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Abstract

In cluster randomized trials, clusters of subjects are randomized rather than subjects themselves, and
missing outcomes are a concern as in individual randomized trials. We assessed strategies for
handling missing data when analysing cluster randomized trials with a binary outcome; strategies
included complete-case, adjusted complete-case, and simple and multiple imputation approaches. We
performed a simulation study to assess bias and coverage rate of the population-averaged
intervention effect estimate. Both multiple imputation with a random-effects logistic regression model
or classical logistic regression provided unbiased estimates of the intervention effect. Both strategies
also showed good coverage properties, even slightly better for multiple imputation with a random-
effects logistic regression approach. Finally, this latter approach led to a slightly negatively biased
intracluster correlation coefficient estimate but less than that with a classical logistic regression model
strategy. We applied these strategies to a real trial randomizing households and comparing ivermectin

and malathion to treat head lice.
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1. Introduction

Cluster randomized trials (CRTS), in which clustefssubjects are randomized rather than
subjects themselves, are being increasingly usedgess health promotion or health services
organization intervention’sThe cluster design may be motivated by differemsons. Some
interventions apply to the cluster level, such las implementation of guidelines, which
prevents randomizing individuals. Cluster randoriizais also adopted to avoid bias due to
contamination between groups, which can be due "feeed effect” because of interactions
between members of clusters, or because the ste@lg @ith an infectious disease such as
influenza, lice or scabi€s’ One feature of CRTs is the presence of correlagiprong
outcomes of subjects within each cluster, whichugsially quantified by the intracluster
correlation coefficient (ICC). Such a correlatiomsh be taken into account in CRTs, both
when planning, to have nominal power, and durirg statistical analysis, to prevent type |
error inflation®

Otherwise, CRTs, as do any randomized clinicall,tricur missing outcomes,with
sometimes outcomes missing for entire clusteBomplete-case (CC) analysis, in which
subjects with a missing outcome are excluded,tengberformed. However, such an analysis
strategy has several pitfalls: it leads to lospafef and usually provides biased estimates of
the intervention effect? In the end, excluding subjects with a missing omte does not
respect the intention-to-treat principle, whichuiegs each randomized subject (and cluster)
to be taken into account in the statistical analyisicluding subjects for whom the outcome is
missing'® 2 To respect this methodological cornerstone ofamalysis of randomized trials,
the imputation of missing outcomes is requit&d.

We investigated different methods for handling migsbinary outcomes in CRTs and
assessed their impact on both the interventiorceffied ICC estimates. Section 2.1 presents
the real CRT that motivated our research and se@i@ provides the statistical analysis
method for the outcome in the absence of missirtg. daection 3 defines the different
strategies evaluated for handling missing outcorBestion 4 describes a simulation study
and presents the results with use of the diffesénaitegies. In section 5, these strategies are
applied to our real CRT example, as a sensitivitglygsis. Finally, section 6 discusses our

results.
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2. Motivating example: the ivermectin trial and ana  lysis method

2.1 Trial design

A recent CRT motivated our researéiThis multicenter double-blind double-dummy study
enrolled 812 subjects in 376 households with diffito-treat head-lice infestation. Each
household was randomly assigned such that anyte@dfesubject within the household
received oral ivermectin or malathion lotion. Th@rary outcome was the absence of head-
lice on day 15. In this trial, a cluster design waged to prevent contamination between the
two groups within the household, head-lice infestabeing readily transmissible. A more
detailed description of this trial can be founddhosidow et al* In all, 398 subjects in 185
households were randomly assigned to receive ivd@imeand 414 subjects in 191
households were randomly assigned to receive matathn the ivermectin group, one
subject (the only individual in that household) wdid not receive any treatment and was not
seen on day 15, was excluded from the analysish Sncexclusion did not compromise the
internal validity of the trial because of blindngs®., the reason for not being treated is
independent from the allocation grodp)On day 15, 42 (10.6%) primary outcomes were
missing for patients in the ivermectin group and(26.1%) in the malathion group. In the
complete-case population, the success rate wasatetl at 90.0% for the malathion group

and 97.2% for the ivermectin group. Considerityg, the outcome from subject

(I=1,...,my) in clusterj (j = 1,...,k) randomized in group(i = 0 in the control [malathion]

group andi =1 in the intervention [ivermectin] group), wefided R, , the missing data

indicator for the binary outcom$, , as R, =1 if the primary binary outcomg,, is observed

and R, =0 if Y, is missing. We estimated the ICC for the missing data indicatsy, 101

was estimated at 0.85 (95% confidence interval [96F0.72-0.92]), which is consistent

with the fact that the outcome was missing for ¢&mtire cluster in 34 clusters of the 43
clusters with at least one missing outcome (79.2%g. assessed which individual baseline
covariates were associated with the outcome amdfbrthe missing data indicator. We found
that age, hair length, severity of infestation drar density were predictors of success
(among subjects with observed outcome). Age andrag\wf infestation were predictors of

missingness. Body mass index (BMI) and sex weraigi@s of neither success nor

missingness.
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2.2 Statistical analysis of binary outcome inthe a  bsence of missing data
A generalized estimating equation (GEE) approachlm used to estimate the population-
average (PA) (also called marginal) interventidieaf"’ % The logistic model is as follows:

P,
|Qg[ﬁ] = IB((;A) + IB(PA)Gi (1)

ijl

where B, = E(Y,,) is the marginal probability of success for subjeict clusterj of groupi;
Y;,,» the binary outcome of interest (equals to 1 veiisence of head lice at day 15 and O

otherwise); G,, the group dummy variable (O for subjects in tle&tml group and 1 for

subjects in the intervention groum’{;’”, the marginal log odds of the probability of sisxe

in the control group (with the PA exponent refegrio "population-average"); an@™, the

marginal log-odds ratio of success between thevatgion and control groups. To account
for clustering, we used the robust variance esbmé&ir standard error and specified an
exchangeable correlation structure.

The ICC must be estimated as recommended in the SGBN Statement extension for
CRTs!® The Fleiss and Cuzick estimatdfor binary outcomes can be used.

3. Missing Data Management Strategies

In this paper, we considered nine strategies toag@missing outcomes. The abbreviations
used for the missing data strategies are in Tablehé&se strategies can be separated as CC
analysis, single imputation (SI) and multiple imgtidn (MI) strategies. Accuracy of these
strategies to handle missing data is closely relatethe missingness mechanism. Three
categories of missing data mechanism were intratlbgeLittle and Rubirf! Data are said to
be missing completely at random (MCAR) if missingmés independent of both unobserved
and observed data, which is rare in pracifcand missing at random (MAR) if, given the
observed data, missingness is independent of thiesenved data. Finally, data are said to be
missing not at random (MNAR) if they are neither M& nor MAR. In the case of partially
observed outcome but fully observed covariatesCaa@alysis, in addition to its association
with loss of power, leads to a biased intervengffiect estimate unless (i) the outcome is
MCAR or (ii) the outcome is MAR given some covaemthat are included (adjusted for) in
the analysis model (adjusted CC) or (iii) the outeois MNAR dependent only on outcome
and a crude odds ratio is estimated. The lattex saexplained by the symmetry property of
the odds ratié® Ml strategies rely on the assumption that data\#dR.® Moreover, to be
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congenial with the analysis, as defined by M&hiilpe MI model for CRTs needs to reflect the

multilevel structure of the data (i.e., to accofamtintracluster correlatiorfy®

3.1 Complete Case Analysis
In CC strategies, no imputation is performed, anly adata from subjects with an observed
outcome are considered for the statistical analysis
3.1.1 Complete case analysis (CC)
CC analysis is the simplest and widely used approdata from any subject with a missing
outcome are discarded before fitting the model.
3.1.2 Adjusted complete case analysis (ACC)
When outcomes are missing at random (MAR), a Cdysisawith an adjustment for
covariates provides an unbiased estimate of theviention effect? For the ACC strategy,
the following model is fitted to the subjects wihserved outcomes:

'O{l—%}:ﬂf&’“ BTG+ B Koy +t B Ky @

ijl
. - - - - - - - (PA) (PA)
where (X ,...,X,) aren individual covariates predictive of missingnesd é,ﬂ(l) v By )

are associated parameters.

3.2 Single imputation strategies
In Sl strategies, each missing outcome is replacgdonce.
3.2.1 Bernoulli single-draw-based strategy with own group success rate as parameter

(BerSOwn)
In this strategy, we use an informal imputation et with the same approach as proposed
by Wittes?® For each missing outcome, a value is imputed witBernoulli draw. The
parameter of the probability distribution is spi&ctb each group. For the control group, the
parameter equals the observed success rate ov@eterngases from the control group, and
the same approach is used for the interventionpgrou
3.2.2 Bernoulli single-draw-based strategy with other group success rate as parameter

(BerOth)
This strategy is the same as previously descrilxedpe for the parameter of the Bernoulli
distribution. For patients in the control groupe tharameter used is the observed success rate
over complete cases from the intervention group, \éce versa. Thus, one can expect this

strategy to prevent intervention-effect overestiorat
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3.3 Multiple imputation strategies

Sl strategies prevent loss of power bue known to lead to undercoverage, as they cannot
reflect missing outcome uncertainty and thus urstenate the variance of intervention-effect
estimate$. In MI strategies, each missing outcome is replddes 1 times, which accounts

for the uncertainty of imputed values by incorpmgtthe between-imputation variance to
standard variance estimatidhTherefore,D completed datasets are generated, and each one
is analysed, thus produciiy intervention-effect estimates and their standardre. For all

MI strategies used in our work, each of thecompleted datasets is analyzed with the
model (1). Thesd estimates are then combined according to Rubirés rto obtain one

intervention effect estimatfg.

3.3.1 Ml with random-effects logistic regression model (LogREMI)
In this strategy, we consider the following randeffects logistic regression model, also

called cluster-specific (CS) mod&lto generate multiple imputations:

P
IOQ[#J =By +BOG By Xy + 0% By Ky + G (3)
il

where 3“® s the CS log-odds ratio of success between tieeviention and control groups,
(Xg - X(y) are then individual covariates previously definetﬁﬂ(‘l‘fs’,... (‘nc)s’) are the

associated parameters aog is the random cluster effect associated with elustwithin

groupi, and distributed adl (0,07) .

Imputed values are generated by adapting, to tleeifsp context of a CRT, a method
proposed by Carpenter and Kenwdrih the context of a longitudinal study with misgin
binary outcomes.

The following steps are performed:
(1) Model (3) is fitted using SAS NLMIXED to the obsed/data to obtain estimates Bf*®

where B refers to ther(+2)-vector (B>, B ,.... BY) of fixed parameters and their
covariance matrixg ., . B(“® starting values are obtained from the ACC strataggel

(2) and a grid search is used for the startingevaliio? . The "predict" option is used to
obtain the cluster-specific random effeafs and associated variance estimai§j :

regardless of whether the cluster has subjectsmiigsing outcomes or not.
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(2) Then, the next steps are repeddetimes:

a. Draw B®®" from a multivariate normal distributioN(B®, % 4e9) @nd, for each

cluster j with at least one subject with a missing outcordegw c” from

b. For each subjedtwith a missing outcome (i.eR;, =0), calculate the individual
predicted probability of a success as follows:
pi*jl = eXDit(ﬁESS)* + IB(CS)* gt ﬁél():S)*X(l)ijl Tt IBESS)*X(n)m + CIJ) )
with

expit(x) = QT}"X))'
Finally, draw the imputed oucome for subjdctfrom a Bernoulli with
parameterp; .
c. The (2) b step is repeated for each subject withissing outcome to obtain e
completed data set.
As denoted by Carpenter and Kenwétduch an approach is only an approximate proper

imputation procedure because to obtain Efecompleted data set; and 5;_ are not re-

estimated after3“®" has been drawn. A SAS macro to implement thigesgsais available
upon request from the first author.
3.3.2 MI with logistic regression model (LogMI)

In this strategy, imputed values are generated thighfollowing standard logistic regression

model, which does not account for the intraclusterelation:

1-P,

|09[i_|} =Bo B G+ BuyXa + et By Koy - (4)
i
The following steps are performed:
(1) Model (4) is fitted to the observed data to obtagtimates ofB the (+2)-vector
(BB +--:B) of fixed parameters and their covariance ma};ri}<.
(2) Then, to generate imputed binary outcomes, thesteps are repeat&itimes:
a. Draw B" from the posterior distribution dB approximated by a multivariate

normal distributionN(f; ,iﬁ ).
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b. For each subject with a missing outcome (i.eR; =0), calculate the
individual predicted probability of a success dtofes:
Pii = €XPit(Byy + B G + BauyXayi -+ By Xmit)
Finally, draw the imputed oucome for subjb(;t;;, as

1 if Uy < pi*jll

Yi*n = ,
0 otherwise,

whereu,, is a draw from a uniform distribution between @ dn

c. The (2) b step is repeated for each subject withsging outcome to obtain the
D™ completed data set.
This strategy, although uncongenial with the sutista model can be implemented with SAS
PROC M.
3.3.3 Ml with linear mixed-effects regression model and simple rounding (LinMixMI)
A normal distribution may be accurate to imputeabjnvariables®>! In this strategy, the
following linear mixed-effects regression imputatimodel is considered:
Y =00+ G +aq Xy +..40 0 Xy +Uy; +8y, )

where a is the intervention effect,X,,...,X,) are then individual covariates previously
defined,(a(l) ,...a(n)) are the associated parametérs, is the random cluster effect associated

with clusterj within groupi, and distributed ad (0,07) and g, is the residual error related

to subject in clusterj within groupi, and distributed asl (0,07) .

We use the Markov chain Monte Carlo (MCMC) algaritldeveloped and implemented by
Schafef" in the R package "pan”. The procedure is more ¢enfhan in Section 3.3.1
because it can provide multiple imputations of mgwalues on multiple variables (not only

the outcome) with non-monotone patterns. In ourvanmate case, given the observed

outcomesYoss, current versions of the paramet&rg?, o’ [where A refers to the (n+2)-
vector @),a ,....0,) of fixed parameters], the random effedts;, and the missing
outcomesyY, are updated in three steps:

(1) U, are drawn given plausible assumed values for tissing outcome¥,; and the

2 2.
parametersA, o, , o, ; then,
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(2) New random values are drawn for the paramefeis?, o’ given assumed values for
the missing outcome;and the random effect$; achieved in (1); and finally,

(3) New random values are drawn for the missing outsovfjje. given the random effects
U; achieved in step (1) and the parametgsg;, o> achieved in step (2).

These three steps, corresponding to a Gibbs samyibs, are repeated with large number of
iterations for the simulated parameter valuesnally converge in distribution to their correct
posterior distributions.

This strategy takes the intracluster correlatioio iaccount but, as it considers thgt is

normally distributed, it imputes a continuous vafae each missing outcome, which is then
rounded off to 0 or 1. Here, a simple roundinghwihputed values rounded to 1>f0.5 and
to O otherwise, is used.
3.3.4 Ml with linear mixed-effects regression model and adaptative rounding

(LinMixAdapMlI)
In this strategy, imputed values for the missingcomesY,, are the same as in Section
3.3.3. The difference with the previous strategheseon the rounding method: here, the
adaptative rounding method proposed by Berndidsused in which the dichotomization
threshold relies on marginal prevalence of sucobssrved on the completed binary outcome
dataset. The adaptative-rounding dichotomizatioestold is obtained as follows:

(1) Calculate &, the mean value of?, (on observed binary outcomes and imputed

ijl
values) then,

(2) Calculatet, the adaptative rounding threshold, based on maloapproximation to the
binomial distribution, ast =w-® (@) Jw(l-w), where ®* is the quantile
function of the normal distribution and finally,

(3) Round imputed outcome to 1 if imputed value isand round imputed outcome to O if
imputed value is ¢

For a binary outcome with extreme prevalence (carequent), this method is assumed to
perform better.

3.3.5 Approximate Bayesian bootstrap Ml (ABBMI)

This strategy is a non-parametric M| approdcH. The following steps are performed to

impute the missing outcomes:
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(1) First, a propensity score is generated to estirtietgrobability of missingness for an
outcome given the observedindividual covariates by fitting the following lagic

regression model:

od =0 |4 oG 40, X, +.t G X
091 PR, =0)) O i O X i et Gy Ao -
J
(2) Then, five strata are defined using the quintilethe propensity score obtained in step
(1).

(3) Finally, in each stratum, an approximate Bayesiaotdirap is performed. FirsYys
draws with replacement are made on Ygg observed outcomes to obtain a pool of
plausible values. Then, the values for g missing outcomes are sampled with
replacement in the pool of,s values previously obtained to provide a completed
dataset. These two sampling procedures are repBatedes to obtairD completed
datasets.

This strategy can be implemented with SAS PROC MI.

4. Simulation study

4.1 Simulation design

We simulated complete CRTs with two parallel groapS00 subjects per group and varying
cluster sizes. We first generated CRTs with a ooioiis outcome, which we further
dichotomized to obtain a binary outcome with preesfied success rates. Once the complete
CRTs were obtained, we generated an individualingssata indicator to obtain a follow-up
rater = 0.8 (i.e., 20% of missing binary outcomes) veithMAR mechanism.

4.1.1 Complete dataset generation

Our simulation plan was adapted from Leyrat éf al.

The following simulation steps were used:

(1) Each cluster sizem;, was first randomly generated from a Poisson ibigion of
parametem (i.e., the mean cluster size) as was previoushp@sed to yield varying
cluster sizes®

(2) Individual continuous outcomes were simulated atiogyto the following model:

Yij(I: =a, +ta G +U; +g,
where a is the intervention effect for the continuous ame Y; (with the ¢ exponent
referring to continuous). For convenience and withlmss of generalizability, we set

a,=0 and var(f;)=1 leading to Y; ~ N(aG J1). a was specified as

ijl
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a=07*(P)-o*(P,) to obtain success rates equal to pre-specifiagegadf P, and P,

in the control and intervention groups, respecivel

(3) Individual covariates mimicking BMI, age, hair lehgsex, severity of infestation and
hair density were generated as follows:

a. First, six standard normally distributed covariat®s, (p=1---6) were
generated with Pearson's correlatiop), between the covariate and the

continuous outcome af

ly = 0 for BMI, r,, = 0.4 for agey, = - 04 for hair

length, r,, = 0 for sex,r;, = —04for severity and , = 0.4 for hair density.

b. The last three covariates were further dichotométh adequate threshold
values to obtain the same prevalence as in ouwvatotg trial, for sex (87% of
girls), severity (38% of severe infestation) and dansity (47% of thick hair),

respectively.

(4) The individual continuous outcomé; was finally dichotomized to obtain a binary

outcomey;

with success rates equal to pre-specified valtid3 and P, .
4.1.2 Missing data introduction
Once the complete datasets were simulated, wedinteml missing outcomes by generating

the individual missing data indicatét, as follows:
(1) Let p; be the rate of observed outcomes for clustergroupi being distributed as a

Beta distribution with parametarandb defined as:
a= nll-r) andb = @-n)d-r) ’
T T
wherer is the rate of observed date=0.8) andt is the ICC for the missing data indicator.

(2) Let definez,;, as:

ijl
Zijl = loQit{P(Ril :l)} = y(age)i AQQ“ +y(sa/)i Severity“ +/1ij
where ZIO{liJ is a random cluster effect.

—17;

(3) Finally, for each subjedt we drawr; as Bernoulli with parameter (exp#()). If

ijl
r; =0 the outcome for subjettvas missing and if, =1 the outcome for subjettvas

observed.
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Our missing data introduction procedure implies tine missing data mechanism is MAR
depending on two covariates, age and severity fekiation, as in our motivating trial, and
that it takes into account the ICC for the misgila¢a indicator.

4.1.3 Smulation parameters

The ivermectin trial estimates were used to calébrhe simulation plan. Thus, we first

considered a CRT witk = 200 clusters per group; success ras ¢€,) = (0.90, 0.97) in the

control and intervention groups, respectively; &€ Ifor the binary outcome in the control
groupp = 0.40; and an ICC for the missing data indicater0.85. We fixed parameters for

age at Y0 = 109(2), Viaen =0 and for severity aty,,, =0 and y,, =10g(5). This

corresponds to an odds ratio relating missingnedsage of 1/2 = 0.5 in the control group and
1 in the intervention group. For severity, theseapeeters correspond to odds ratios of 1 in
the control group and 1/5 = 0.2 in the interventgyroup. We also explored other realistic
scenarios that differed from our example, espacisthaller values for the binary outcome
ICC, which are more plausibly observéd.

Simulation parameters were then specified as falow

* Number of clusters per groupk)( mean number of subjects per clusten):(
(k,m) = (200,2.5) and (40,12.5).

» Success rates in the control and intervention go{p,, B) = (0.50, 0.57) and

(0.90, 0.97), which correspond to the expectedessjon coefficients3™ of 1.279

and 0.282, respectively (and values of 3.59 an8 ih 3erms of odds ratios).

* ICC for the binary outcome in the control groyp= (0.05, 0.01). For a binary
outcome,p depends on the success rate, so it is expectdzk tdifferent in the
intervention and control group&We controlled and explored only the valuepoih
the control group. Because we first generated diraoous individual outcome, we
specified the ICC value for the continuous outcameéhat it allows for recovering the
pre-specified ICC value for the binary outcothd-or this, we used the attenuation
formula proposed by Kraem& shown to be accurate for CRTs with variable cluste
size®

* ICC for the missing data indicatar= (0, 0.1, 0.3, 0.8).

The combinationk,m) = (200,2.5) ang = (0.01) was not simulated because as the ICCevalu
depends in part on cluster size, this small vakesred unrealisti, For each combination of

simulation parameters, 1 000 datasets were sintulgteising SAS.
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4.1.4 Implementation

Each of the nine missing data strategies was thplea to the simulated incomplete datasets.
We used the SAS PROC GENMOD with REPEATED statertefit models (1) and (2). For
MI strategies, we generat&l= 20 imputed datasets for each simulated dat®Bss$ing data
were imputed in R for the LinMixMI and LinMixAdapMitrategies using the package "pan”.
The first 1 000 iterations were considered burnili@Q updates then separated each saved
draw from the posterior distribution, and prior &gstimates” for variance parameters were
obtained from expectation-maximization algorithnheoamplemented in the package "pan".
The imputed values were then imported in SAS toob@ded, analysed and results combined.
All other missing data strategies were performedeg with SAS.

4.1.5 Performance criteria

The nine missing data handling strategies wereuatadl based on:

+ Relative bias defined as:

where E("A)is the average of the estimated intervention efbeer the 1 000 simulations.

A positive relative bias means an overestimatiothefintervention effect andce versa.

» Average estimated standard error of the intervargifect estimate defined as:

1 1000

= N (3P
10004= B
* Coverage rate of the regression coefficient defiasdthe proportion of 95% Cls

containing the true regression coefficient valuée Tmargin of error with 1 000
simulation replicates igsa/WgﬁllOOO: 001¢ for the coverage of nominal 95%
Cls. Thus, we considered a coverage rate smal&r 3.6% as undercoverage and
greater than 96.4% as overcoverage.

» Estimated ICC for the binary outcome defined,fa,sthe average of the estimated ICC
over the 1 000 simulations. The MI estimator fae thinary outcome ICC was simply
the average of thB estimates.

* For MI strategies, we also estimated the fractibmissing information EMI), which
relies on the ratio of the between-imputation vae to the within-imputation
variance and reflects how missing information cdwities to inferential uncertainty
about the intervention effect. The relative effig of an estimate based d»
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imputations, as compared to an infinite number raputations, is approximately

(1+ FMI/D)™ %

4.2 Simulation results
421 Redative bias of intervention effect

Table 2 displays the relative bias of averaged rwetgion effects. When

(R,, B)=1(0.90, 0.97), we sometimes encountered connvegy@roblems (although rarely)
for the ACC strategy (and therefore for the LogREStMhategy) because of the limited number

of pejorative outcomes. For the CC strategy, whetélve value ok, m, B andp, relative

bias decreased with increasifighe ICC for missing data indicator. Indeed, vitbreasingr,
outcomes within a cluster tend to be fully obsergedully missing, so individual covariates

have lower influence on the missingness process.
Regarding the ACC strategy, for a give™ , relative bias was not influenced by parameters

k, m, p andt. Otherwise, this strategy was associated with annnatervention-effect estimate

systematically higher than that associated with @@ strategy. Indeed, because of the

noncollapsibility of the odds ratio, th8™ estimate associated with the ACC strategy was

expected to be farther from the null than jB&” estimate associated with the CC strategy.

LogMI and LogREMI were the least biased strategieltive bias was lower than 5% in any
situation. In contrast, BerSOth and ABBMI were Hyglbiased strategies, whatever the
simulation scenario, and BerSOwn, LinMixMI and LindddapMI provided acceptable bias
in few situations.

4.2.2 Average standard error and coverage rate of 95% Cls

Tables 3 and 4 display the average estimated sthmaeors of intervention-effect estimates

and coverage rates of 95% Cls. Average standaaisewere slightly larger for LogREMI,

which accounts for intracluster correlation than E@gMI. For a given 3™, the relative

difference in average standard errors between Loghl LogREMI increased witlp.
Nevertheless, these two strategies produced Cls wgitod coverage properties and as
expected, even better for LogREMI than for LogMinMixMI and LinMixAdapMI showed
reasonable coverage properties in most scenariisother strategies resulted in poor
coverage properties. ACC, which adjusts on cowesithhat are associated with the outcome,
resulted in greater average standard errors thanuttadjusted CC. Single imputation
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strategies, BerSOwn and BerSOth, led to low cowerates because of a bias in the estimated
intervention effects and an underestimation ofstla@dard errors.

4.2.3 1CC for the binary outcome

Table 5 displays the estimated ICC in the controlig averaged over the 1 000 simulations.
We report only the results obtained for the stia®gith the best results regarding correction
of bias and coverage rate, namely LogMI and LogREMiich we compared with the CC
strategy. As expected, estimates for the LogMitetyyg which does not account for the ICC
were attenuated as compared with the LogREMI gjyatand this attenuation increased at
larger p value. For the values considered in our study, @@ strategy also provided
consistent estimates fpr

4.2.4 Fraction of missing information

Over all scenarios, the fraction of missing infotima was mainly less than 0.15 (Table S1 in
the online supplementary material) with maximalueaD.22. Therefore, estimates based on
20 imputations had a relative efficiency of 99%umit variance and thus a standard deviation

that is, at most, 0.5% higher than those basedanfimite number of imputations.

5. Application of the missing data handling strateg ies to the Ivermectin trial

data
The nine missing data handling strategies wereiegppb the data from the trial described in
Section 2. The intervention group and six basetioeariates (BMI, age, hair length, sex,
severity of infestation and hair density) were unlgdd in the ACC strategy and in the Mi
approaches. Covariates had no missing data. Reseltdisplayed in Table 6 and Figure 1.
All strategies led to the conclusion of a significalifference in success rate in favor of
ivermectin, but the intervention effect estimatesevquite different, with odds ratios varying
from 2.42 (BerSOth strategy) to 3.81 (ACC strate@gnsistent with our simulation results,
the intervention effect was greater with the AC@niCC strategy. Otherwise, the BerSOth
and ABBMI strategies were associated with the sssailhtervention effects.
Binary-outcome ICC estimates in the malathion greaped from 0.314 (LogMI strategy) to
0.403 (LinMixAdapMI strategy) (Table 7). As in oaimulation study, the ICC was smaller
with the LogMI than the LogREMI and CC strategies.
Overall, this sensitivity analysis showed the rdbass of the trial results (i.e., superiority of

ivermectin over malathion for difficult-to-treat du lice).

6. Discussion
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In this study, we aimed to assess, through a stimualatudy, nine strategies that can be used
to handle missing binary outcomes in a CRT. Oudifigs can be summarized as follows.
First, we found that MI strategies with a standardandom-effects logistic regression model
provided the best results in terms of bias coroactind coverage rate. Second, although the

random-effects logistic regression imputation model only approximate because the

estimates of¢; and 6; were not updated on the basis of t#&™" draw, it provided

coverage rates nearer the nominal 95% value thdntli standard logistic regression
imputation model and also better ICC estimateguinsimulation results, we found only few
differences between the LogREMI and LogMI strategedthough the latter strategy, which
does not take into account the ICC, tended to wstienate both the variance of the
intervention effect and the ICC, especially asl#ter increased. Nevertheless, as pointed out
by Kenward et al> the imputation model must reflect and thereforesprve the clustered
structure of the data, which is the case with Hredom-effects logistic regression model for
MI. Because MI with a classical logistic regressinadel is implemented in various software
packages, it remains an attractive practical optldowever, if adopted while analysing a

CRT, we recommend estimating the ICC from comptates. Results from the ACC strategy

provided adjusted intervention-effect estimatest tage constant for a giver3B™ but

different (systematically further from the nullpm the crude intervention effect, as outlined
by Groenwold et &’ Because covariate adjustment is uncommon in raimomtrial
analysis, this strategy could be more interestmgpidemiology. Ml assuming a normal
distribution for the binary outcome provided abselvelative biases that were always less
than 20% but not always below the 10% thresholdchv@se and results regarding bias and
coverage properties were poorer than those withstiogand random-effects logistic
imputation models. As in the study of Bernaardal&?, we found weak differences between
simple and adaptative methods for rounding imputellles even if adaptative rounding
provided slightly better results regarding bias aoderage properties when the failure rate
was rare. The approximate Bayesian bootstrap giratd not provide satisfactory bias
correction or coverage rate. The inefficiency ab thtrategy was not surprising because, as
already outlined, it is not appropriate for anay/sech as the regression model that involves

relationships among variabl&&’*°

Ma et al*! also assessed missing data strategies for a bingcgme in a simulation study
based on a real CRT without missing data. Howeesen with an MAR (covariate-

dependant) generation of missing outcomes, novéasintroduced in the intervention effect
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(the estimated intervention effects were the saonghfe CC analysis as for the full dataset
analysis) and the coverage rates were not repdrteadsubsequent simulation study again by
Ma et al.*? the performance of the GEE approach and the rareftents logistic regression
model were compared for analysis of CRTs underetiméssing binary outcome strategies,
namely, CC analysis, standard MI (correspondingdgMI in our work) and within-cluster
MI, both with a logistic regression Ml model. Inrostudy, we could not use within-cluster
MI because empty clusters could occur. The Ma .estally showed similar results to ours
regarding good performance on bias and coverageofdhe GEE approach with standard Ml
with the logistic regression model. The authors dat assess MI with a random-effects
logistic regression model. Taljaard et @lso conducted a simulation study in the contéxt o
missing outcomes in CRTs, but the authors focusedomtinuous outcomes. However, they
expressed results in term of type | error and pawatrer than bias and coverage rate, which
prevents easy comparison with our results. Neviske as we concluded, the authors
supported the use of MI with a mixed-effects lineagression model or a classical linear
regression model until the ICC is not too large padicularly when the number of clusters is
small.

Finally, we used a PA model to estimate the intetiea effect, but several other approaches
are available to analyse CRTs with binary outcoraeshe individual level and include
adjusted chi-square and ratio estimator approachézor example, in the original publication
for the ivermectin tridf, the primary outcome was analysed by a ratio-estimapproach
(equivalent to a standard Pearson chi-squaretgtatigh a simple adjustment to account for
clustering). We did not use this latter approacltcabee chi-square statistics cannot be
combined in the MI framework with Rubin’s rul&sEurthermore, CRTs can also be analysed
with cluster-level methods, and we need furtheestigation of missing data strategies when
using such methods of analysis.
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Table 1 Abbreviations of the strategies used for handling missing outcomes

Abbreviation Strategy

CcC Complete case analysis

ACC Adjusted complete case analysis

BerSOwn Bernoulli single draw with parameter = own group success rate

BerSOth Bernoulli single draw with parameter = other group success rate

LogMI Multiple imputation (MI) with logistic regression model approach

LogREMI Multiple imputation (MI) with random-effects logistic regression model approach
LinMixml Multiple imputation (MI) with linear mixed-effects regression model approach and

simple rounding
LinMixAdapMI  Multiple imputation (MI) with linear mixed-effects regression model approach and
adaptative rounding

ABBMI Multiple imputation (MI) with approximate Bayesian bootstrap
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Table 2 Relative bias of regression coefficient estimates obtained from Generalized Estimating Equation method with different missing data strategies,
averaged over 1 000 simulations

Missing Data Strategies
k, m ,B(PA) p T CC ACC(NC) BersOwn BersOth LogMlI LogREMI LinMixMI LinMixAdapMl ABBMI

200,25 1279 040 0.85 1.00 13.66 (3) -5.64 -62.82 3.61 3.08 -7.27 -12.06 -19.20
200,25 1279 0.05 0.80 -1.93 17.31(1) -5.67 -50.09 1.26 1.28 -9.49 -13.53 -17.96
0.30 -8.04 18.43(1) -8.39 -45.83 2.09 2.42 -12.59 -12.75 -19.63

0.10 -11.05 18.14(2) -11.50 -46.87 1.78 2.10 -15.16 -14.16 -20.49

0 -12.47 17.50(1) -13.00 -47.52 1.50 1.89 -16.59 -15.09 -21.24

0.282 0.05 0.80 -7.86 32.12(0) -20.93 -49.52 3.12 4.06 -5.80 -6.03 -19.56

0.30 -33.61 30.74 (0) -47.25 -64.67 0.10 0.39 -10.58 -11.35 -31.66

0.10 -39.94 33.68(0) -53.24 -69.21 1.82 241 -10.11 -10.89 -33.18

0 -45.43 30.52(0) -58.40 -72.83 -0.03 0.23 -12.81 -13.68 -35.19

40,125 1.279 0.05 0.80 -1.25 16.85(2) -0.46 -46.43 2.09 2.40 -8.27 -11.80 -12.68
0.30 -6.16 19.82(2) -5.19 -44.57 4.19 4.58 -9.43 -9.36 -17.30

0.10 -9.43 19.51(1) -9.48 -47.09 3.28 3.64 -12.38 -11.03 -19.66

0 -12.40 18.20(3) -13.19 -49.95 1.70 2.07 -15.10 -12.92 -21.17

1279 0.01 0.80 -0.22 18.27(4) -0.37 -46.07 2.90 3.62 -7.51 -10.95 -11.80

0.30 -7.42 19.82(1) -6.77 -45.16 2.70 3.16 -11.16 -11.10 -18.21

0.10 -11.24 18.49(2) -11.63 -47.95 1.62 2.05 -14.02 -12.51 -20.66

0 -12.83 18.68(2) -13.49 -50.08 1.54 1.78 -15.49 -13.36 -21.35

0.282 0.05 0.80 -7.97 33.90(0) -20.31 -50.02 3.85 4.44 -2.11 -2.34 -14.13

0.30 -36.32 29.11(0) -51.86 -70.16 -0.03 0.58 -8.56 -9.19 -32.57

0.10 -40.89 32.30(0) -58.86 -74.73 1.18 1.85 -8.47 -9.19 -34.46

0 -43.95 32.16(0) -61.92 -77.03 0.31 0.61 -9.11 -9.93 -35.28

0.282 0.01 0.80 -10.90 30.36(0) -26.80 -54.18 -0.29 0.88 -5.44 -5.66 -17.42

0.30 -31.35 33.31(0) -49.36 -67.85 2.32 2.74 -5.81 -6.37 -28.90

0.10 -42.13 31.11(0) -60.70 -76.06 -0.80 -0.17 -9.39 -10.14 -35.25

0 -43.58 33.62(0) -61.26 -76.10 1.93 1.98 -7.66 -8.47 -33.52

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary
outcome in the control group (p) and intracluster correlation coefficient for the missing data indicator (). The population-average intervention effects ,B(PA) of

1.279 and 0.282 correspond to success rates in the control and intervention groups (Pg, P;) of (0.90, 0,97) and (0.50, 0.57), respectively. Cells with absolute
relative bias = 10% are in bold.***® NC = Number of non convergence.
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Table 3 Average estimated standard error of regression coefficient estimates obtained from Generalized Estimating Equation method using different
missing data strategies, averaged over 1000 simulations.

Missing Data Strategies
k, m ,B(PA) p T CC ACC(NC) BerSOwn BerSOth LogMI LogREMI LinMixMI LinMixAdapMI ABBMI

200,25 1.279 040 0.85 0.435 0.437(3) 0.359 0.308 0.402 0.422 0.419 0.404 0.384
200,25 1.279 0.05 0.80 0.340 0.361(1) 0.303 0.268 0.334 0.337 0.337 0.332 0.327
0.30 0.332 0.355(1) 0.308 0.278 0.327 0.332 0.332 0.329 0.323

0.10 0.330 0.355(2) 0.308 0.280 0.325 0.330 0.331 0.329 0.322

0 0329 0.354(1) 0.306 0.281 0.324 0.330 0.330 0.328 0.321

0.282 0.05 0.80 0.144 0.161(0) 0.127 0.127 0.138 0.140 0.142 0.142 0.139

0.30 0.141 0.159 (0) 0.126 0.127 0.136 0.138 0.140 0.140 0.138

0.10 0.141 0.159 (0) 0.126 0.126 0.136 0.138 0.140 0.140 0.138

0 0.141 0.160 (0) 0.126 0.126 0.137 0.139 0.140 0.140 0.138

40,125 1.279 0.05 0.80 0.392 0.396(2) 0.349 0.321 0.376 0.383 0.388 0.382 0.371
0.30 0.382 0.388(2) 0.352 0.315 0.370 0.379 0.382 0.378 0.363

0.10 0.378 0.387(1) 0.349 0.312 0.367 0.377 0.380 0.376 0.359

0 0379 0.391(3) 0.350 0.311 0.367 0.378 0.380 0.377 0.360

1.279 0.01 0.80 0.353 0.372(4) 0.318 0.295 0.348 0.352 0.357 0.353 0.345

0.30 0.343 0.367(1) 0.319 0.289 0.339 0.344 0.348 0.347 0.335

0.10 0.340 0.364(2) 0.316 0.286 0.336 0.341 0.345 0.344 0.332

0 0.340 0.366(2) 0.318 0.285 0.336 0.342 0.346 0.344 0.334

0.282 0.05 0.80 0.176 0.184(0) 0.152 0.154 0.163 0.169 0.174 0.174 0.165

0.30 0.170 0.180 (0) 0.150 0.151 0.161 0.167 0.169 0.169 0.161

0.10 0.169 0.180 (0) 0.149 0.150 0.161 0.166 0.168 0.168 0.160

0 0.169 0.180(0) 0.149 0.149 0.161 0.167 0.168 0.168 0.160

0.282 0.01 0.80 0.148 0.166 (0) 0.132 0.135 0.143 0.145 0.154 0.154 0.146

0.30 0.145 0.164 (0) 0.131 0.133 0.141 0.143 0.148 0.148 0.143

0.10 0.145 0.164 (0) 0.131 0.131 0.141 0.143 0.147 0.147 0.143

0 0.144 0.164 (0) 0.130 0.131 0.140 0.143 0.147 0.147 0.142

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary
outcome in the control group (p) and intracluster correlation coefficient for the missing data indicator (). The population-average intervention effects ,B(PA) of

1.279 and 0.282 correspond to success rates in the control and intervention groups (P,, P;) of (0.90, 0,97) and (0.50, 0.57), respectively NC = Number of non-
convergence.
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Table 4 Coverage of 95% confidence intervals of regression coefficients obtained from Generalized Estimating Equation method with different missing
data strategies, averaged over 1 000 simulations

Missing Data Strategies

k, m ﬁ(PA) p T CcC ACC BerSOwn BerSOth LogMI LogREMI LinMixMI LinMixAdapMI ABBMI
200, 2.5 1.279 040 085 941 93.9 84.5 17.6 93.0 95.1 94.0 94.2 88.4
200, 2.5 1.279 0.05 0.80 944 93.7 87.8 28.1 95.1 95.7 94.6 93.5 89.5

0.30 931 91.9 87.8 40.5 94.5 95.7 92.0 93.1 88.1

0.10 917 90.8 84.9 40.1 95.0 95.4 90.2 92.0 88.0

0 91.0 92.7 84.4 38.9 96.2 96.8 89.8 92.3 86.9

0.282 0.05 080 944 90.6 87.2 83.8 94.8 95.1 96.6 96.7 94.0
0.30 90.3 90.5 78.6 73.0 93.9 94.8 95.3 95.5 92.5

0.10 8838 90.7 74.3 69.1 95.2 94.9 96.1 96.1 92.7

0 85.4 91.8 734 68.1 94.2 94.2 94.7 94.3 91.1

40,125 1.279 0.05 080 926 91.6 87.2 52.9 92.8 93.0 94.2 93.5 90.5
0.30 925 91.0 86.7 55.6 93.6 93.9 93.1 94.2 89.5

0.10 916 88.9 87.1 51.0 93.1 94.6 92.1 93.3 88.5

0 91.2 92.2 85.0 43.5 94.7 95.5 91.7 93.4 87.7

1.279 0.01 0.80 935 915 88.0 46.4 93.7 94.1 94.3 94.1 92.4
0.30 915 89.6 86.2 45.2 94.1 94.2 92.5 93.2 88.4

0.10 910 91.5 86.7 39.8 94.7 94.9 91.8 93.4 88.2

0 89.9 89.9 83.6 35.7 94.9 95.4 90.6 93.1 86.3

0.282 0.05 0.80 943 91.2 86.9 88.4 94.5 94.7 95.7 95.8 95.0
0.30 89.7 91.7 76.2 74.9 92.8 93.6 94.4 94.4 90.3

0.10 88.2 91.1 75.0 72.0 93.1 94.0 94.7 94.8 91.0

0 87.0 90.9 72.0 70.9 93.0 93.7 95.2 95.1 89.3

0.282 0.01 080 941 90.8 83.4 79.5 93.8 94.1 95.9 95.9 93.6
0.30 90.8 90.6 73.9 67.8 93.3 94.3 95.7 95.7 93.3

0.10 846 89.6 69.2 61.4 94.8 95.0 96.7 96.7 89.9

0 84.8 90.4 69.3 63.5 94.1 94.7 96.5 96.4 91.2

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary
outcome in the control group (p) and intracluster correlation coefficient for the missing data indicator (). The population-average intervention effects ,B(PA) of

1.279 and 0.282 correspond to success rates in the control and intervention groups (Pg, P;) of (0.90, 0.97) and (0.50, 0.57), respectively. Cells with coverage
rate outside [93.6, 96.4] are in bold.
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Table 5 Estimated intracluster correlation coefficients for the binary outcome in the control group with different missing data strategies, averaged over
1 000 simulations

Missing Data Strategies

k, m ,B(PA) p T CcC LogMI LogREMI
200, 2.5 1.279 0.40 0.85 0.393 0.291 0.347
200, 2.5 1.279 0.05 0.80 0.041 0.036 0.044

0.30 0.040 0.032 0.044

0.10 0.048 0.033 0.048

0 0.050 0.031 0.047

0.282 0.05 0.80 0.050 0.040 0.046
0.30 0.044 0.034 0.041

0.10 0.046 0.035 0.044

0 0.048 0.036 0.045

40,125 1.279 0.05 0.80 0.044 0.036 0.042
0.30 0.041 0.031 0.041

0.10 0.041 0.029 0.040

0 0.041 0.028 0.041

1.279 0.01 0.80 0.006 0.006 0.009
0.30 0.004 0.004 0.009

0.10 0.006 0.004 0.009

0 0.006 0.004 0.009

0.282 0.05 0.80 0.046 0.036 0.041
0.30 0.047 0.035 0.042

0.10 0.045 0.034 0.042

0 0.046 0.034 0.042

0.282 0.01 0.80 0.008 0.006 0.007
0.30 0.008 0.005 0.007

0.10 0.007 0.005 0.007

0 0.006 0.004 0.006

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary
outcome in the control group (p) and intracluster correlation coefficient for the missing data indicator (). The population-average intervention effects ,B(PA) of
1.279 and 0.282 correspond to success rates in the control and intervention groups (Po, P,) of (0.90, 0.97) and (0.50, 0.57), respectively.
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Table 6 Estimated intervention effect in the ivermectin versus malathion trial**, according to missing data strategies

Strategy B E(BPY)  95% Cl of B OR  95% Clof OR p-value
cC 1.22 0.41 [0.41, 2.02] 3.37 [1.51,7.55] 0.0031
ACC 1.34 0.41 [0.54 , 2.14] 3.81 [1.71,8.51] 0.0011
BersOwn 1.12 0.38 [038,1.86] 3.06 [L46,6.42] 0.0031
BerSOth 0.88 0.35 [020,157] 242 [1.22.479] 0.0115
LogMI 1.20 0.39 [043,1.97] 3.33 [L54,7.21] 0.0022
LogREMI 1.19 0.41 [039,1.99] 3.29 [1.48,7.30] 0.0035
LinMixMI 1.16 0.40 [038,1.94] 3.18 [146,6.94] 0.0036
LinMixAdapMI ~ 1.14 0.40 [037,1.92] 313 [L44,6.80] 0.0039
ABBMI 1.06 0.39 [0.30, 1.82] 2.88 [1.35,6.14] 0.0062

Note: Odds ratios (OR) of the probability of success in the ivermectin group as compared to malathion. For complete-case and adjusted complete-case
analyses: n=355 subjects in the ivermectin group and n=368 subjects in the malathion group. For all other strategies, n=397 subjects in the ivermectin group
and n=414 subjects in the malathion group.

Agnes CAILLE Page 29 08/11/2013



Table 7 Estimated intracluster correlation coefficient of the primary outcome in the malathion
group of the ivermectin trial, according to missing data strategies

Strategy Yo

CcC 0.399
BerSOwn 0.338
BerSOth 0.336
LogMI 0.314
LogREMI 0.375
LinMixMml 0.390
LinMixAdapMIl  0.403
ABBMI 0.327

Note: In the complete case analysis, n=368; in all other strategies, n=414.
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Strategies OR [95% (]|

CC — ' 3.37[1.51,7.55]
ACC = = o 3.81[1.71,8.51]
BersOwn —i ' 3.06[1.46,6.42]
BersOth —— 2.42[1.22,4.79]
LogMi — : 3.33[1.54,7.21]
LogREMI — . . 3.20[1.48,7.30]
LinMixMi —m - 3.18[1.46,6.94]
LinMixAdapMl —= ' 3.13[1.44 ,6.80]
ABBMI — 288[1.35,6.14]

0o 3 6 9
Favors Favors
malathion ivermectin
Figure 1 Intervention effect estimates in the malathion group of the ivermectin trial, by missing

data strategies
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Table S1 Fraction of missing information of regression coefficients obtained from
Generalized Estimating Equation method with different missing data strategies, averaged
over 1 000 simulations.

Missing Data Strategies
k, m ,B(PA) p T LogMl LogREMI LinMixMIl LinMixAdapMI ABBMI

200,25 1.279 040 0.85 0.156 0.196 0.135 0.201 0.199
200,25 1.279 0.05 0.80 0.165 0.181 0.147 0.214 0.214
0.30 0.129 0.152 0.103 0.164 0.186

0.10 0.129 0.153 0.097 0.156 0.182

0 0.131 0.156 0.097 0.155 0.184

0.282 0.05 0.80 0.143 0.159 0.175 0.174 0.168

0.30 0.125 0.144 0.151 0.151 0.156

0.10 0.129 0.145 0.146 0.147 0.160

0 0.132 0.145 0.146 0.147 0.161

40,125 1.279 0.05 0.80 0.149 0.163 0.138 0.200 0.184
0.30 0.118 0.135 0.093 0.143 0.169

0.10 0.116 0.135 0.087 0.135 0.168

0 0.118 0.138 0.083 0.130 0.164

1.279 0.01 0.80 0.166 0.179 0.155 0.220 0.205

0.30 0.137 0.152 0.109 0.165 0.186

0.10 0.134 0.150 0.103 0.154 0.185

0 0.136 0.155 0.101 0.148 0.189

0.282 0.05 0.80 0.116 0.148 0.167 0.167 0.141

0.30 0.103 0.122 0.115 0.116 0.131

0.10 0.104 0.118 0.105 0.106 0.130

0 0.104 0.119 0.102 0.103 0.133

0.282 0.01 0.80 0.152 0.165 0.201 0.201 0.180

0.30 0.133 0.148 0.142 0.142 0.156

0.10 0.132 0.149 0.133 0.133 0.164

0 0.132 0.149 0.133 0.133 0.167

Note: Results are shown by number of clusters per group (k) and mean number of subjects
per cluster (m), intracluster correlation coefficient for the binary outcome in the control
group (p) and intracluster correlation coefficient for the missing data indicator (t). The

population-average intervention effects ,B(PA) of 1.279 and 0.282 correspond to success

rates in the control and intervention groups (Po, P;) of (0.90, 0.97) and (0.50, 0.57),
respectively.
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