,

• if xfault1 ̸= xfinal1 or yfault1 ̸= yfinal1 then
k[i+ 1] = 0.

If xfault0 = xfinal0, xfault1 = xfinal1, yfault0 = yfinal0
and yfault1 = yfinal1 then another inputs xinit, yinit
should be chosen in the protocol described in Algo-
rithm 12.

That way all the bits of the secret key k can be
obtained, except the ones such that for every possi-
ble xinit, xfault0 = xfinal0 and xfault1 = xfinal1. But
this case is unlikely, it does not prevent the attacker
from discovering the other bits, and these bits make
no difference in the output of the program of in-
terest, thus it is likely that the attacker does not
care. Therefore, such attacker can obtain all the
(relevant) bits of the key, even against semi- and
fully-interleaved ladders. Again, the vulnerabilities
against this attack are summarized in Table 1.

4.3 Comparison

Investigating the general pattern of the semi- and
fully-interleaved ladders in Algorithms 9 and 10
lead to exhaustively describe the fault-propagation
patterns in Subsubsection 4.1.1, which in turn lead
to the discovery of the three attacks described in
this section. To our knowledge, these attacks are
novel, which contributes to the fruitfulness of the
ladderization approach, partly answering the RQ2
research question.

The vulnerabilities against these three fault-
injection attacks are summarized in Table 1.
Against the first attack, fully-interleaved ladders
are more secure than semi-interleaved ladders,
which are more secure than without interleav-
ing at all. The second attack is able to break
semi-interleaved ladders (for instance, the common
Montgomery ladder), but not fully-interleaved lad-
ders. Finally, the third attack is able to break all
ladders.

14

Algorithm 11 Protocol to Attack Semi-Interleaved Ladders

1: FIx← False
2: for i = n to 1 do
3: if FIx = True then
4: (xfinal, yfinal)← EXE(xinit, yinit, Ek>i = 1)
5: (xfault, yfault)← EXE(xinit, yinit, Ek>i = 1, Exi)
6: if yfault = yfinal then
7: k[i]← 1
8: else
9: k[i]← 0

10: FIx← False
11: end if
12: else
13: (xfinal, yfinal)← EXE(xinit, yinit, Ek>i = 0)
14: (xfault, yfault)← EXE(xinit, yinit, Ek>i = 0, Eyi)
15: if xfault = xfinal then
16: k[i]← 0
17: else
18: k[i]← 1
19: FIx← True
20: end if
21: end if
22: end for
23: return k

But these results have to be mitigated for semi-
and fully-interleaved ladders. Indeed, the invari-
ant y = ℓ (x) holds for every iteration. So, if a
random fault is injected in x or y as in the first
two attacks, the violation of the invariant allows
the algorithm to detect the fault [18] and thus to
enhance the appropriate fault policy e.g., stopping
the program or switching to a random key for the
rest of the computation. Moreover, the secret key
being known by the algorithm, self-secure counter-
measures could also be triggered against the third
attack.

Therefore, by design, semi- and fully-interleaved
ladders provide partial protection against the con-
sidered fault-injection attacks, completing the an-
swer to RQ1 provided in Subsection 3.5. Semi-
interleaved ladders are as secure as the Mont-
gomery ladder regarding fault-injection attacks,
while fully-interleaved ladders provide more protec-
tion.

5 Generalizing the Mont-
gomery Ladder for the
Modular Exponentiation

Sections 5 and 6 generalize the algorithmic strength
of the Montgomery ladder by providing concrete
solutions for the ladder equations in the context
of various cryptosystems. In this section we con-
tinue our running example started in Subsection 2.3
by focusing on solving (Subsections 5.1 to 5.3)
the ladder equations for the modular exponenti-
ation. We compare the complexity of the novel
algorithms in Subsection 5.4 with the complexity
of the Montgomery ladder. Then, we demonstrate
in the case of the RSA [45] (Subsection 5.5) and
DSA [40] (Subsection 5.6) cryptosystems that our
fully-interleaved solution is practical. Results are
summarized in Subsection 5.7.

In the following, for any n we consider Z/nZ i.e.,
integers modulo n, and we denote (Z/nZ)⋆ the inte-
gers invertible modulo n. In this section, we assume
that the functions θ (x), ε (x), f (x, y), g (x, y), and

15

Algorithm 12 Protocol to Attack Both Semi- and Fully-Interleaved Ladders

1: for i = 0 to n− 1 do
2: (xfinal, yfinal)← EXE(xinit, yinit, Ek>i = 0)
3: (xfault, yfault)← EXE(xinit, yinit, Ek>i+1 = 0)
4: if xfault ̸= xfinal or yfault ̸= yfinal then
5: k[i+ 1]← 1
6: else
7: (xfinal, yfinal)← EXE(xinit, yinit, Ek>i = 1)
8: (xfault, yfault)← EXE(xinit, yinit, Ek>i+1 = 1)
9: if xfault ̸= xfinal or yfault ̸= yfinal then

10: k[i+ 1]← 0
11: end if
12: end if
13: end for
14: return k

ℓ (x) occurring in ladder equations (Section 3) are
quadratic polynomials with coefficients in Z/nZ.
Because we consider the modular exponentia-

tion case (Subsection 2.3), the then branch corre-
sponds to the function θ (x) = ax2 and the else

branch to ε (x) = x2. For the ladder function
ℓ (x) = ℓ2x

2 + ℓ1x+ ℓ0, to simplify the analysis we
assume ℓ2 = 0, obtaining ℓ (x) = ℓ1x + ℓ0, which
is still a generalization of the invariant ℓ (x) = ax
obtained in the usual Montgomery ladder. More
complicated cases are left for future work.
To summarize, we consider the following coeffi-

cients:

θ (x) = ax2

ε (x) = x2

f (x, y) = f20x
2 + f11xy + f02y

2 + f10x+ f01y + f00

g (x, y) = g20x
2 + g11xy + g02y

2 + g10x+ g01y + g00

ℓ (x) = ℓ1x+ ℓ0

To ensure that θ (x) = ax2 and ℓ (x) = ℓ1x + ℓ0
depend on x, we assume that a ̸= 0 and ℓ1 ̸= 0.
Moreover, in the following we focus on solutions
without constraint on a to preserve the generality
of the original Montgomery ladder.
Finally, note that Z/nZ may not be an integral

domain i.e., there exists x, y ∈ Z/nZ\{0} such that
xy = 0 mod n, which is the case for RSA (Subsec-
tion 5.5) with p and q such that n = pq. Because
in this case n cannot be easily factorized into p and
q, and because we are looking for general solutions
for any n, if x ̸= 0 and xy = 0 we look for solutions

y = 0, thus loosing some generality but simplifying
the analysis.

5.1 Both Semi- and Fully-
Interleaved Ladders

We start by solving the ladder equations which are
common to the semi- and fully-interleaved cases.
By substituting the coefficients and simplifying,
Equation (1b) p.9 (resp. Equation (2b) p.10)
f (x, ℓ (x)) = θ (x) for the semi- (resp. fully-) in-
terleaved cases is equivalent to:

f20 + f11ℓ1 + f02ℓ
2
1 = a

f11ℓ0 + 2f02ℓ1ℓ0 + f10 + f01ℓ1 = 0

f02ℓ
2
0 + f01ℓ0 + f00 = 0

Similarly, Equation (1c) p.9 (resp. Equation (2c)
p.10) f (ℓ (x), x) = ℓ (ε (x)) for the semi- (resp.
fully-) interleaved cases is equivalent to:

f20ℓ
2
1 + f11ℓ1 + f02 = ℓ1

2f20ℓ1ℓ0 + f11ℓ0 + f10ℓ1 + f01 = 0

f20ℓ
2
0 + f10ℓ0 + f00 = ℓ0

5.2 Semi-Interleaved Ladder Solu-
tion

In this subsection we solve the ladder equations for
the semi-interleaved case. The remaining Equa-
tion (1a) p.9 ε (ℓ (x)) = ℓ (θ (x)) for the semi-

16

interleaved case is equivalent to:
ℓ21 = ℓ1a

2ℓ1ℓ0 = 0

ℓ20 = ℓ0

So, because ℓ1 ̸= 0, we assume ℓ1 = a and ℓ0 = 0.
Therefore Equation (1b) is equivalent to:

f20 + f11a+ f02a
2 = a

f10 + f01a = 0

f00 = 0

and Equation (1c) is equivalent to:
f20a

2 + f11a+ f02 = a

f10a+ f01 = 0

f00 = 0

From f10 + f01a = f10a+ f01 we deduce f10(a−
1) = f01(a−1), which is satisfied without constraint
on a if f10 = f01. Moreover, from f10 + f01a = 0
we obtain f10 = −f01a, thus from f10a + f01 = 0
we obtain f01(a

2 − 1) = 0, which is always true
without constraint on a if f01 = 0. Therefore, we
assume f10 = 0 = f01.

From f20 + f11a+ f02a
2 = f20a

2 + f11a+ f02 we
deduce f20(a

2 − 1) = f02(a
2 − 1), which is satisfied

without constraint on a if f20 = f02. The remain-
ing constraint is f20(a

2 + 1) + f11a = a, which is
equivalent to f20 = a

a2+1 (1 − f11). Because the
coefficients are integers there exists m such that
1− f11 = m(a2 + 1). Thus, we have f20 = ma and
f11 = 1−m(a2 + 1).

Theorem 2. The square-and-multiply algorithm in
Algorithm 2 for the modular exponentiation with
θ (x) = ax2 and ε (x) = x2 is semi-ladderizable
with:

ℓ (x) = ax

f (x, y) = ma(x2 + y2) + (1−m(a2 + 1))xy

producing (after memoization of one squaring in z)
Algorithm 13.

Note that if m = 0, then f (x, y) = xy, in which
case this solution is the common Montgomery lad-
der. In this restricted case, the solution was gen-
erated semi-automatically in a previous paper [11]
by solving the ladder equations.

Algorithm 13 Semi-Interleaved Ladder for the
Modular Exponentiation

input public a, n; secret k
1: x← 1
2: y ← a mod n
3: m← random([0, n− 1])
4: c1 ← ma mod n
5: c2 ← 1− (c1a+m) mod n
6: for i = d to 0 do
7: if k[i] = 1 then
8: z ← y2 mod n
9: x← c1(x

2 + z) + c2xy mod n
10: y ← z
11: else
12: z ← x2 mod n
13: y ← c1(y

2 + z) + c2yx mod n
14: x← z
15: end if
16: end for
17: return x
output x = ak mod n

Note also that the coefficients c1 and c2 only de-
pend on m, so they can be precomputed (Lines 4
and 5) before the loop, for the sake of performance.

Finally, because there is no constraint on m, it
can be randomly generated (Line 3). Even if we
have x ← θ (x) = ax2 at the end of each iter-
ation (Section 3), such a randomly generated in-
teger would affect the bits flips that can be ob-
served during intermediate computations of x ←
c1(x

2 + z) + c2xy mod n (Line 9). Thus, m can
be used as a blinding integer (Subsection 2.3) to
reduce vulnerability against advanced side-channel
attacks like CPA [10].

5.3 Fully-Interleaved Ladder Solu-
tion (General Case)

In this subsection we solve the ladder equations for
the fully-interleaved case. Remain two equations.
Equation (2a) p.10 g (θ (x), ℓ (x)) = ℓ (θ (x)) for the

17

fully-interleaved cases is equivalent to:

g20a
2 = 0

g11ℓ1a = 0

g11ℓ0a+ g02ℓ
2
1 + g10a = ℓ1a

2g02ℓ1ℓ0 + g01ℓ1 = 0

g02ℓ
2
0 + g01ℓ0 + g00 = ℓ0

So, because a ̸= 0 and ℓ1 ̸= 0, we assume g20 = 0
from the first equation, g11 = 0 from the second,
and the remaining constraints are:

g02ℓ
2
1 + g10a = ℓ1a

2g02ℓ1ℓ0 + g01ℓ1 = 0

g02ℓ
2
0 + g01ℓ0 + g00 = ℓ0

According to Equation (2c) investigated in Sub-
section 5.1, f (ℓ (x), x) = ℓ (ε (x)) = ℓ1x

2 + ℓ0, so
by using g20 = g11 = 0 we have:

g (f (ℓ (x), x), x)
= (g02 + g10ℓ1)x

2 + (g01)x+ (g10ℓ0 + g00)

Finally, the last equation is Equation (2d) p.10
g (f (ℓ (x), x), x) = ε (x) for the fully-interleaved
cases is equivalent to:

g02 + g10ℓ1 = 1

g01 = 0

g10ℓ0 + g00 = 0

Because g20 = g11 = g01 = 0 and we require
g (x, y) = g02y

2 + g10x + g00 to depend on both
x and y, we have to assume g02 ̸= 0 and g10 ̸= 0.
By using g01 = 0 the remaining constraints from
Equation (2a) are:

g02ℓ
2
1 + g10a = ℓ1a

g02ℓ1ℓ0 = 0

g02ℓ
2
0 + g00 = ℓ0

Because g02 ̸= 0 and ℓ1 ̸= 0, the second equality im-
plies that ℓ0 = 0. Thus, the remaining constraints
from Equation (2a) and Equation (2d) are:

g02ℓ
2
1 + g10a = ℓ1a

g02 + g10ℓ1 = 1

g20 = g11 = g01 = g00 = 0

By using the second equality g02 = 1 − g10ℓ1, the
first equality is equivalent to:

g10(a− ℓ31) = ℓ1(a− ℓ1)

Because g10 ̸= 0 and ℓ1 ̸= 0, note that a = ℓ31 ⇔
a = ℓ1, in which case ℓ31 = ℓ1, thus a = ℓ1 = ±1. To
remove the constraint on a, we assume that a ̸= ℓ31,
and thus g10 and g02 depend only on a and ℓ1:

g10 = ℓ1
a− ℓ1
a− ℓ31

g02 = 1− g10ℓ1 = a
1− ℓ21
a− ℓ31

so g (x, y) = g02y
2 + g10x

=
1

a− ℓ31

(
a(1− ℓ21)y

2 + ℓ1(a− ℓ1)x
)

Because ℓ1 ̸= 0 and g10 ̸= 0 we have to assume that,
as opposed to the semi-interleaved cases, ℓ1 ̸= a.
As for the semi-interleaved cases, because ℓ0 = 0,
the constraints from the common Equations (2b)
and (2c) can be simplified:

f20 + f11ℓ1 + f02ℓ
2
1 = a

f20ℓ
2
1 + f11ℓ1 + f02 = ℓ1

f10 + f01ℓ1 = 0

f10ℓ1 + f01 = 0

f00 = 0

(L1)

(L2)

(L3)

(L4)

In order to have a non-trivial ladder ℓ (x) = ℓ1x,
we assume that ℓ1 ̸= ±1. With (L4) − (L3) we
obtain (f10 − f01)(ℓ1 − 1) = 0 thus f10 = f01, and
with (L3) we have f10(ℓ1+1) = 0, so f10 = f01 = 0.
With (L1) − (L2) we obtain (f02 − f20)(ℓ

2
1 − 1) =

a− ℓ1, so f02 = f20 +
a−ℓ1
ℓ21−1

. Therefore, remain the

following constraints:
f20(ℓ

2
1 + 1) + f11ℓ1 = a− ℓ21

a− ℓ1
ℓ21 − 1

= ℓ1 −
a− ℓ1
ℓ21 − 1

f02 = f20 +
a− ℓ1
ℓ21 − 1

f10 = f01 = f00 = 0

The first equality is obtained from (L1) and the
second from (L2). Note that a−ℓ21 a−ℓ1

ℓ21−1
= ℓ1− a−ℓ1

ℓ21−1

is already satisfied and thus is not a constraint.
Moreover, because ℓ1 ̸= 0, by using the second line,

18

we can rewrite f11 as:

f11 =
1

ℓ1

(
ℓ1 −

a− ℓ1
ℓ21 − 1

− f20(ℓ
2
1 + 1)

)
=

1

ℓ1

(
ℓ31 − a

ℓ21 − 1
− f20(ℓ

2
1 + 1)

)
Thus, we have:

f (x, y) = f20x
2 + f11xy + f02y

2

= f20x
2 +

1

ℓ1

(
ℓ31 − a

ℓ21 − 1
− f20(ℓ

2
1 + 1)

)
xy

+

(
f20 +

a− ℓ1
ℓ21 − 1

)
y2

= f20

(
x2 − ℓ21 + 1

ℓ1
xy + y2

)
+

1

ℓ21 − 1

(
ℓ31 − a

ℓ1
xy + (a− ℓ1)y

2

)
Finally, f20 has no constraint. It could have been
used as a blinding integer for f , but unfortunately
not for g. So, for the sake of simplicity and per-
formance, we assume f20 = 0 and we obtain the
following functions:

Theorem 3. The square-and-multiply Algorithm 2
for the modular exponentiation with θ (x) = ax2

and ε (x) = x2 is fully-ladderizable with:

ℓ (x) = ℓ1x

f (x, y) =
1

ℓ21 − 1

(
ℓ31 − a

ℓ1
xy − (ℓ1 − a)y2

)
g (x, y) =

1

ℓ31 − a

(
a(ℓ21 − 1)y2 + ℓ1(ℓ1 − a)x

)
where 1○ ℓ1 ̸= a mod n, 2○ ℓ1 ∈ (Z/nZ)⋆, 3○
ℓ21 − 1 ∈ (Z/nZ)⋆, and 4○ ℓ31 − a ∈ (Z/nZ)⋆, pro-
ducing (after memoization of one squaring in z)
Algorithm 14.

Definition 7 (Ladder Constant). We call ladder
constant and denote by ℓ an integer satisfying con-
straints 1○, 2○, 3○, and 4○ from Theorem 3.

The first constraint 1○ on the ladder constant can
be satisfied by checking whether ℓ − a = 0 mod n.
The other constraints can be satisfied by using
the Extended Euclidean Algorithm (d, u, u′) ←
EEA(v, n), where uv+ u′n = d, and d = gcd (v, n).
Indeed, we have uv = d mod n, such that if d = 1

then v is invertible modulo n and v−1 = u mod n.
Because we ignore the last Bézout coefficient u′,
for sake of simplicity we denote this function call
(d, u)← EEA(v, n) in Algorithm 14.
Because of 1○, we have ℓ ̸= a mod n. Moreover,

0 ̸∈ (Z/nZ)⋆, so according to 2○, we have ℓ ̸= 0.
Finally, if ℓ = ±1, then ℓ21−1 ̸∈ (Z/nZ)⋆, so accord-
ing to 3○, we have ℓ ̸= ±1. Hence, we have that
ℓ ∈ Z/nZ has to be chosen in La,n = [2, n−2]\{a}
(Line 2).

Then, Algorithm 14 checks if ℓ satisfies the con-
straints of Theorem 3 (Line 9). After a suitable lad-
der constant ℓ is chosen, the coefficients of f and g
only depend on a and ℓ, thus can be pre-computed
(Lines 10–13).

These computations to find suitable constants
may cause an overhead (Lines 1–15) but that does
not depend on the secret thus, in theory, trading
performance for security. Nevertheless, we prove in
the RSA case (Subsection 5.5) and the DSA case
(Subsection 5.6) that a ladder constant ℓ satisfying
the constraints from Theorem 3 is almost always
obtained after one iteration. So, in practice, such
overhead is negligible compared to the operations
performed for each bit of the secret key.

Finally, note that ℓ is randomly generated
(Line 2) and affects the computation of interme-
diate values (Lines 19, 20, 23 and 24) depending
on the secret key. Hence, as in our semi-interleaved
solution (Subsection 5.2), ℓ is a blinding integer
that reduces vulnerability against advanced side-
channel attacks.

5.4 Complexity and Performance

We provide in Table 2 a comparison of complexities
for the Montgomery, semi-, and fully-interleaved
ladders. The complexities are given in terms of
cost per key bit, where M stands for multiplica-
tion, S for squaring, A for addition and subtrac-
tion, all modulo n, and T for the thread creation
cost. Because the costs are given per key bit, we
did not include the cost of the pre-computations,
which are negligible in the RSA and the DSA cases,
as described at the end of Subsections 5.2 and 5.3.

The first line of Table 2 demonstrates a trade-
off between security and performance. As opposed
to the Montgomery ladder, our semi- (Theorem 2)
and fully- (Theorem 3) interleaved solutions have a
blinding integer reducing vulnerability to advanced

19

Table 2: Cost per key bit (after memoization) of the Montgomery (Algorithm 3), semi- (Algorithm 13)
and fully-interleaved ladders (Algorithm 14) for the modular exponentiation, where M stands for mul-
tiplication, S for squaring, A for addition/subtraction, and T for thread creation cost.

Montgomery Semi-Interleaved Fully-Interleaved
sequential (1 core) M + S 3M + 2S + 2A 5M + S + 2A
parallel (2 cores) M + S M + 2S + 2A+ T 3M + S +A+ T
parallel (3 cores) M + S 2M + 2A+ T 2M + S +A+ T

side-channel attacks, but at the price of a factor 3
for the former and 5 for the latter, in terms of mul-
tiplications. Nevertheless, as illustrated in Table 1
p.14, our fully-interleaved solution provides more
protection against fault-injection attacks than the
Montgomery ladder or our semi-interleaved solu-
tion.

As introduced in the background (Subsec-
tion 2.5), we also consider parallel computations to
evaluate performance. The second and third line of
Table 2 provide a comparison when the algorithms
run on a multi-core system, respectively with two
and three cores. This does not change the cost for
the Montgomery ladder (Algorithm 3) because the
squaring must be computed after the multiplica-
tion. But this changes the cost for our solutions.

We now consider the then branch of our semi-
interleaved ladder (Algorithm 13), both branches
having the same complexity. We first consider two
cores. c1(x

2+y2) can be computed on the first core
using two squarings, one addition, then one multi-
plication, i.e., M + 2S +A. c2xy can be computed
on the second core using two multiplications, i.e.,
2M . Since usually S ≈ 0.8M , we have M ≤ 2S+A
and the maximal complexity between both cores is
M + 2S + A. Finally, the results are added to-
gether to obtain the value for x, obtaining a total
complexity M + 2S + 2A, and the computed value
y2 is assigned to y. We now consider three cores.
c1x

2 can be computed on the first core in M + S,
c1y

2 can be computed on the second core in M+S,
and c2xy can be computed on the third core in 2M .
Since M ≥ S, the maximal complexity between the
cores is 2M . Then, the three results are summed
together, for a total complexity of 2M + 2A. Note
that, since usually S ≈ 0.8M , the total complex-
ity for two cores is larger than for three cores, as
expected.

In the same way, we consider the then branch
of the fully-interleaved ladder (Algorithm 14). We

first consider two cores. c0xy + c1y
2 can be com-

puted on the first core in 3M + S + A to obtain
the value for x. c2y

2+ c3x can be computed on the
second core in 2M+S+A to obtain the value for y.
Hence, the total complexity is 3M+S+A. We now
consider three cores. c0xy can be computed on the
first core in 2M , c1y

2 can be computed on the sec-
ond core in M+S, and c2y

2+c3x can be computed
on the third core in 2M +S+A. The results of the
first two cores are then added to obtain the value
for x, for a total complexity of 2M + A for these
cores. The third core for y requires 2M + S + A,
hence the total complexity is 2M + S +A.

These parallel computations do no change qual-
itatively the trade-offs between performance and
security properties, but the price for the semi-
interleaved ladder is now a factor 2 for the num-
ber of multiplications (instead of 3), and a fac-
tor 3 (instead of 5) for the fully-interleaved ladder.
Hence, in that case, our solutions demonstrate per-
formances closer to the Montgomery ladder.

In practice, performances are even closer than in
theory. As a proof of concept, we implemented the
Montgomery and semi-interleaved ladders using the
GNU Multiple Precision (GMP) library [19]. To
lower the non-negligible cost of memory manage-
ment induced by this library, we used the provided
low-level functions. We measured the number of cy-
cles necessary to execute these algorithms for var-
ious key sizes on a single core. We also used the
OpenMP API to measure the number of cycles for
respectively 2 and 3 cores [42].

We provide a repository [34] to replicate the re-
sults, which was tested on a Intel® Core™ i9-
11900KF @ 3.50GHz, gcc 11.3.0, Ubuntu 22.04.
Each measured function was first executed 700
times (warm-up). Then, to lower the effect of back-
ground tasks running on the system, each iteration
was repeated 700 times with the same inputs for
the median value to be recorded.

20

Algorithm 14 Fully-Interleaved Ladder for the
Modular Exponentiation (General Case)

input public a, n; secret k
1: do
2: ℓ← random([2, n− 2] \ {a})
3: v0 ← ℓ− a mod n
4: (d1, u1)← EEA(ℓ, n)
5: v2 ← ℓ2 − 1 mod n
6: (d2, u2)← EEA(v2, n)
7: v3 ← ℓ3 − a mod n
8: (d3, u3)← EEA(v3, n)
9: while v0 mod n = 0∨ d1 ̸= 1∨ d2 ̸= 1∨ d3 ̸= 1

10: c0 ← u1u2v3 mod n
11: c1 ← −v0u2 mod n
12: c2 ← av2u3 mod n
13: c3 ← ℓv0u3 mod n
14: x← 1
15: y ← ℓ
16: for i = d to 0 do
17: if k[i] = 1 then
18: z ← y2 mod n
19: x← c0xy + c1z mod n
20: y ← c2z + c3x mod n
21: else
22: z ← x2 mod n
23: y ← c0yx+ c1z mod n
24: x← c2z + c3y mod n
25: end if
26: end for
27: return x
output x = ak mod n

The results are reported in Table 3. As the Mont-
gomery ladder cannot be parallelized, we use the
number of cycles obtained for this algorithm on a
single core as a reference. Thus, we report the num-
ber of cycles for the semi-interleaved ladder as well
as the ratio, i.e., this number divided by the number
of cycles for the Montgomery ladder, for a relative
comparison.

Dealing with parallelism increases the ratio for
small key sizes (1024 and 2048). This is because
thread creation has a fixed cost, which has a ma-
jor impact on overall performance. This is com-
pensated for larger key sizes, where the performed
computations take precedence over the thread cre-
ation cost. For several cores and large key sizes, we
obtain a ratio between 1.4 and 1.9, which is below

the ratio of 2 expected from the cost analysis. One
of the reasons is the instructions per cycle (IPC)
for the semi-interleaved ladder is larger than for
the Montgomery ladder.

Therefore, the price for the more secure semi-
interleaved ladder compared to the Montgomery
ladder is lower in practice, up to 1.4 for several
cores and large key sizes.

5.5 Fully-Interleaved Ladder Solu-
tion (RSA Case)

We prove in this subsection that in the RSA case
a ladder constant ℓ satisfying the constraints from
Theorem 3 can almost always be obtained in one
iteration from Algorithm 14.

In the context of RSA [45], we assume that the
modulus is a product n = pq, where p, q are dis-
tinct primes. The modular exponentiation aims at
computing ak mod n, so we assume that the input
a is already given modulo n i.e., 0 ≤ a ≤ n − 1.
Because 0k and (±1)k are fairly trivial to compute,
we assume that a ̸= 0,±1. So 2 ≤ a ≤ n− 2, thus
card(La,n) = n − 4 where La,n = [2, n − 2] \ {a},
which simplifies the following reasoning.

We assume that ℓ is randomly chosen in La,n

and we compute the probability that ℓ satisfies the
ladder constraints. To satisfy constraints 1○ and
2○ of Theorem 3, i.e., ℓ ̸= a and ℓ ∈ (Z/nZ)⋆, ℓ
has to be chosen in La,n such that gcd(ℓ, n) = 1.
The only integers in La,n such that gcd(ℓ, n) > 1
are jp for j ∈ [1, q − 1] or jq for j ∈ [1, p − 1], so
the probability to randomly select a ladder constant
not verifying 2○ is:

Pr(not 2○) ≤ (p− 1) + (q − 1)

n− 4
≈ 1

p
+

1

q

In the RSA context, this means that a random
ℓ ∈ La,n is invertible modulo n with probability al-
most equal to 1. Indeed, according to the National
Institute of Standards and Technology (NIST) rec-
ommendations [4], if nBits = ⌊log2 n⌋ + 1 denotes
the number of bits of n = pq, then p and q satisfy:

2
nBits−1

2 < p < 2
nBits

2

2
nBits−1

2 < q < 2
nBits

2

so 1

2
nBits−2

2

< 1
p + 1

q < 1

2
nBits−3

2

, where nBits is as-

sumed to be large.

21

Table 3: Performance comparison between the Montgomery ladder and the semi-interleaved ladder for
the modular exponentiation

Number of cycles (ratio compared to Montgomery)
Key size Montgomery Semi-Interleaved
(bits) 1 core 2 cores 3 cores
1 024 3 324 108 7 549 860 (2.27) 11 144 772 (3.35) 9 430 042 (2.84)
2 048 21 047 774 48 250 646 (2.29) 49 601 524 (2.36) 39 992 556 (1.90)
4 096 130 630 682 290 334 462 (2.22) 248 868 716 (1.90) 206 804 182 (1.58)
8 192 811 361 402 1 755 290 126 (2.16) 1 393 469 694 (1.71) 1 173 139 582 (1.44)

16 384 4 971 382 772 10 437 469 318 (2.10) 8 181 204 906 (1.65) 6 979 736 808 (1.40)

Moreover, note that if one can compute ℓ such
that gcd(ℓ, n) > 1, then gcd(ℓ, n) = p or q, thus
one is able to factorize n. The same problem oc-
curs in RSA cryptosystem: if Bob can generate a
message m such that gcd(m,n) > 1, where n is Al-
ice’s public key, then Bob can factorize n and find
Alice’s private key. Such an event could occur but
with a probability nearly equal to 0.
To satisfy constraint 3○ of Theorem 3 i.e., ℓ2−1 ∈

(Z/nZ)⋆, note that, according to the Chinese re-
mainder theorem, integers ℓ such that ℓ2 − 1 are
not invertible modulo n verify ℓ2 = 1 mod p and
ℓ2 = 1 mod q. There are at most four such inte-
gers: 1, n − 1, γ, n − γ, where γ = 1 mod p and
γ = −1 mod q. 1 and n − 1 are excluded, so the
probability to randomly select a ladder constant in
La,n = [2, n− 2] not verifying 3○ is:

Pr(not 3○) ≤ 2

n− 4

Finally, to determine integers such that the last
constraint 4○ of Theorem 3, i.e., ℓ3− a ∈ (Z/nZ)⋆,
is satisfied, we use the following lemma from Gauss:

Definition 8 (rth Residues). Let n and r ≥ 2
be two integers. An integer a ∈ (Z/nZ)⋆ is a rth

residue modulo n if there exists an integer ℓ ∈ Z/nZ
such that ℓr = a mod n, otherwise it is a non-
residue modulo n.

Lemma 1 (Gauss [17]). Let p be a prime and r ≥ 2
be an integer. We denote b = gcd(p− 1, r) and we
have:

1. For every integer a ∈ (Z/pZ)⋆, a is a rth

residue modulo p if and only if a
p−1
b = 1 mod

p,

2. there exists exactly p−1
b rth residues in

(Z/pZ)⋆,

3. if a ∈ (Z/pZ)⋆ is a rth residue modulo p, then
there exists exactly b integers ℓ ∈ Z/pZ such
that ℓr = a mod p.

According to the Chinese remainder theorem,
ℓ3 − a is invertible modulo n = pq if and only if
ℓ3−a is invertible modulo p and ℓ3−a is invertible
modulo q. Moreover, because p is prime, ℓ3−a is in-
vertible mod p if and only if ℓ3−a ̸= 0 mod p, i.e.,
a is a 3rd non-residue modulo p. Therefore, con-
straint 4○ is not satisfied only if a is a 3rd residue
modulo p or q.

For an input a fixed, because bp =
gcd(p− 1, 3) = 1 or 3 and bq = gcd(q − 1, 3) = 1
or 3, according to Lemma 1, there are at most 9
non invertible ℓ3 − a integers modulo n, so the
probability to randomly select a ladder constant
in La,n not verifying 4○ is:

Pr(not 4○) ≤ 9

n− 4

At worst, the unfavorable cases are distinct, thus
the probability to randomly select a suitable ladder
constant is:

Pr(1○ 2○ 3○ 4○)≥ 1−
(

p−1+q−1
n−4 + 2

n−4 + 9
n−4

)
= 1− p+q+9

n−4 ≈ 1− 1
p − 1

q − 1
n

which is almost equal to 1 in a cryptographic con-
text. Thus, in the RSA case n = pq, finding a suit-
able ladder constant (Lines 1–9) in Algorithm 14
costs only one iteration with probability almost
equal to 1. Therefore, the overhead to pre-compute
a suitable ladder constant in Algorithm 14 is not
costly in practice.

5.6 Fully-Interleaved Ladder Solu-
tion (DSA Case)

We prove in this subsection that in the DSA case
a ladder constant ℓ satisfying the constraints from

22

Theorem 3 can almost always be obtained in one
iteration from Algorithm 14. In a Digital Signa-
ture Algorithm (DSA) [40] context (or for Diffie-
Hellman key-exchange mechanism [44]), the expo-
nentiation is computed modulo n = p, where p is
prime.

The argument is similar to the previous one in
Subsection 5.5 for the RSA case, but even simpler.
If ℓ ∈ La,n = [2, n−2]\{a} then 1○ ℓ ̸= a. Moreover
ℓ ̸= 0 mod n so 2○ ℓ is invertible modulo n. Finally,
ℓ ̸= ±1 so 3○ ℓ2 − 1 ̸= 0 mod n thus ℓ2 − 1 is
invertible modulo n. So the first three constraints
are always satisfied for n = p, where p is prime.

Remains the last constraint 4○ ℓ3 − a is in-
vertible modulo n. In the following, we denote
R3

n(a) that a is a cubic residue modulo n, and let
b = pgcd(n − 1, 3). To compute the probability of
satisfying the fourth constraint, we use the formula
of total probability Pr(4○) = Pr

(
4○ | R3

n(a)
)
×

Pr
(
R3

n(a)
)
+Pr

(
4○ | not R3

n(a)
)
×Pr

(
not R3

n(a)
)
.

According to Lemma 1, there exists n−1
b cubic

residue in (Z/nZ)⋆. The excluded values −1 and 1
are cubic residue modulo n, as opposed to 0. So,
the probability that an integer a ∈ [2, n − 2] is a
cubic residue is:

Pr
(
R3

n(a)
)
=

n−1
b − 2

n− 3
=

1

b
− 2

(
1− 1

b

)
n− 3

According to Lemma 1, if a is a cubic residue,
then there exists b cubic roots ℓ of a in (Z/nZ)⋆.
If ℓ = 0 or ±1 then a = ℓ3 = 0 or ±1, which is
excluded. If ℓ = a then a = a3 i.e., a(a+1)(a−1) =
0 mod p, thus a = 0,±1, which is also excluded.
So, cubic roots ℓ of a are automatically in La,n =
[2, n−2]\{a}. Thus, the probability that an integer
ℓ ∈ La,n is a cubic root of a is b

n−4 . Therefore, if a
is a cubic residue then the probability that ℓ ∈ La,n

satisfies the last constraint is:

Pr
(
4○ | R3

n(a)
)
= 1− b

n− 4

Moreover, if a is not a cubic residue, then there
exists no ℓ such that a = ℓ3 mod n. So, every
ℓ ∈ La,n satisfies a − ℓ3 ̸= 0 modulo n = p, where
p is prime. Thus, in that case, every ℓ ∈ La,n sat-
isfies the last constraint 4○, i.e., ℓ3− a is invertible
modulo n. Therefore, Pr

(
4○ | not R3

n(a)
)
= 1.

Finally, the probability to randomly select a suit-

able ladder constant is:

Pr(1○ 2○ 3○ 4○)
= Pr(4○)
= Pr

(
4○ | R3

n(a)
)
× Pr

(
R3

n(a)
)

+Pr
(
4○ | not R3

n(a)
)
× Pr

(
not R3

n(a)
)

=
(
1− b

n−4

)(
1
b −

2(1− 1
b)

n−3

)
+ 1

(
1− 1

b +
2(1− 1

b)
n−3

)
= 1− 1

n−4 + 2(b−1)
(n−3)(n−4)

which is almost equal to 1 in a cryptographic
context. Therefore, again, the overhead to pre-
compute a suitable ladder constant in Algorithm 14
is not costly in practice.

5.7 Results for the Modular Expo-
nentiation

In this section, we provided concrete answers to
RQ1 by solving the ladder equations for cryptosys-
tems using the modular exponentiation. We ob-
tained Algorithm 13 for the semi-interleaved case
and Algorithm 14 for the fully-interleaved case.

Both Algorithms 13 and 14 use a blinding inte-
ger, providing more protection against side-channel
attacks than the Montgomery ladder, for instance
against advanced power attacks like CPA [10]. This
protection naturally arose from a free parameter
while solving the ladder equations, demonstrat-
ing the fruitfulness of the ladderization approach
(RQ2). Moreover, as detailed in Subsection 4.3,
Algorithm 14 is more secure against fault-injection
attacks than the Montgomery ladder. So, the secu-
rity properties of the Montgomery ladder have not
only been generalized, but improved in both cases.

We compared in Subsection 5.4 the complexity of
these novel algorithms with the complexity of the
Montgomery ladder, demonstrating a trade-off be-
tween security and performance: Algorithm 13 is
more secure than the Montgomery ladder but less
performant, and Algorithm 14 is even more secure
but even less performant, even if these novel algo-
rithms have performance closer to the Montgomery
ladder if the computations can be parallelized. For
instance, we demonstrated for the semi-interleaved
ladder that in practice, for several cores and large
key sizes, the cost is only 40% larger.

Finally, Algorithm 14 requires a ladder constant
(Definition 7), which raised a challenge regarding

23

performance (RQ3). We tackled this challenge
by proving, in the case of the RSA [45] (Subsec-
tion 5.5) and DSA [40] (Subsection 5.6) cryptosys-
tems, that this ladder constant can be obtained at
a negligible cost with probability almost equal to
1.

6 Generalizing the Mont-
gomery Ladder for the
Scalar Multiplication in
ECC

As detailed in Subsection 2.4, the main operation
in elliptic-curve cryptography (ECC) is the scalar
multiplication kA = A + · · · + A, where A is a
point on a curve and k is an integer. Following the
double-and-add Algorithm 4 p.7, for a given point
A we consider in this section the following known
functions:

θ (P) = 2P +A

ε (P) = 2P

Moreover, we consider ladder functions (Sec-
tion 3) of the following form:

f (P,Q) = fPP + fQQ+ fAA

g (P,Q) = gPP + gQQ+ gAA

ℓ (P) = ℓPP + ℓAA

with fP , fQ, ℓP ̸= 0 for both cases, and gP , gQ ̸= 0
for the fully-interleaved ladders case. Using scalar
multiplications to compute scalar multiplications
may seem circular, but we distinguish between non-
secure and secure scalar multiplications. So, in the
following, we assume that non-secure scalar multi-
plications (on public scalars fP , fQ, fA, gP , gQ, gA,
ℓP , and ℓA) can be used to compute secure scalar
multiplications (on sensitive scalars k).
As in Section 5, we provide concrete solutions to

the ladder equations. In this section, we generalize
the algorithmic strength of the Montgomery ladder
by solving (Subsections 6.1 to 6.3) the ladder equa-
tions for the scalar multiplication used in ECC. We
discuss in Subsection 6.4 the feasibility and perfor-
mance of the novel solutions in the context of ECC.
Then, in Subsection 6.5, we compare the complex-
ity of the novel algorithms with the complexity of
the Montgomery ladder. Results are summarized
in Subsection 6.6.

6.1 Both Semi- and Fully-
Interleaved Ladders

We start by solving the ladder equations which are
common to the semi- and fully-interleaved cases.
Equation (1b) (resp. Equation (2b)) f (x, ℓ (x)) =
θ (x) and Equation (1c) (resp. Equation (2c))
f (ℓ (x), x) = ℓ (ε (x)) for the semi- (resp. fully-)
interleaved cases imply that:{

fP + fQℓP = 2

fQ = (2− fP)ℓP

So (2 − fP)(ℓ
2
P − 1) = 0. If fP = 2, then fQ = 0,

so we assume fP ̸= 2. To make no assumption
about the finite field, we assume for the following
ℓP = ±1. The equations also imply that:{

fQℓA + fA = 1

fA = (2− fP)ℓA − ℓA

So (2− fP)(ℓP + 1)ℓA = 1 + ℓA.

• If ℓP = −1 then ℓA = −1, fQ = fP − 2 and
fA = (fP − 2) + 1, thus the candidate ladder
functions are:

f (P,Q) = fP (P +Q+A)− (2Q+A)

ℓ (P) = −(P +A)

• If ℓP = 1, then by assuming that 3 − 2fP is
invertible we obtain ℓA = 1

3−2fP
, fQ = 2− fP

and fA = 1− 2−fP
3−2fP

, thus the candidate ladder
functions are:

f (P,Q) = fP (P −Q) + 2Q+
1− fP
3− 2fP

A

ℓ (P) = P +
1

3− 2fP
A

6.2 Semi-Interleaved Ladder Solu-
tion

In this subsection we solve the ladder equations
for the semi-interleaved case. The remaining
Equation (1a) ε (ℓ (x)) = ℓ (θ (x)) for the semi-
interleaved ladders is already satisfied for the ℓP =
−1 case. For the ℓP = 1 case, it implies that
(1
3−2fP

− 1)A = O, thus to avoid constraint on A
we assume fP = 1.

Theorem 4. The double-and-add algorithm with
θ (P) = 2P+A and ε (P) = 2P is semi-ladderizable
with two solutions:

24

1.

f (P,Q) = fP (P +Q+A)− (2Q+A)

ℓ (P) = −(P +A)

where fP ̸= 0, 2, producing (after memoization
of one doubling in R) Algorithm 15, and:

2.
f (P,Q) = P +Q

ℓ (P) = P +A

producing Algorithm 5 p.7.

Note that the second solution is actually the com-
mon Montgomery ladder for the scalar multiplica-
tion (Subsection 2.4). It was automatically gene-
rated in [11] by solving the ladder equations, con-
firming that our solutions are generalizations of the
Montgomery ladder.
Note also that in the first solution there is no

constraint on fP , which thus can be randomly gen-
erated (Line 3) in Fp while satisfying constraints
from Theorem 4. As in Subsection 5.2, this pro-
vides a blinding integer which hinders advanced
side-channel attacks like CPA [10]. Because R de-
pends only on fP and A, it can be precomputed be-
fore the loop (Line 4). We discuss in Subsection 6.4
the feasibility and performance of the scalar multi-
plications by fP involved in the algorithm.

Finally, note that the case fP = 1 corresponds
to the ladder function f (P,Q) = P − Q, similar
to the Montgomery ladder except that the point Q
has an opposite sign.

6.3 Fully-Interleaved Ladder Solu-
tion

In this subsection we solve the ladder equations in
the fully-interleaved case. Remain two equations.
In the case ℓP = −1, Equation (2a) g (θ (x), ℓ (x)) =
ℓ (θ (x)) for the fully-interleaved ladders is equiva-
lent to: {

2gP − gQ = −2
gP − gQ + gA = −2

So gQ = 2(1 + gP) and gA = gP . Thus, Equa-
tion (2d) g (f (ℓ (x), x), x) = ε (x) for the fully-
interleaved ladders implies that fP gP = 0. Be-
cause we assumed fP , gP ̸= 0 and we look for a
solution independent from the chosen field for the
coefficients, we have no solution for this case.

Algorithm 15 Semi-Interleaved Ladder for the
Scalar Multiplication

input public p,A; secret k
1: P ← O
2: Q← −A
3: fP ← random(Fp \ {0, 2})
4: R← (fP − 1)A
5: for i = d to 0 do
6: if k[i] = 1 then
7: S ← 2Q
8: P ← fP (P +Q) +R− S
9: Q← S

10: else
11: S ← 2P
12: Q← fP (Q+ P) +R− S
13: P ← S
14: end if
15: end for
16: return P
output P = kA

In the case ℓP = 1, Equation (2a)
g (θ (x), ℓ (x)) = ℓ (θ (x)) for the fully-interleaved
ladders is equivalent to:

2gP + gQ = 2

gP +
gQ

3− 2fP
+ gA = 1 +

1

3− 2fP

So gQ = 2(1−gP) and gA = 1+ (2fP−1)gP−1
3−2fP

. Thus

Equation (2d) g (f (ℓ (x), x), x) = ε (x) for the fully-

interleaved ladders implies that 2(fP (gP−1)+1)
3−2fP

A =

O. To avoid constraint on A, we assume fP (gP −
1) + 1 = 0; i.e., gP = 1− 1

fP
.

Theorem 5. The double-and-add algorithm with
θ (P) = 2P+A and ε (P) = 2P is fully-ladderizable
with:

f (P,Q)= fP
(
P −Q− 1

3−2fP
A
)
+ 2Q+ 1

3−2fP
A

g (P,Q)= P + 1
fP

(
−P + 2Q+ 1

3−2fP
A
)
− 1

3−2fP
A

ℓ (P)= P + 1
3−2fP

A

where fP ̸= 0, 1, 2, and where fP and 3− 2fP are
invertible, producing (after memoization in R and
S) Algorithm 16.

Note that, because the coefficients are chosen in
Fp with p prime, if fP ̸= 0 and fP ̸= 3× 2−1, then
fP and 3 − 2fP are invertible. Hence, fP can be

25

Algorithm 16 Fully-Interleaved Ladder for the
Scalar Multiplication

input public p,A; secret k
1: P ← O
2: fP ← random(Fp \

{
0, 1, 2, 3× 2−1

}
)

3: C ← 1
3−2fP

A

4: c0 ← 1
fP

5: Q← C
6: for i = d to 0 do
7: if k[i] = 1 then
8: R← P − C
9: S ← 2Q+ C

10: P ← fP (R−Q) + S
11: Q← c0 (S − P) +R
12: else
13: R← Q− C
14: S ← 2P + C
15: Q← fP (R− P) + S
16: P ← c0 (S −Q) +R
17: end if
18: end for
19: return P
output P = kA

randomly generated (Line 2) while satisfying con-
straints from Theorem 5. As in Subsection 5.2, this
provides a blinding integer reduncing vulnerability
to advanced side-channel attacks like CPA [10]. Be-
cause C and c0 depends only on fP and A, they can
be precomputed before the loop (Lines 3 and 4).
We discuss in Subsection 6.4 the feasibility and per-
formance of the scalar multiplications by fP and c0
involved in the algorithm.

6.4 Application to ECC

In this subsection, we discuss the feasability of the
novel algorithms obtained for the scalar multiplica-
tion in ECC. These algorithms are the first semi-
interleaved ladder in Theorem 4 requiring a scalar
multiplication by fP , and the fully-interleaved lad-
der in Theorem 5 requiring a scalar multiplication
by 1

3−2fP
during initialization, then fP and 1

fP
dur-

ing each iteration. These scalar multiplications can
be costly, so they are a challenge regarding perfor-
mance (RQ3).

Scalar multiplications cA for various scalar co-
efficients c can be precomputed if A is a fixed

point, as in the DSA signing step or the first step
of Diffie-Hellman protocol. This is the case for
the scalar multiplication by 1

3−2fP
, but not for the

other cases, which involve scalar multiplications for
non-fixed points R, linear combination of A, P , and
Q.

A scalar multiplication cR for a specific coeffi-
cient c can be efficiently computed, i.e., with very
few field operations, by using an elliptic curve en-
dowed with an efficient endomorphism. On such
curves, there exists a constant λ, depending on the
prime modulus p and the parameters of the curve
(Definition 1 p.6), such that λR can be computed
with very few multiplications (only one in most
cases) on Fp. This is detailed in [16], where the
authors describe the GLV (Gallant, Lambert, and
Vanstone) method used in various standards, like
the Bitcoin protocol specification or TLS (Trans-
port Layer Security) [41].

Another way to optimize the cost of cR is to use
a short addition chain [29], so that the number of
point operations required to compute cR is equal
to the length of the chain. The problem of comput-
ing the shortest addition chain for a given integer
is hard [3], but for “small” integers there exists ta-
bles [8] providing the corresponding chain.

So, for the first semi-interleaved ladder in Theo-
rem 4, one can use an elliptic curve endowed with
an efficient endomorphism λ and assign fP = λ.
Or, for a non-specific curve, one can choose fP
amongst the integers corresponding to “very short”
addition chains.

But these methods should not be used together.
Indeed, when an efficient endomorphism is available
for the chosen elliptic curve, multiplications on Fp

are largely less costly than the additions and dou-
blings required in addition chains, even very short
ones. Hence, an attacker would be able to infer
the method used to choose fP , by leveraging even
simple side-channel attacks [32, 31].

Moreover, there usually exists (if any) at most
one or two (known) efficient endomorphism for a
given elliptic curve [16]. Hence, because of the
small range of values, efficient endomorphisms can-
not be used as blinding integers.

Thus, to preserve fP as a blinding integer for the
semi-interleaved ladder (Algorithm 15), it must be
randomly chosen amongst values corresponding to
very short addition chains. This largely reduces
the range for the random blinding integer, but this

26

makes this algorithm practical in the context of
ECC.
For the fully-interleaved ladder (Theorem 5), nei-

ther an efficient endomorphism nor an addition
chain can be used. Indeed, that fPR can be ef-
ficiently computed does not imply that 1

fP
R can

also be efficiently computed, because both coeffi-
cients are dependent. Therefore, Algorithm 16 is,
to our knowledge, not feasible in practice in the
context of ECC.

6.5 Complexity

We remind that we consider solutions involv-
ing non-secure scalar multiplications with public
scalars in order to compute secure scalar multiplica-
tions with sensitive scalars. We provide in Table 4
a comparison of complexities for the Montgomery,
semi- and fully-interleaved ladders. As in Subsec-
tion 5.4, we consider both sequential and parallel
cases, and the complexities are given in terms of
cost per key bit, where M stands for non-secure
scalar multiplication, D for doubling, and A for
addition/subtraction of points of the elliptic curve.
The line “without optimization” of Table 4

demonstrates a trade-off between security and per-
formance. As opposed to the Montgomery ladder,
the semi-interleaved solution from Theorem 4 has a
blinding integer reducing the vulnerability of inter-
mediate values against advanced side-channel at-
tacks, but at the price of a non-secure scalar mul-
tiplication for each key bit. Moreover, as illus-
trated in Table 1 p.14, the fully-interleaved solution
from Theorem 5 is better protected against fault-
injection attacks, but this time at the price of two
non-secure scalar multiplications for each key bit.
The cost of the semi-interleaved ladder solution

is detailed at the third column of Table 4. Since the
cost of a few multiplications on Fp is negligible com-
pared to point doubling or addition/subtraction, if
an efficient endomorphism is available, this solution
is almost as performant as the Montgomery ladder.
But, as detailed in Subsection 6.4, such an efficient
endomorphism cannot be used for the blinding in-
teger. Hence, in this case, the Montgomery lad-
der dominates our semi-interleaved ladder solution.
With short addition chains, the cost depends on the
constant fP and is denoted costfP(D,A), consis-
ting on (a small number of) doubling and addi-
tion/subtraction operations. This time, as detailed

in Subsection 6.4, a blinding integer can be used
but at the price of several operations, demonstrat-
ing a trade-off between security and performance.

The cost of the fully-interleaved ladder solution
is detailed at the last column of Table 4. Because
of the dependency between fP and 1

fP
, determining

an efficient endomorphism or a short addition chain
for both coefficients is an open problem.

Finally, as in Subsection 5.4, we also consider
parallel computations (Subsection 2.5) to evalu-
ate performance. The second part of Table 4 pro-
vides a comparison when the algorithms run on a
multi-core system. We consider the then branch of
our semi-interleaved ladder (Algorithm 15), both
branches having the same complexity. First, the
doubling S ← 2Q is computed. Then, fP (P + Q)
and R − S can be independently computed in one
scalar multiplication and one addition. Finally the
results are added together and Q receives the value
from S.

In the same way, we consider the then branch of
our fully-interleaved ladder (Algorithm 16). R and
S can be independently computed in one doubling
and one addition, gaining one addition, then P and
Q are sequentially computed. In both cases, only
one addition operation is gained, which does not
change our conclusions from the sequential case.

6.6 Results for the Scalar Multipli-
cation

In this section we provided concrete answers to
RQ1 by solving the ladder equations for the scalar
multiplication in ECC. We obtained Algorithm 15
for the semi-interleaved case and Algorithm 16 for
the fully-interleaved case.

Algorithm 15 uses a blinding integer, providing
more protection against power side-channel attacks
than the Montgomery ladder, for instance against
advanced power attacks like CPA [10]. As in Sub-
section 5.7, this protection naturally arose from a
free parameter while solving the ladder equations,
thus demonstrating again the fruitfulness of the
ladderization approach (RQ2). Moreover, as de-
tailed in Subsection 4.3, Algorithm 16 is more se-
cure against fault-injection attacks than the Mont-
gomery ladder. So, the security properties of the
Montgomery ladder have not only been generalized
but improved in both cases.

27

Table 4: Cost per bit (after memoization) of the Montgomery (Algorithm 5 p.7), semi- (Algorithm 15)
and fully-interleaved ladders (Algorithm 16) for the secure scalar multiplication, where M stands for
non-secure scalar multiplication, A for addition or subtraction, and D for doubling

Montgomery Semi-Interleaved Fully-Interleaved
sequential
without optimization A+D M + 3A+D 2M + 6A+D
efficient endomorphism A+D 3A+D open problem
addition chain A+D costfP(D,A) + 3A+D open problem
parallel
without optimization A+D M + 2A+D 2M + 5A+D
efficient endomorphism A+D 2A+D open problem
addition chain A+D costfP(D,A) + 2A+D open problem

We also compared the complexity of these novel
algorithms in Subsection 6.5 with the complexity of
the Montgomery ladder in ECC (Algorithm 5 p.7).
The trade-off between security and performance is
less favorable than in Subsection 5.4, because we
use scalar multiplications on public values to com-
pute scalar multiplications on the secret key.

These scalar multiplications raise a challenge re-
garding performance (RQ3), that we tackled in two
ways. First, by leveraging (if any) an efficient endo-
morphism to compute these scalar multiplications.
In that case, a blinding integer cannot be used and
performance is no better than the common Mont-
gomery ladder, which thus dominates our solution.
Second, by restricting the blinding integer in Al-
gorithm 15 to integers computed using short ad-
dition chains. This makes Algorithm 15 feasible,
but at the price of limiting the range of values for
the blinding integer and thus the protection against
advanced power attacks. Finally, efficient endomor-
phisms or addition chains were not applicable to
Algorithm 16 which is thus, to our knowledge, not
feasible in practice in the context of ECC.

7 Conclusion

A ladderization is a process refactoring a sensi-
tive iterative conditional branching into a semi- or
fully-interleaved ladder, in order to protect sensi-
tive information from various side-channel or fault-
injection attacks. These interleaved ladders are ob-
tained through solving ladder equations for the sys-
tem of interest. We evaluated the ladderization ap-
proach with three research questions:

• RQ1: To which extent can the algorithmic
strength of the Montgomery ladder be gener-
alized to other algorithms?

• RQ2: How secure are interleaved ladders com-
pared to the Montgomery ladder?

• RQ3: How feasible are interleaved ladders in
practice and, if so, how performant are they
compared to the Montgomery ladder?

7.1 Answers to the Research Ques-
tions

Theorem 1 provided a theoretical answer to RQ1,
by characterizing the ladderizable algorithms. To
provide a more concrete answer, we solved the lad-
der equations in Section 5 for the modular exponen-
tiation and in Section 6 for the scalar multiplica-
tion. Security properties from the Montgomery lad-
der are preserved. First, the obtained code symme-
try allows a protection against simple side-channel
attacks like timing attacks [32] or SPA [31]. Sec-
ond, a violation of the invariant y = ℓ (x) allows the
algorithm to detect a fault-injection attack, poten-
tially triggering a self-secure countermeasure.
RQ2 is answered in two ways. Exhaustively in-

vestigating fault-propagation patterns lead to the
discovery of three novel fault-injection attacks de-
scribed in Section 4. Moreover, interleaved ladders
can be even more secure than the Montgomery lad-
der. First, as described in Table 1, fully-interleaved
ladders are more secure than the Montgomery lad-
der against fault-injection attacks. Second, ladder
equations in Subsections 5.2, 5.3 and 6.2 allows
for all solutions except the fully-interleaved ladder

28

for scalar multiplication the use of blinding inte-
gers, which provide protection against more com-
plex side-channel attacks like CPA [10].

But this increased protection came at the price
of performance, which raised several challenges re-
garding feasibility (RQ3).

In the case of modular exponentiation, our semi-
interleaved solution is 3 (resp. 2) times more
costly using sequential (resp. parallel) operations,
and our fully-interleaved solution is 5 (resp. 3)
more costly than the Montgomery ladder. But
we also demonstrated that, in practice, our semi-
interleaved solution is only 1.4 times more costly
than the Montgomery ladder, indicating that for
several cores and large key sizes their performances
are similar. Moreover, our fully-interleaved solu-
tion requires a ladder constant, which could be
costly to obtain in general. Fortunately, we proved
in the case of the RSA [45] (Subsection 5.5) and
DSA [40] (Subsection 5.6) cryptosystems that this
ladder constant can be obtained at a small cost with
probability almost equal to 1.

In the case of scalar multiplication, one or two
non-secure scalar multiplication(s) per secret bit
are required to compute one secure scalar multi-
plication, which is tremendously costly. To tackle
this challenge in the context of ECC, we investi-
gated efficient endomorphisms. Unfortunately, this
solution was not as performant as the Montgomery
ladder, while providing the same security proper-
ties, hence has to be rejected. We investigated an-
other solution, that restricts the blinding integer
in Algorithm 15 to integers computed using short
addition chains. We proved that in this case the
semi-interleaved ladder is feasible in practice, but
at the price of limiting the range of values for the
blinding integer and thus the protection against ad-
vanced power attacks. But such a solution was not
applicable to the fully-interleaved ladder, which is
thus, to our knowledge, not feasible in practice in
the context of ECC.

7.2 Future Work

The feasibility of the fully-interleaved ladder in the
context of ECC depends on the efficient computa-
tion of several dependent coefficients for the scalar
multiplications, which is an open and interesting
problem.

Moreover, our approach has been already auto-
mated [11] for the semi-interleaved ladders in the
if-then case, which remains to be done in the gen-
eral case for both semi- and fully-interleaved lad-
ders.

Finally, we only investigated the uni-
variate case for conditional branching, but
the multivariate case may be of interest.
For instance, a multi-variable polynomial∑

0≤n≤d

∑
n1+···+nk=n cn1,...,nk

∏
1≤i≤k x

ni
i can

be represented by a multidimensional array of
coefficients, thus the manipulation of ladder equa-
tions could be handled using matrix operations.

Acknowledgments

This work was supported by the
EU Horizon 2020 project TeamPlay
(https://www.teamplay-h2020.eu), grant
number 779882.

References

[1] Samuel Antão, Jean-Claude Bajard, and
Leonel Sousa. Rns-based elliptic curve point
multiplication for massive parallel architec-
tures. The Computer Journal, 55(5):629–647,
2012.

[2] Jean Arlat. Validation de la sûreté de fonc-
tionnement par injection de fautes : méthode,
mise en oeuvre, application. PhD thesis, Insti-
tut national polytechnique (Toulouse, France),
1990.

[3] Hatem M. Bahig. Improved generation of min-
imal addition chains. Computing, 78(2):161–
172, 2006.

[4] Elaine B. Barker, Lidong Chen, Allen L. Ro-
ginsky, Richard Davis, and Scott Simon. Rec-
ommendation for Pair-Wise Key Establish-
ment Using Integer Factorization Cryptogra-
phy. Number 800-56B Rev. 2 in Special Pub-
lication. NIST SP, , March 2019.

[5] Elaine B. Barker, LiLy Chen, Allen L. Ro-
ginsky, Apostol Vassilev, and Richard Davis.

29

https://www.teamplay-h2020.eu

Recommendation for Pair-Wise Key Estab-
lishment Using Dicrete Logarithm Cryptogra-
phy. Number 800-56A Rev. 3 in Special Pub-
lication. NIST SP, , April 2018.

[6] Saikat Basu. A new parallel window-based im-
plementation of the elliptic curve point multi-
plication in multi-core architectures. Group,
16(4a3):27b2, 2012.

[7] Daniel J Bernstein, Hsueh-Chung Chen, Ming-
Shing Chen, Chen-Mou Cheng, Chun-Hung
Hsiao, Tanja Lange, Zong-Cing Lin, and Bo-
Yin Yang. The billion-mulmod-per-second pc.
In Workshop record of SHARCS, volume 9,
pages 131–144, 2009.

[8] Olivier Billet. Addition chains (accessed may
9, 2023).

[9] Arnaud Boscher, Robert Naciri, and Em-
manuel Prouff. CRT RSA Algorithm Pro-
tected Against Fault Attacks. In Damien
Sauveron, Konstantinos Markantonakis, An-
gelos Bilas, and Jean-Jacques Quisquater, edi-
tors, Information Security Theory and Prac-
tices. Smart Cards, Mobile and Ubiquitous
Computing Systems, pages 229–243, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[10] Eric Brier, Christophe Clavier, and Francis
Olivier. Correlation power analysis with a
leakage model. In International workshop on
cryptographic hardware and embedded systems,
pages 16–29. Springer, 2004.

[11] Christopher Brown, Adam D. Barwell, Yoann
Marquer, Olivier Zendra, Tania Richmond,
and Chen Gu. Semi-automatic ladderisation:
Improving code security through rewriting and
dependent types. In Proceedings of the 2022
ACM SIGPLAN International Workshop on
Partial Evaluation and Program Manipulation,
PEPM 2022, page 14–27, New York, NY, USA,
2022. Association for Computing Machinery.

[12] Christophe Clavier, Benoit Feix, Georges
Gagnerot, Mylène Roussellet, and Vincent
Verneuil. Square Always Exponentiation. In
Daniel J. Bernstein and Sanjit Chatterjee, ed-
itors, Progress in Cryptology – INDOCRYPT
2011, pages 40–57, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[13] Henri Cohen, Gerhard Frey, Roberto Avanzi,
Christophe Doche, Tanja Lange, Kim Nguyen,
and Frederik Vercauteren, editors. Handbook
of Elliptic and Hyperelliptic Curve Cryptogra-
phy. Chapman and Hall/CRC, , 2005.

[14] Jean-Sébastien Coron. Resistance Against Dif-
ferential Power Analysis For Elliptic Curve
Cryptosystems. In Çetin K. Koç and Christof
Paar, editors, Cryptographic Hardware and
Embedded Systems, pages 292–302, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[15] Junfeng Fan, Kazuo Sakiyama, and Ingrid
Verbauwhede. Elliptic curve cryptography on
embedded multicore systems. Design Automa-
tion for Embedded Systems, 12:231–242, 2008.

[16] Robert P. Gallant, Robert J. Lambert, and
Scott Alexander Vanstone. Faster point mul-
tiplication on elliptic curves with efficient en-
domorphisms. In Advances in Cryptology —
CRYPTO, volume 2139 of LNCS, pages 190–
200, , 2001. Springer.

[17] Carl Friedrich Gauss and Arthur A. Clarke.
Disquisitiones Arithmeticae. Yale University
Press, , 1965.

[18] C. Giraud. An RSA Implementation Resis-
tant to Fault Attacks and to Simple Power
Analysis. IEEE Transactions on Computers,
55(9):1116–1120, Sep. 2006.

[19] GMP. Gnu multiple precision arithmetic li-
brary (gmp) (accessed august 6, 2023).

[20] JaeCheol Ha, YongJe Choi, Dooho Choi, and
Hoonjae Lee. Power Analysis Attacks on the
Right-to-Left Square-Always Exponentiation
Algorithm. J. Internet Serv. Inf. Secur., 4:38–
51, 2014.

[21] Neil Hanley, HeeSeok Kim, and Michael Tun-
stall. Exploiting Collisions in Addition Chain-
Based Exponentiation Algorithms Using a Sin-
gle Trace. In Kaisa Nyberg, editor, Topics in
Cryptology — CT-RSA 2015, pages 431–448,
Cham, 2015. Springer International Publish-
ing.

[22] Marc Joye. Highly Regular Right-to-Left Al-
gorithms for Scalar Multiplication. In Pas-
cal Paillier and Ingrid Verbauwhede, editors,

30

Cryptographic Hardware and Embedded Sys-
tems - CHES 2007, pages 135–147, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[23] Marc Joye. Highly Regular m-Ary Powering
Ladders. In Michael J. Jacobson, Vincent Ri-
jmen, and Reihaneh Safavi-Naini, editors, Se-
lected Areas in Cryptography, pages 350–363,
Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

[24] Marc Joye and Sung-Ming Yen. The Mont-
gomery Powering Ladder. In Burton S.
Kaliski, çetin K. Koç, and Christof Paar, ed-
itors, Cryptographic Hardware and Embedded
Systems - CHES 2002, pages 291–302, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[25] Uma S. Kanniah and Azman Samsudin. Multi-
threading elliptic curve cryptosystems. In 2007
IEEE International Conference on Telecom-
munications and Malaysia International Con-
ference on Communications, pages 134–139,
May 2007.

[26] Auguste Kerckhoffs. La cryptographie mili-
taire (military cryptography). Sciences Mili-
taires (J. Military Science, in French), 9:5 –
38, January 1883.

[27] HeeSeok Kim, Tae Hyun Kim, Joong Chul
Yoon, and Seokhie Hong. Practical Second-
Order Correlation Power Analysis on the Mes-
sage Blinding Method and Its Novel Counter-
measure for RSA. ETRI Journal, 32(1):102–
111, 2010.

[28] Ágnes Kiss, Juliane Krämer, Pablo Rauzy,
and Jean-Pierre Seifert. Algorithmic Coun-
termeasures Against Fault Attacks and Power
Analysis for RSA-CRT. In François-Xavier
Standaert and Elisabeth Oswald, editors, Con-
structive Side-Channel Analysis and Secure
Design, pages 111–129, Cham, 2016. Springer
International Publishing.

[29] Donald Ervin Knuth. The Art of Computer
Programming: Fundamental Algorithms, vol-
ume 2. Addison Wesley, , 3rd edition, 07 1997.

[30] N. Koblitz. Elliptic Curve Cryptosystems.
Math. Comp, 48:243–264, 01 1987.

[31] Paul Kocher, Joshua Jaffe, and Benjamin
Jun. Differential Power Analysis. In Michael
Wiener, editor, Advances in Cryptology —
CRYPTO’ 99, pages 388–397, Berlin, Heidel-
berg, 1999. Springer Berlin Heidelberg.

[32] Paul C. Kocher. Timing Attacks on Imple-
mentations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Neal Koblitz, editor, Ad-
vances in Cryptology — CRYPTO ’96, pages
104–113, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[33] Peter L. Montgomery. Montgomery, P.L.:
Speeding the Pollard and Elliptic Curve Meth-
ods of Factorization. Math. Comp. 48, 243-
264. Mathematics of Computation - Math.
Comput., 48:243–243, 01 1987.

[34] Ladder benchmarks (accessed august 6, 2023).

[35] Duc-Phong Le, Chik How Tan, and Michael
Tunstall. Randomizing the Montgomery Pow-
ering Ladder. In Raja Naeem Akram and
Sushil Jajodia, editors, Information Security
Theory and Practice, pages 169–184, Cham,
2015. Springer International Publishing.

[36] Yoann Marquer. Algorithmic Completeness of
Imperative Programming Languages. Funda-
menta Informaticae, 168(1):51–77, July 2019.

[37] Yoann Marquer and Tania Richmond. A hole
in the ladder: Interleaved variables in itera-
tive conditional branching. In ARITH 2020
- 27th IEEE Symposium on Computer Arith-
metic, pages 56–63, Portland, Oregon, USA,
United States, June 2020. IEEE.

[38] Thomas S. Messerges, Ezzy A. Dabbish, and
Robert H. Sloan. Power Analysis Attacks of
Modular Exponentiation in Smartcards. In
Çetin K. Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Sys-
tems, pages 144–157, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[39] Victor S. Miller. Use of Elliptic Curves in
Cryptography. In Hugh C. Williams, editor,
Advances in Cryptology — CRYPTO ’85 Pro-
ceedings, pages 417–426, Berlin, Heidelberg,
1986. Springer Berlin Heidelberg.

31

[40] National Institute of Standards and Technol-
ogy. Digital signature standard (DSS). Tech-
nical Report Federal Information Processing
Standards Publications (FIPS PUB) 186-4,
U.S. Department of Commerce, Washington,
D.C., July 2013.

[41] Yoav Nir, Simon Josefsson, and Manuel
Pégourié-Gonnard. RFC8422: Elliptic curve
cryptography (ECC) cipher suites for trans-
port layer security (TLS) versions 1.2 and ear-
lier, 2020.

[42] Openmp api (accessed august 6, 2023).

[43] M. Petrvalsky, T. Richmond, M. Drutarovsky,
P. Cayrel, and V. Fischer. Differential power
analysis attack on the secure bit permutation
in the McEliece cryptosystem. In 2016 26th In-
ternational Conference Radioelektronika (RA-
DIOELEKTRONIKA), pages 132–137, April
2016.

[44] E. Rescorla. RFC2631: Diffie-Hellman key
agreement method, 1999.

[45] Ronald L Rivest, Adi Shamir, and Leonard
Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120–126, 1978.

[46] EFD Web site. Explicit formulas database.

[47] Falko Strenzke, Erik Tews, H. Gregor Molter,
Raphael Overbeck, and Abdulhadi Shoufan.
Side Channels in the McEliece PKC. In Jo-
hannes Buchmann and Jintai Ding, editors,
Post-Quantum Cryptography, pages 216–229,
Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

[48] Yen Sung-Ming, Seungjoo Kim, Seongan Lim,
and Sangjae Moon. A Countermeasure against
One Physical Cryptanalysis May Benefit An-
other Attack. In Kwangjo Kim, editor, In-
formation Security and Cryptology — ICISC
2001, pages 414–427, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[49] C. D. Walter. The Montgomery and Joye Pow-
ering Ladders are Dual. IACR ePrint Archive,
1081:1–6, 2017.

[50] H. Ziade, R. Ayoubi, and R. Velazco. A sur-
vey on fault injection techniques. International
Arab Journal of Information Technology, Vol.
1, No. 2, July:171–186, 2004.

32

	Introduction
	Context
	Contribution
	Organization of the Paper

	Related Works
	Side-Channel Attacks
	Fault Injection Attacks
	Modular Exponentiation
	Elliptic-curve cryptography (ECC)
	Parallel Computations

	Ladder Equations
	Iterative Conditional Branchings
	Semi-Interleaved Ladders
	Fully-Interleaved Ladders
	Ladderizable Algorithms
	Research Questions

	Vulnerability against Fault Injection Attacks
	First Attacker Model
	Fault-Propagation Patterns
	First Fault-Injection Attack

	Second Attacker Model
	Second Fault-Injection Attack
	Third Fault-Injection Attack

	Comparison

	Generalizing the Montgomery Ladder for the Modular Exponentiation
	Both Semi- and Fully-Interleaved Ladders
	Semi-Interleaved Ladder Solution
	Fully-Interleaved Ladder Solution (General Case)
	Complexity and Performance
	Fully-Interleaved Ladder Solution (RSA Case)
	Fully-Interleaved Ladder Solution (DSA Case)
	Results for the Modular Exponentiation

	Generalizing the Montgomery Ladder for the Scalar Multiplication in ECC
	Both Semi- and Fully-Interleaved Ladders
	Semi-Interleaved Ladder Solution
	Fully-Interleaved Ladder Solution
	Application to ECC
	Complexity
	Results for the Scalar Multiplication

	Conclusion
	Answers to the Research Questions
	Future Work

