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Abstract 

In cluster randomized trials, clusters of subjects are randomized rather than subjects themselves, and 

missing outcomes are a concern as in individual randomized trials. We assessed strategies for 

handling missing data when analysing cluster randomized trials with a binary outcome; strategies 

included complete-case, adjusted complete-case, and simple and multiple imputation approaches. We 

performed a simulation study to assess bias and coverage rate of the population-averaged 

intervention effect estimate. Both multiple imputation with a random-effects logistic regression model 

or classical logistic regression provided unbiased estimates of the intervention effect. Both strategies 

also showed good coverage properties, even slightly better for multiple imputation with a random-

effects logistic regression approach. Finally, this latter approach led to a slightly negatively biased 

intracluster correlation coefficient estimate but less than that with a classical logistic regression model 

strategy. We applied these strategies to a real trial randomizing households and comparing ivermectin 

and malathion to treat head lice. 

 

Keywords 
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1. Introduction 

Cluster randomized trials (CRTs), in which clusters of subjects are randomized rather than 

subjects themselves, are being increasingly used to assess health promotion or health services 

organization interventions.1 The cluster design may be motivated by different reasons. Some 

interventions apply to the cluster level, such as the implementation of guidelines, which 

prevents randomizing individuals. Cluster randomization is also adopted to avoid bias due to 

contamination between groups, which can be due to a "herd effect" because of interactions 

between members of clusters, or because the study deals with an infectious disease such as 

influenza, lice or scabies.2–4 One feature of CRTs is the presence of correlation among 

outcomes of subjects within each cluster, which is usually quantified by the intracluster 

correlation coefficient (ICC). Such a correlation must be taken into account in CRTs, both 

when planning, to have nominal power, and during the statistical analysis, to prevent type I 

error inflation.5 

Otherwise, CRTs, as do any randomized clinical trial, incur missing outcomes,6 with 

sometimes outcomes missing for entire clusters.7 Complete-case (CC) analysis, in which 

subjects with a missing outcome are excluded, is often performed. However, such an analysis 

strategy has several pitfalls: it leads to loss of power8 and usually provides biased estimates of 

the intervention effect.6,9 In the end, excluding subjects with a missing outcome does not 

respect the intention-to-treat principle, which requires each randomized subject (and cluster) 

to be taken into account in the statistical analysis, including subjects for whom the outcome is 

missing.10–12 To respect this methodological cornerstone of the analysis of randomized trials, 

the imputation of missing outcomes is required.13  

We investigated different methods for handling missing binary outcomes in CRTs and 

assessed their impact on both the intervention effect and ICC estimates. Section 2.1 presents 

the real CRT that motivated our research and section 2.2 provides the statistical analysis 

method for the outcome in the absence of missing data. Section 3 defines the different 

strategies evaluated for handling missing outcomes. Section 4 describes a simulation study 

and presents the results with use of the different strategies. In section 5, these strategies are 

applied to our real CRT example, as a sensitivity analysis. Finally, section 6 discusses our 

results. 
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2. Motivating example: the ivermectin trial and ana lysis method 

2.1 Trial design 

A recent CRT motivated our research.14 This multicenter double-blind double-dummy study 

enrolled 812 subjects in 376 households with difficult-to-treat head-lice infestation. Each 

household was randomly assigned such that any infested subject within the household 

received oral ivermectin or malathion lotion. The primary outcome was the absence of head-

lice on day 15. In this trial, a cluster design was used to prevent contamination between the 

two groups within the household, head-lice infestation being readily transmissible. A more 

detailed description of this trial can be found in Chosidow et al.14 In all, 398 subjects in 185 

households were randomly assigned to receive ivermectin, and 414 subjects in 191 

households were randomly assigned to receive malathion. In the ivermectin group, one 

subject (the only individual in that household) who did not receive any treatment and was not 

seen on day 15, was excluded from the analysis. Such an exclusion did not compromise the 

internal validity of the trial because of blindness (i.e., the reason for not being treated is 

independent from the allocation group).15 On day 15, 42 (10.6%) primary outcomes were 

missing for patients in the ivermectin group and 46 (11.1%) in the malathion group. In the 

complete-case population, the success rate was estimated at 90.0% for the malathion group 

and 97.2% for the ivermectin group. Considering ijlY , the outcome from subject l 

(l = 1,…, mij) in cluster j (j = 1,…, k) randomized in group i (i = 0 in the control [malathion] 

group and i  = 1 in the intervention [ivermectin] group), we defined ijlR , the missing data 

indicator for the binary outcome ijlY , as 1=ijlR  if the primary binary outcome ijlY  is observed 

and 0=ijlR  if ijlY  is missing. We estimated τ, the ICC for the missing data indicator ijlR .16 τ 

was estimated at 0.85 (95% confidence interval [95% CI] [0.72-0.92]), which is consistent 

with the fact that the outcome was missing for the entire cluster in 34 clusters of the 43 

clusters with at least one missing outcome (79.1%). We assessed which individual baseline 

covariates were associated with the outcome and/or with the missing data indicator. We found 

that age, hair length, severity of infestation and hair density were predictors of success 

(among subjects with observed outcome). Age and severity of infestation were predictors of 

missingness. Body mass index (BMI) and sex were predictors of neither success nor 

missingness. 
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2.2 Statistical analysis of binary outcome in the a bsence of missing data 

A generalized estimating equation (GEE) approach can be used to estimate the population-

average (PA) (also called marginal) intervention effect.17,18 The logistic model is as follows: 
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where )( ijlijl YEP =  is the marginal probability of success for subject l in cluster j of group i; 

ijlY , the binary outcome of interest (equals to 1 with absence of head lice at day 15 and 0 

otherwise); iG , the group dummy variable (0 for subjects in the control group and 1 for 

subjects in the intervention group); )(
)0(

PAβ , the marginal log odds of the probability of success 

in the control group (with the PA exponent referring to "population-average"); and )(PAβ , the 

marginal log-odds ratio of success between the intervention and control groups. To account 

for clustering, we used the robust variance estimator for standard error and specified an 

exchangeable correlation structure. 

The ICC must be estimated as recommended in the CONSORT Statement extension for 

CRTs.19 The Fleiss and Cuzick estimator20 for binary outcomes can be used. 

 

3. Missing Data Management Strategies 

In this paper, we considered nine strategies to manage missing outcomes. The abbreviations 

used for the missing data strategies are in Table 1. These strategies can be separated as CC 

analysis, single imputation (SI) and multiple imputation (MI) strategies. Accuracy of these 

strategies to handle missing data is closely related to the missingness mechanism. Three 

categories of missing data mechanism were introduced by Little and Rubin.21 Data are said to 

be missing completely at random (MCAR) if missingness is independent of both unobserved 

and observed data, which is rare in practice,22 and missing at random (MAR) if, given the 

observed data, missingness is independent of the unobserved data. Finally, data are said to be 

missing not at random (MNAR) if they are neither MCAR nor MAR. In the case of partially 

observed outcome but fully observed covariates, a CC analysis, in addition to its association 

with loss of power, leads to a biased intervention-effect estimate unless (i) the outcome is 

MCAR or (ii) the outcome is MAR given some covariates that are included (adjusted for) in 

the analysis model (adjusted CC) or (iii) the outcome is MNAR dependent only on outcome 

and a crude odds ratio is estimated. The latter case is explained by the symmetry property of 

the odds ratio.23 MI strategies rely on the assumption that data are MAR.6 Moreover, to be 
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congenial with the analysis, as defined by Meng,24 the MI model for CRTs needs to reflect the 

multilevel structure of the data (i.e., to account for intracluster correlation).25 

 

3.1 Complete Case Analysis  

In CC strategies, no imputation is performed, and only data from subjects with an observed 

outcome are considered for the statistical analysis. 

3.1.1 Complete case analysis (CC) 

CC analysis is the simplest and widely used approach: data from any subject with a missing 

outcome are discarded before fitting the model. 

3.1.2 Adjusted complete case analysis (ACC) 

When outcomes are missing at random (MAR), a CC analysis with an adjustment for 

covariates provides an unbiased estimate of the intervention effect.22 For the ACC strategy, 

the following model is fitted to the subjects with observed outcomes: 
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where ( )()1( ,..., nXX ) are n individual covariates predictive of missingness and ( )( ))(
)(

)(
1 ..., PA

n
PA ββ  

are associated parameters.  

 

3.2 Single imputation strategies 

In SI strategies, each missing outcome is replaced only once. 

3.2.1 Bernoulli single-draw-based strategy with own group success rate as parameter 

(BerSOwn) 

In this strategy, we use an informal imputation method, with the same approach as proposed 

by Wittes.26 For each missing outcome, a value is imputed with a Bernoulli draw. The 

parameter of the probability distribution is specific to each group. For the control group, the 

parameter equals the observed success rate over complete cases from the control group, and 

the same approach is used for the intervention group. 

3.2.2 Bernoulli single-draw-based strategy with other group success rate as parameter 

(BerSOth) 

This strategy is the same as previously described except for the parameter of the Bernoulli 

distribution. For patients in the control group, the parameter used is the observed success rate 

over complete cases from the intervention group, and vice versa. Thus, one can expect this 

strategy to prevent intervention-effect overestimation. 
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3.3 Multiple imputation strategies 

SI strategies prevent loss of power but are known to lead to undercoverage, as they cannot 

reflect missing outcome uncertainty and thus underestimate the variance of intervention-effect 

estimates.8 In MI strategies, each missing outcome is replaced D > 1 times, which accounts 

for the uncertainty of imputed values by incorporating the between-imputation variance to 

standard variance estimation.27 Therefore, D completed datasets are generated, and each one 

is analysed, thus producing D intervention-effect estimates and their standard errors. For all 

MI strategies used in our work, each of the D completed datasets is analyzed with the 

model (1). These D estimates are then combined according to Rubin's rules to obtain one 

intervention effect estimate.27  

 

3.3.1 MI with random-effects logistic regression model (LogREMI) 

In this strategy, we consider the following random-effects logistic regression model, also 

called cluster-specific (CS) model,28 to generate multiple imputations: 
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where )(CSβ  is the CS log-odds ratio of success between the intervention and control groups, 

( )()1( ,..., nXX ) are the n individual covariates previously defined, ( )( ))(
)(

)(
1 ..., CS

n
CS ββ  are the 

associated parameters and ijc  is the random cluster effect associated with cluster j within 

group i, and distributed as ),0( 2
cN σ . 

Imputed values are generated by adapting, to the specific context of a CRT, a method 

proposed by Carpenter and Kenward29 in the context of a longitudinal study with missing 

binary outcomes. 

The following steps are performed: 

(1) Model (3) is fitted using SAS NLMIXED to the observed data to obtain estimates of )(CS
Β  

where )(CS
Β  refers to the (n+2)-vector ( )(

)(
)()(

)0( ,...,, CS
n

CSCS βββ ) of fixed parameters and their 

covariance matrix )(CSβΣ . )(CS
Β  starting values are obtained from the ACC strategy model 

(2) and a grid search is used for the starting value of 2
cσ . The "predict" option is used to 

obtain the cluster-specific random effects ijĉ  and associated variance estimate 2ˆ
ijcσ , 

regardless of whether the cluster has subjects with missing outcomes or not.  



Agnès CAILLE Page 8 08/11/2013 

(2) Then, the next steps are repeated D times: 

a. Draw )*( CS
Β  from a multivariate normal distribution )ˆ,ˆ( )(

)(
CS

CSN βΣΒ  and, for each 

cluster j with at least one subject with a missing outcome, draw *
ijc  from 

)ˆ,ˆ(
ijcijcN σ . 

b. For each subject l with a missing outcome (i.e., 0=ijlR ), calculate the individual 

predicted probability of a success as follows: 

 *
ijlp = expit )...( *

)(
*)(

)()1(
*)(

)1(
*)(*)(

)0( ijijln
CS
nijl

CS
i

CSCS cxxg +++++ ββββ ,  

 with 

 expit )(x  = 
)1(

1
)( xe−+

.  

 Finally, draw the imputed oucome for subject l from a Bernoulli with 

parameter *
ijlp . 

c. The (2) b step is repeated for each subject with a missing outcome to obtain the Dth 

completed data set. 

As denoted by Carpenter and Kenward,29 such an approach is only an approximate proper 

imputation procedure because to obtain the Dth completed data set, ijĉ  and 2ˆ
ijcσ  are not re-

estimated after )*( CSβ  has been drawn. A SAS macro to implement this strategy is available 

upon request from the first author. 

3.3.2 MI with logistic regression model (LogMI) 

In this strategy, imputed values are generated with the following standard logistic regression 

model, which does not account for the intracluster correlation:  

 ijlnnijli
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The following steps are performed: 

(1) Model (4) is fitted to the observed data to obtain estimates of Β  the (n+2)-vector 

( )()0( ,...,, nβββ ) of fixed parameters and their covariance matrix βΣ .  

(2) Then, to generate imputed binary outcomes, the next steps are repeated D times: 

a. Draw *
Β  from the posterior distribution of Β approximated by a multivariate 

normal distribution )ˆ,ˆ( βΣΒN . 
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b. For each subject l with a missing outcome (i.e. 0=ijlR ), calculate the 

individual predicted probability of a success as follows: 

 *
ijlp = expit )...( )(

*
)()1(

*
)1(

**
)0( ijlnnijli xxg ββββ ++++   

 Finally, draw the imputed oucome for subject l *
ijly  as 





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*
ijlijl

ijl

pu
y  

where ijlu  is a draw from a uniform distribution between 0 and 1. 

c. The (2) b step is repeated for each subject with a missing outcome to obtain the 

Dth completed data set. 

This strategy, although uncongenial with the substantive model can be implemented with SAS 

PROC MI.  

3.3.3 MI with linear mixed-effects regression model and simple rounding (LinMixMI) 

A normal distribution may be accurate to impute binary variables.30,31 In this strategy, the 

following linear mixed-effects regression imputation model is considered: 

 ijlijijlnnijliijl eUXXGY ++++++= )()()1()1()0( ... αααα , (5) 

where α  is the intervention effect, ( )()1( ,..., nXX ) are the n individual covariates previously 

defined, ( ))()1( ..., nαα  are the associated parameters, ijU  is the random cluster effect associated 

with cluster j within group i, and distributed as ),0( 2
bN σ  and ijle  is the residual error related 

to subject l in cluster j within group i, and distributed as ),0( 2
wN σ . 

We use the Markov chain Monte Carlo (MCMC) algorithm developed and implemented by 

Schafer31 in the R package "pan". The procedure is more complex than in Section 3.3.1 

because it can provide multiple imputations of missing values on multiple variables (not only 

the outcome) with non-monotone patterns. In our univariate case, given the observed 

outcomes Yobs, current versions of the parameters 22 ,, wb σσΑ  [where Α  refers to the (n+2)-

vector ( )()0( ,...,, nααα ) of fixed parameters], the random effects ijU , and the missing 

outcomes missY  are updated in three steps: 

(1) ijU  are drawn given plausible assumed values for the missing outcomes missY  and the 

parameters 22 ,, wb σσΑ ; then, 
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(2) New random values are drawn for the parameters 22 ,, wb σσΑ  given assumed values for 

the missing outcomes missY and the random effects ijU  achieved in (1); and finally, 

(3) New random values are drawn for the missing outcomes missY  given the random effects 

ijU  achieved in step (1) and the parameters 22 ,, wb σσΑ  achieved in step (2). 

These three steps, corresponding to a Gibbs sampler cycle, are repeated with large number of 

iterations for the simulated parameter values to finally converge in distribution to their correct 

posterior distributions.  

This strategy takes the intracluster correlation into account but, as it considers that ijlY  is 

normally distributed, it imputes a continuous value for each missing outcome, which is then 

rounded off to 0 or 1. Here, a simple rounding, with imputed values rounded to 1 if ≥ 0.5 and 

to 0 otherwise, is used. 

3.3.4 MI with linear mixed-effects regression model and adaptative rounding 

(LinMixAdapMI) 

In this strategy, imputed values for the missing outcomes missY  are the same as in Section 

3.3.3. The difference with the previous strategy relies on the rounding method: here, the 

adaptative rounding method proposed by Bernaards30 is used in which the dichotomization 

threshold relies on marginal prevalence of success observed on the completed binary outcome 

dataset. The adaptative-rounding dichotomization threshold is obtained as follows: 

(1) Calculate ω , the mean value of ijlY  (on observed binary outcomes and imputed 

values) then, 

(2) Calculate t, the adaptative rounding threshold, based on a normal approximation to the 

binomial distribution, as )1()(1 ϖϖϖϖ −Φ−= −t , where 1−Φ  is the quantile 

function of the normal distribution and finally, 

(3) Round imputed outcome to 1 if imputed value is ≥ t and round imputed outcome to 0 if 

imputed value is < t. 

For a binary outcome with extreme prevalence (rare or frequent), this method is assumed to 

perform better. 

3.3.5 Approximate Bayesian bootstrap MI  (ABBMI) 

This strategy is a non-parametric MI approach.32,33 The following steps are performed to 

impute the missing outcomes: 
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(1) First, a propensity score is generated to estimate the probability of missingness for an 

outcome given the observed n individual covariates by fitting the following logistic 

regression model:  

 ijlnnijli
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(2) Then, five strata are defined using the quintiles of the propensity score obtained in step 

(1). 

(3) Finally, in each stratum, an approximate Bayesian bootstrap is performed. First, Yobs 

draws with replacement are made on the Yobs observed outcomes to obtain a pool of 

plausible values. Then, the values for the Ymis missing outcomes are sampled with 

replacement in the pool of Yobs values previously obtained to provide a completed 

dataset. These two sampling procedures are repeated D times to obtain D completed 

datasets. 

This strategy can be implemented with SAS PROC MI.  

4. Simulation study 

4.1 Simulation design 

We simulated complete CRTs with two parallel groups of 500 subjects per group and varying 

cluster sizes. We first generated CRTs with a continuous outcome, which we further 

dichotomized to obtain a binary outcome with pre-specified success rates. Once the complete 

CRTs were obtained, we generated an individual missing data indicator to obtain a follow-up 

rate π = 0.8 (i.e., 20% of missing binary outcomes) with an MAR mechanism.  

4.1.1 Complete dataset generation 

Our simulation plan was adapted from Leyrat et al.34 

The following simulation steps were used: 

(1) Each cluster size, mij, was first randomly generated from a Poisson distribution of 

parameter m (i.e., the mean cluster size) as was previously proposed to yield varying 

cluster sizes.18 

(2) Individual continuous outcomes were simulated according to the following model:  

 ijliji
c

ijl eUGY +++= αα )0( , 

where α  is the intervention effect for the continuous outcome c
ijlY  (with the c exponent 

referring to continuous). For convenience and without loss of generalizability, we set 

00 =α  and 1)var( =c
ijlY  leading to c

ijlY  ~ )1,( iGN α . α  was specified as 
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)()( 0
1

1
1 PP −− Φ−Φ=α  to obtain success rates equal to pre-specified values of 0P  and 1P  

in the control and intervention groups, respectively. 

(3) Individual covariates mimicking BMI, age, hair length, sex, severity of infestation and 

hair density were generated as follows:  

a. First, six standard normally distributed covariates ( )6,,1)( L=pX p  were 

generated with Pearson's correlation )( pr  between the covariate and the 

continuous outcome of )1(r  = 0 for BMI, )2(r  = 0.4 for age, )3(r  = 4.0−  for hair 

length, )4(r  = 0 for sex, )5(r  = 4.0− for severity and )6(r  = 0.4 for hair density. 

b. The last three covariates were further dichotomized with adequate threshold 

values to obtain the same prevalence as in our motivating trial, for sex (87% of 

girls), severity (38% of severe infestation) and hair density (47% of thick hair), 

respectively. 

(4) The individual continuous outcome cijlY  was finally dichotomized to obtain a binary 

outcome ijlY  with success rates equal to pre-specified values of 0P  and 1P . 

4.1.2 Missing data introduction 

Once the complete datasets were simulated, we introduced missing outcomes by generating 

the individual missing data indicator ijlR  as follows: 

(1) Let ijη  be the rate of observed outcomes for cluster j in group i being distributed as a 

Beta distribution with parameter a and b defined as: 

 
τ

τπ )1( −=a , and 
τ

τπ )1)(1( −−=b , 

 where π is the rate of observed data (π=0.8) and τ is the ICC for the missing data indicator. 

(2) Let define ijlZ  as: 

 ijlZ  = logit ( ){ } ijijlisevijliageijl SeverityAgeRP λγγ ++== )()(1  

where 




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=

ij

ij
ij η

η
λ

1
log  is a random cluster effect. 

(3) Finally, for each subject l, we draw ijlr  as Bernoulli with parameter (expit(ijlz )). If 

ijlr =0 the outcome for subject l was missing and if ijlr =1 the outcome for subject l was 

observed.  



Agnès CAILLE Page 13 08/11/2013 

Our missing data introduction procedure implies that the missing data mechanism is MAR 

depending on two covariates, age and severity of infestation, as in our motivating trial, and 

that it takes into account the ICC for the missing data indicator.  

4.1.3 Simulation parameters 

The ivermectin trial estimates were used to calibrate the simulation plan. Thus, we first 

considered a CRT with k = 200 clusters per group; success rates (0P , 1P ) = (0.90, 0.97) in the 

control and intervention groups, respectively; an ICC for the binary outcome in the control 

group ρ = 0.40; and an ICC for the missing data indicator τ = 0.85. We fixed parameters for 

age at 0)(ageγ  = log(2), 1)(ageγ  = 0 and for severity at 0)(sevγ  = 0 and 1)(sevγ  = log(5). This 

corresponds to an odds ratio relating missingness and age of 1/2 = 0.5 in the control group and 

1 in the intervention group. For severity, these parameters correspond to odds ratios of 1 in 

the control group and 1/5 = 0.2 in the intervention group. We also explored other realistic 

scenarios that differed from our example, especially smaller values for the binary outcome 

ICC, which are more plausibly observed.35 

Simulation parameters were then specified as follows: 

• Number of clusters per group (k), mean number of subjects per cluster (m): 

(k,m) = (200,2.5) and (40,12.5). 

• Success rates in the control and intervention groups: ( 0P , 1P ) = (0.50, 0.57) and 

(0.90, 0.97), which correspond to the expected regression coefficients )(PAβ  of 1.279 

and 0.282, respectively (and values of 3.59 and 1.33 in terms of odds ratios). 

• ICC for the binary outcome in the control group: ρ = (0.05, 0.01). For a binary 

outcome, ρ depends on the success rate, so it is expected to be different in the 

intervention and control groups.36 We controlled and explored only the value of ρ in 

the control group. Because we first generated a continuous individual outcome, we 

specified the ICC value for the continuous outcome so that it allows for recovering the 

pre-specified ICC value for the binary outcome.37 For this, we used the attenuation 

formula proposed by Kraemer,38 shown to be accurate for CRTs with variable cluster 

size.39 

• ICC for the missing data indicator: τ = (0, 0.1, 0.3, 0.8). 

The combination (k,m) = (200,2.5) and ρ = (0.01) was not simulated because as the ICC value 

depends in part on cluster size, this small value seemed unrealistic.35 For each combination of 

simulation parameters, 1 000 datasets were simulated by using SAS. 
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4.1.4 Implementation 

Each of the nine missing data strategies was then applied to the simulated incomplete datasets. 

We used the SAS PROC GENMOD with REPEATED statement to fit models (1) and (2). For 

MI strategies, we generated D = 20 imputed datasets for each simulated dataset. Missing data 

were imputed in R for the LinMixMI and LinMixAdapMI strategies using the package "pan". 

The first 1 000 iterations were considered burn-in, 100 updates then separated each saved 

draw from the posterior distribution, and prior "guesstimates" for variance parameters were 

obtained from expectation-maximization algorithms also implemented in the package "pan". 

The imputed values were then imported in SAS to be rounded, analysed and results combined. 

All other missing data strategies were performed entirely with SAS.  

4.1.5 Performance criteria 

The nine missing data handling strategies were evaluated based on: 

• Relative bias defined as: 

 
)(

)()(ˆ
100

PA

PAPA

β
ββ −

×   

where )(ˆ PAβ is the average of the estimated intervention effect over the 1 000 simulations. 

A positive relative bias means an overestimation of the intervention effect and vice versa.  

• Average estimated standard error of the intervention effect estimate defined as: 

 ∑
=

1000

1

)( )ˆ(
1000

1

i

PA
iSE β .  

• Coverage rate of the regression coefficient defined as the proportion of 95% CIs 

containing the true regression coefficient value. The margin of error with 1 000 

simulation replicates is 014.0100095.005.096.1 =×  for the coverage of nominal 95% 

CIs. Thus, we considered a coverage rate smaller than 93.6% as undercoverage and 

greater than 96.4% as overcoverage. 

• Estimated ICC for the binary outcome defined as ρ̂ , the average of the estimated ICC 

over the 1 000 simulations. The MI estimator for the binary outcome ICC was simply 

the average of the D estimates. 

• For MI strategies, we also estimated the fraction of missing information (FMI), which 

relies on the ratio of the between-imputation variance to the within-imputation 

variance and reflects how missing information contributes to inferential uncertainty 

about the intervention effect. The relative efficiency of an estimate based on D 
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imputations, as compared to an infinite number of imputations, is approximately 

( ) 11 −+ DFMI .40 

 

 

4.2 Simulation results 

4.2.1 Relative bias of intervention effect 

Table 2 displays the relative bias of averaged intervention effects. When 

( 0P , 1P ) = (0.90, 0.97), we sometimes encountered convergence problems (although rarely) 

for the ACC strategy (and therefore for the LogREMI strategy) because of the limited number 

of pejorative outcomes. For the CC strategy, whatever the value of k, m, )(PAβ  and ρ, relative 

bias decreased with increasing τ, the ICC for missing data indicator. Indeed, with increasing τ, 

outcomes within a cluster tend to be fully observed or fully missing, so individual covariates 

have lower influence on the missingness process.  

Regarding the ACC strategy, for a given )(PAβ , relative bias was not influenced by parameters 

k, m, ρ and τ. Otherwise, this strategy was associated with a mean intervention-effect estimate 

systematically higher than that associated with the CC strategy. Indeed, because of the 

noncollapsibility of the odds ratio, the )(PAβ  estimate associated with the ACC strategy was 

expected to be farther from the null than the )(PAβ  estimate associated with the CC strategy.22 

LogMI and LogREMI were the least biased strategies: relative bias was lower than 5% in any 

situation. In contrast, BerSOth and ABBMI were highly biased strategies, whatever the 

simulation scenario, and BerSOwn, LinMixMI and LinMixAdapMI provided acceptable bias 

in few situations. 

4.2.2 Average standard error and coverage rate of 95% CIs 

Tables 3 and 4 display the average estimated standard errors of intervention-effect estimates 

and coverage rates of 95% CIs. Average standard errors were slightly larger for LogREMI, 

which accounts for intracluster correlation than for LogMI. For a given )(PAβ , the relative 

difference in average standard errors between LogMI and LogREMI increased with ρ. 

Nevertheless, these two strategies produced CIs with good coverage properties and as 

expected, even better for LogREMI than for LogMI. LinMixMI and LinMixAdapMI showed 

reasonable coverage properties in most scenarios. All other strategies resulted in poor 

coverage properties. ACC, which adjusts on covariates that are associated with the outcome, 

resulted in greater average standard errors than the unadjusted CC. Single imputation 



Agnès CAILLE Page 16 08/11/2013 

strategies, BerSOwn and BerSOth, led to low coverage rates because of a bias in the estimated 

intervention effects and an underestimation of the standard errors.  

4.2.3 ICC for the binary outcome 

Table 5 displays the estimated ICC in the control group averaged over the 1 000 simulations. 

We report only the results obtained for the strategies with the best results regarding correction 

of bias and coverage rate, namely LogMI and LogREMI, which we compared with the CC 

strategy. As expected, estimates for the LogMI strategy, which does not account for the ICC 

were attenuated as compared with the LogREMI strategy, and this attenuation increased at 

larger ρ value. For the values considered in our study, the CC strategy also provided 

consistent estimates for ρ. 

4.2.4 Fraction of missing information 

Over all scenarios, the fraction of missing information was mainly less than 0.15 (Table S1 in 

the online supplementary material) with maximal value 0.22. Therefore, estimates based on 

20 imputations had a relative efficiency of 99% in unit variance and thus a standard deviation 

that is, at most, 0.5% higher than those based on an infinite number of imputations.  

 

5. Application of the missing data handling strateg ies to the Ivermectin trial 

data 

The nine missing data handling strategies were applied to the data from the trial described in 

Section 2. The intervention group and six baseline covariates (BMI, age, hair length, sex, 

severity of infestation and hair density) were included in the ACC strategy and in the MI 

approaches. Covariates had no missing data. Results are displayed in Table 6 and Figure 1. 

All strategies led to the conclusion of a significant difference in success rate in favor of 

ivermectin, but the intervention effect estimates were quite different, with odds ratios varying 

from 2.42 (BerSOth strategy) to 3.81 (ACC strategy). Consistent with our simulation results, 

the intervention effect was greater with the ACC than CC strategy. Otherwise, the BerSOth 

and ABBMI strategies were associated with the smallest intervention effects. 

Binary-outcome ICC estimates in the malathion group varied from 0.314 (LogMI strategy) to 

0.403 (LinMixAdapMI strategy) (Table 7). As in our simulation study, the ICC was smaller 

with the LogMI than the LogREMI and CC strategies. 

Overall, this sensitivity analysis showed the robustness of the trial results (i.e., superiority of 

ivermectin over malathion for difficult-to-treat head lice). 

 

6. Discussion 
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In this study, we aimed to assess, through a simulation study, nine strategies that can be used 

to handle missing binary outcomes in a CRT. Our findings can be summarized as follows. 

First, we found that MI strategies with a standard or random-effects logistic regression model 

provided the best results in terms of bias correction and coverage rate. Second, although the 

random-effects logistic regression imputation model is only approximate because the 

estimates of ijĉ  and 2ˆ
ijcσ were not updated on the basis of the )*( CSβ  draw, it provided 

coverage rates nearer the nominal 95% value than did the standard logistic regression 

imputation model and also better ICC estimates. In our simulation results, we found only few 

differences between the LogREMI and LogMI strategies, although the latter strategy, which 

does not take into account the ICC, tended to underestimate both the variance of the 

intervention effect and the ICC, especially as the latter increased. Nevertheless, as pointed out 

by Kenward et al.,25 the imputation model must reflect and therefore preserve the clustered 

structure of the data, which is the case with the random-effects logistic regression model for 

MI. Because MI with a classical logistic regression model is implemented in various software 

packages, it remains an attractive practical option. However, if adopted while analysing a 

CRT, we recommend estimating the ICC from complete cases. Results from the ACC strategy 

provided adjusted intervention-effect estimates that are constant for a given )(PAβ  but 

different (systematically further from the null) from the crude intervention effect, as outlined 

by Groenwold et al.22 Because covariate adjustment is uncommon in randomized trial 

analysis, this strategy could be more interesting in epidemiology. MI assuming a normal 

distribution for the binary outcome provided absolute relative biases that were always less 

than 20% but not always below the 10% threshold we chose and results regarding bias and 

coverage properties were poorer than those with logistic and random-effects logistic 

imputation models. As in the study of Bernaards et al.30, we found weak differences between 

simple and adaptative methods for rounding imputed values even if adaptative rounding 

provided slightly better results regarding bias and coverage properties when the failure rate 

was rare. The approximate Bayesian bootstrap strategy did not provide satisfactory bias 

correction or coverage rate. The inefficiency of this strategy was not surprising because, as 

already outlined, it is not appropriate for analyses such as the regression model that involves 

relationships among variables.7,29,40  

Ma et al.41 also assessed missing data strategies for a binary outcome in a simulation study 

based on a real CRT without missing data. However, even with an MAR (covariate-

dependant) generation of missing outcomes, no bias was introduced in the intervention effect 
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(the estimated intervention effects were the same for the CC analysis as for the full dataset 

analysis) and the coverage rates were not reported. In a subsequent simulation study again by 

Ma et al.,42 the performance of the GEE approach and the random-effects logistic regression 

model were compared for analysis of CRTs under three missing binary outcome strategies, 

namely, CC analysis, standard MI (corresponding to LogMI in our work) and within-cluster 

MI, both with a logistic regression MI model. In our study, we could not use within-cluster 

MI because empty clusters could occur. The Ma et al. study showed similar results to ours 

regarding good performance on bias and coverage rate of the GEE approach with standard MI 

with the logistic regression model. The authors did not assess MI with a random-effects 

logistic regression model. Taljaard et al.7 also conducted a simulation study in the context of 

missing outcomes in CRTs, but the authors focused on continuous outcomes. However, they 

expressed results in term of type I error and power rather than bias and coverage rate, which 

prevents easy comparison with our results. Nevertheless, as we concluded, the authors 

supported the use of MI with a mixed-effects linear regression model or a classical linear 

regression model until the ICC is not too large and particularly when the number of clusters is 

small. 

Finally, we used a PA model to estimate the intervention effect, but several other approaches 

are available to analyse CRTs with binary outcomes at the individual level and include 

adjusted chi-square and ratio estimator approaches.1,43 For example, in the original publication 

for the ivermectin trial14, the primary outcome was analysed by a ratio-estimator approach 

(equivalent to a standard Pearson chi-square statistic with a simple adjustment to account for 

clustering). We did not use this latter approach because chi-square statistics cannot be 

combined in the MI framework with Rubin’s rules.44 Furthermore, CRTs can also be analysed 

with cluster-level methods, and we need further investigation of missing data strategies when 

using such methods of analysis.  
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Table 1 Abbreviations of the strategies used for handling missing outcomes 

Abbreviation Strategy 

CC Complete case analysis 

ACC Adjusted complete case analysis 

BerSOwn Bernoulli single draw with parameter = own group success rate 

BerSOth Bernoulli single draw with parameter = other group success rate 

LogMI Multiple imputation (MI) with logistic regression model approach 

LogREMI Multiple imputation (MI) with random-effects logistic regression model approach 

LinMixMI Multiple imputation (MI) with linear mixed-effects regression model approach and 

simple rounding 

LinMixAdapMI Multiple imputation (MI) with linear mixed-effects regression model approach and 

adaptative rounding 

ABBMI Multiple imputation (MI) with approximate Bayesian bootstrap 
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Table 2  Relative bias of regression coefficient estimates obtained from Generalized Estimating Equation method with different missing data strategies, 
averaged over 1 000 simulations 

    Missing Data Strategies 
k, m )(PAβ  

 

ρ τ CC ACC (NC) BerSOwn BerSOth LogMI LogREMI LinMixMI LinMixAdapMI ABBMI 

200, 2.5 1.279 0.40 0.85 1.00 13.66 (3) -5.64 -62.82 3.61 3.08 -7.27 -12.06 -19.20 
200, 2.5 1.279 0.05 0.80 -1.93 17.31 (1) -5.67 -50.09 1.26 1.28 -9.49 -13.53 -17.96 

   0.30 -8.04 18.43 (1) -8.39 -45.83 2.09 2.42 -12.59 -12.75 -19.63 
   0.10 -11.05 18.14 (2) -11.50 -46.87 1.78 2.10 -15.16 -14.16 -20.49 
   0 -12.47 17.50 (1) -13.00 -47.52 1.50 1.89 -16.59 -15.09 -21.24 
 0.282 0.05 0.80 -7.86 32.12 (0) -20.93 -49.52 3.12 4.06 -5.80 -6.03 -19.56 
   0.30 -33.61 30.74 (0) -47.25 -64.67 0.10 0.39 -10.58 -11.35 -31.66 
   0.10 -39.94 33.68 (0) -53.24 -69.21 1.82 2.41 -10.11 -10.89 -33.18 
   0 -45.43 30.52 (0) -58.40 -72.83 -0.03 0.23 -12.81 -13.68 -35.19 

40, 12.5 1.279 0.05 0.80 -1.25 16.85 (2) -0.46 -46.43 2.09 2.40 -8.27 -11.80 -12.68 
   0.30 -6.16 19.82 (2) -5.19 -44.57 4.19 4.58 -9.43 -9.36 -17.30 
   0.10 -9.43 19.51 (1) -9.48 -47.09 3.28 3.64 -12.38 -11.03 -19.66 
   0 -12.40 18.20 (3) -13.19 -49.95 1.70 2.07 -15.10 -12.92 -21.17 
 1.279 0.01 0.80 -0.22 18.27 (4) -0.37 -46.07 2.90 3.62 -7.51 -10.95 -11.80 
   0.30 -7.42 19.82 (1) -6.77 -45.16 2.70 3.16 -11.16 -11.10 -18.21 
   0.10 -11.24 18.49 (2) -11.63 -47.95 1.62 2.05 -14.02 -12.51 -20.66 
   0 -12.83 18.68 (2) -13.49 -50.08 1.54 1.78 -15.49 -13.36 -21.35 
 0.282 0.05 0.80 -7.97 33.90 (0) -20.31 -50.02 3.85 4.44 -2.11 -2.34 -14.13 
   0.30 -36.32 29.11 (0) -51.86 -70.16 -0.03 0.58 -8.56 -9.19 -32.57 
   0.10 -40.89 32.30 (0) -58.86 -74.73 1.18 1.85 -8.47 -9.19 -34.46 
   0 -43.95 32.16 (0) -61.92 -77.03 0.31 0.61 -9.11 -9.93 -35.28 
 0.282 0.01 0.80 -10.90 30.36 (0) -26.80 -54.18 -0.29 0.88 -5.44 -5.66 -17.42 
   0.30 -31.35 33.31 (0) -49.36 -67.85 2.32 2.74 -5.81 -6.37 -28.90 
   0.10 -42.13 31.11 (0) -60.70 -76.06 -0.80 -0.17 -9.39 -10.14 -35.25 
   0 -43.58 33.62 (0) -61.26 -76.10 1.93 1.98 -7.66 -8.47 -33.52 

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary 

outcome in the control group (ρ) and intracluster correlation coefficient for the missing data indicator (τ). The population-average intervention effects )(PAβ  of 

1.279 and 0.282 correspond to success rates in the control and intervention groups (P0, P1) of (0.90, 0,97) and (0.50, 0.57), respectively. Cells with absolute 
relative bias ≥ 10% are in bold.45,46 NC = Number of non convergence. 



Agnès CAILLE Page 26 08/11/2013 

Table 3  Average estimated standard error of regression coefficient estimates obtained from Generalized Estimating Equation method using different 
missing data strategies, averaged over 1000 simulations. 

    Missing Data Strategies 
k, m )(PAβ  

 

ρ τ CC ACC (NC) BerSOwn BerSOth LogMI LogREMI LinMixMI LinMixAdapMI ABBMI 

200, 2.5 1.279 0.40 0.85 0.435 0.437 (3) 0.359 0.308 0.402 0.422 0.419 0.404 0.384 
200, 2.5 1.279 0.05 0.80 0.340 0.361 (1) 0.303 0.268 0.334 0.337 0.337 0.332 0.327 

   0.30 0.332 0.355 (1) 0.308 0.278 0.327 0.332 0.332 0.329 0.323 
   0.10 0.330 0.355 (2) 0.308 0.280 0.325 0.330 0.331 0.329 0.322 
   0 0.329 0.354 (1) 0.306 0.281 0.324 0.330 0.330 0.328 0.321 
 0.282 0.05 0.80 0.144 0.161 (0) 0.127 0.127 0.138 0.140 0.142 0.142 0.139 
   0.30 0.141 0.159 (0) 0.126 0.127 0.136 0.138 0.140 0.140 0.138 
   0.10 0.141 0.159 (0) 0.126 0.126 0.136 0.138 0.140 0.140 0.138 
   0 0.141 0.160 (0) 0.126 0.126 0.137 0.139 0.140 0.140 0.138 

40, 12.5 1.279 0.05 0.80 0.392 0.396 (2) 0.349 0.321 0.376 0.383 0.388 0.382 0.371 
   0.30 0.382 0.388 (2) 0.352 0.315 0.370 0.379 0.382 0.378 0.363 
   0.10 0.378 0.387 (1) 0.349 0.312 0.367 0.377 0.380 0.376 0.359 
   0 0.379 0.391 (3) 0.350 0.311 0.367 0.378 0.380 0.377 0.360 
 1.279 0.01 0.80 0.353 0.372 (4) 0.318 0.295 0.348 0.352 0.357 0.353 0.345 
   0.30 0.343 0.367 (1) 0.319 0.289 0.339 0.344 0.348 0.347 0.335 
   0.10 0.340 0.364 (2) 0.316 0.286 0.336 0.341 0.345 0.344 0.332 
   0 0.340 0.366 (2) 0.318 0.285 0.336 0.342 0.346 0.344 0.334 
 0.282 0.05 0.80 0.176 0.184 (0) 0.152 0.154 0.163 0.169 0.174 0.174 0.165 
   0.30 0.170 0.180 (0) 0.150 0.151 0.161 0.167 0.169 0.169 0.161 
   0.10 0.169 0.180 (0) 0.149 0.150 0.161 0.166 0.168 0.168 0.160 
   0 0.169 0.180 (0) 0.149 0.149 0.161 0.167 0.168 0.168 0.160 
 0.282 0.01 0.80 0.148 0.166 (0) 0.132 0.135 0.143 0.145 0.154 0.154 0.146 
   0.30 0.145 0.164 (0) 0.131 0.133 0.141 0.143 0.148 0.148 0.143 
   0.10 0.145 0.164 (0) 0.131 0.131 0.141 0.143 0.147 0.147 0.143 
   0 0.144 0.164 (0) 0.130 0.131 0.140 0.143 0.147 0.147 0.142 

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary 

outcome in the control group (ρ) and intracluster correlation coefficient for the missing data indicator (τ). The population-average intervention effects )(PAβ  of 

1.279 and 0.282 correspond to success rates in the control and intervention groups (P0, P1) of (0.90, 0,97) and (0.50, 0.57), respectively NC = Number of non-
convergence. 



Agnès CAILLE Page 27 08/11/2013 

Table 4  Coverage of 95% confidence intervals of regression coefficients obtained from Generalized Estimating Equation method with different missing 
data strategies, averaged over 1 000 simulations 

    Missing Data Strategies 
k, m )(PAβ  

 

ρ τ CC ACC BerSOwn BerSOth LogMI LogREMI LinMixMI LinMixAdapMI ABBMI 

200, 2.5 1.279 0.40 0.85 94.1 93.9 84.5 17.6 93.0 95.1 94.0 94.2 88.4 
200, 2.5 1.279 0.05 0.80 94.4 93.7 87.8 28.1 95.1 95.7 94.6 93.5 89.5 

   0.30 93.1 91.9 87.8 40.5 94.5 95.7 92.0 93.1 88.1 
   0.10 91.7 90.8 84.9 40.1 95.0 95.4 90.2 92.0 88.0 
   0 91.0 92.7 84.4 38.9 96.2 96.8 89.8 92.3 86.9 
 0.282 0.05 0.80 94.4 90.6 87.2 83.8 94.8 95.1 96.6 96.7 94.0 
   0.30 90.3 90.5 78.6 73.0 93.9 94.8 95.3 95.5 92.5 
   0.10 88.8 90.7 74.3 69.1 95.2 94.9 96.1 96.1 92.7 
   0 85.4 91.8 73.4 68.1 94.2 94.2 94.7 94.3 91.1 

40, 12.5 1.279 0.05 0.80 92.6 91.6 87.2 52.9 92.8 93.0 94.2 93.5 90.5 
   0.30 92.5 91.0 86.7 55.6 93.6 93.9 93.1 94.2 89.5 
   0.10 91.6 88.9 87.1 51.0 93.1 94.6 92.1 93.3 88.5 
   0 91.2 92.2 85.0 43.5 94.7 95.5 91.7 93.4 87.7 
 1.279 0.01 0.80 93.5 91.5 88.0 46.4 93.7 94.1 94.3 94.1 92.4 
   0.30 91.5 89.6 86.2 45.2 94.1 94.2 92.5 93.2 88.4 
   0.10 91.0 91.5 86.7 39.8 94.7 94.9 91.8 93.4 88.2 
   0 89.9 89.9 83.6 35.7 94.9 95.4 90.6 93.1 86.3 
 0.282 0.05 0.80 94.3 91.2 86.9 88.4 94.5 94.7 95.7 95.8 95.0 
   0.30 89.7 91.7 76.2 74.9 92.8 93.6 94.4 94.4 90.3 
   0.10 88.2 91.1 75.0 72.0 93.1 94.0 94.7 94.8 91.0 
   0 87.0 90.9 72.0 70.9 93.0 93.7 95.2 95.1 89.3 
 0.282 0.01 0.80 94.1 90.8 83.4 79.5 93.8 94.1 95.9 95.9 93.6 
   0.30 90.8 90.6 73.9 67.8 93.3 94.3 95.7 95.7 93.3 
   0.10 84.6 89.6 69.2 61.4 94.8 95.0 96.7 96.7 89.9 
   0 84.8 90.4 69.3 63.5 94.1 94.7 96.5 96.4 91.2 

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary 

outcome in the control group (ρ) and intracluster correlation coefficient for the missing data indicator (τ). The population-average intervention effects )(PAβ  of 

1.279 and 0.282 correspond to success rates in the control and intervention groups (P0, P1) of (0.90, 0.97) and (0.50, 0.57), respectively. Cells with coverage 
rate outside [93.6, 96.4] are in bold. 
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Table 5 Estimated intracluster correlation coefficients for the binary outcome in the control group with different missing data strategies, averaged over 
1 000 simulations 

    Missing Data Strategies 
k, m )(PAβ  

 

ρ τ CC LogMI LogREMI 

200, 2.5 1.279 0.40 0.85 0.393 0.291 0.347 
200, 2.5 1.279 0.05 0.80 0.041 0.036 0.044 

   0.30 0.040 0.032 0.044 
   0.10 0.048 0.033 0.048 
   0 0.050 0.031 0.047 
 0.282 0.05 0.80 0.050 0.040 0.046 
   0.30 0.044 0.034 0.041 
   0.10 0.046 0.035 0.044 
   0 0.048 0.036 0.045 

40, 12.5 1.279 0.05 0.80 0.044 0.036 0.042 
   0.30 0.041 0.031 0.041 
   0.10 0.041 0.029 0.040 
   0 0.041 0.028 0.041 
 1.279 0.01 0.80 0.006 0.006 0.009 
   0.30 0.004 0.004 0.009 
   0.10 0.006 0.004 0.009 
   0 0.006 0.004 0.009 
 0.282 0.05 0.80 0.046 0.036 0.041 
   0.30 0.047 0.035 0.042 
   0.10 0.045 0.034 0.042 
   0 0.046 0.034 0.042 
 0.282 0.01 0.80 0.008 0.006 0.007 
   0.30 0.008 0.005 0.007 
   0.10 0.007 0.005 0.007 
   0 0.006 0.004 0.006 

Note: Results are shown by number of clusters per group (k) and mean number of subjects per cluster (m), intracluster correlation coefficient for the binary 

outcome in the control group (ρ) and intracluster correlation coefficient for the missing data indicator (τ). The population-average intervention effects )(PAβ  of 

1.279 and 0.282 correspond to success rates in the control and intervention groups (P0, P1) of (0.90, 0.97) and (0.50, 0.57), respectively.  
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Table 6   Estimated intervention effect in the ivermectin versus malathion trial14, according to missing data strategies 

Strategy )(ˆ PAβ  )(ˆ )(PAES β  95% CI of )(PAβ  OR 95% CI of OR p-value 

CC 1.22 0.41 [0.41 , 2.02] 3.37 [1.51 , 7.55] 0.0031 
ACC 1.34 0.41 [0.54 , 2.14] 3.81 [1.71 , 8.51] 0.0011 
BerSOwn 1.12 0.38 [0.38 , 1.86] 3.06 [1.46 , 6.42] 0.0031 
BerSOth 0.88 0.35 [0.20 , 1.57] 2.42 [1.22 , 4.79] 0.0115 
LogMI 1.20 0.39 [0.43 , 1.97] 3.33 [1.54 , 7.21] 0.0022 
LogREMI 1.19 0.41 [0.39 , 1.99] 3.29 [1.48 , 7.30] 0.0035 
LinMixMI 1.16 0.40 [0.38 , 1.94] 3.18 [1.46 , 6.94] 0.0036 
LinMixAdapMI 1.14 0.40 [0.37 , 1.92] 3.13 [1.44 , 6.80] 0.0039 
ABBMI 1.06 0.39 [0.30 , 1.82] 2.88 [1.35 , 6.14] 0.0062 

Note: Odds ratios (OR) of the probability of success in the ivermectin group as compared to malathion. For complete-case and adjusted complete-case 
analyses: n=355 subjects in the ivermectin group and n=368 subjects in the malathion group. For all other strategies, n=397 subjects in the ivermectin group 
and n=414 subjects in the malathion group. 
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Table 7 Estimated intracluster correlation coefficient of the primary outcome in the malathion 
group of the ivermectin trial, according to missing data strategies 

Strategy ρ̂  

CC 0.399 
BerSOwn 0.338 
BerSOth 0.336 
LogMI 0.314 
LogREMI 0.375 
LinMixMI 0.390 
LinMixAdapMI 0.403 
ABBMI  0.327 

Note: In the complete case analysis, n=368; in all other strategies, n=414. 
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Figure 1  Intervention effect estimates in the malathion group of the ivermectin trial, by missing 
data strategies 
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Table S1  Fraction of missing information of regression coefficients obtained from 
Generalized Estimating Equation method with different missing data strategies, averaged 
over 1 000 simulations. 

    Missing Data Strategies 
k, m )(PAβ  ρ τ LogMI LogREMI LinMixMI LinMixAdapMI ABBMI 

200, 2.5 1.279 0.40 0.85 0.156 0.196 0.135 0.201 0.199 
200, 2.5 1.279 0.05 0.80 0.165 0.181 0.147 0.214 0.214 

   0.30 0.129 0.152 0.103 0.164 0.186 
   0.10 0.129 0.153 0.097 0.156 0.182 
   0 0.131 0.156 0.097 0.155 0.184 
 0.282 0.05 0.80 0.143 0.159 0.175 0.174 0.168 
   0.30 0.125 0.144 0.151 0.151 0.156 
   0.10 0.129 0.145 0.146 0.147 0.160 
   0 0.132 0.145 0.146 0.147 0.161 

40, 12.5 1.279 0.05 0.80 0.149 0.163 0.138 0.200 0.184 
   0.30 0.118 0.135 0.093 0.143 0.169 
   0.10 0.116 0.135 0.087 0.135 0.168 
   0 0.118 0.138 0.083 0.130 0.164 
 1.279 0.01 0.80 0.166 0.179 0.155 0.220 0.205 
   0.30 0.137 0.152 0.109 0.165 0.186 
   0.10 0.134 0.150 0.103 0.154 0.185 
   0 0.136 0.155 0.101 0.148 0.189 
 0.282 0.05 0.80 0.116 0.148 0.167 0.167 0.141 
   0.30 0.103 0.122 0.115 0.116 0.131 
   0.10 0.104 0.118 0.105 0.106 0.130 
   0 0.104 0.119 0.102 0.103 0.133 
 0.282 0.01 0.80 0.152 0.165 0.201 0.201 0.180 
   0.30 0.133 0.148 0.142 0.142 0.156 
   0.10 0.132 0.149 0.133 0.133 0.164 
   0 0.132 0.149 0.133 0.133 0.167 

Note: Results are shown by number of clusters per group (k) and mean number of subjects 
per cluster (m), intracluster correlation coefficient for the binary outcome in the control 
group (ρ) and intracluster correlation coefficient for the missing data indicator (τ). The 

population-average intervention effects )(PAβ  of 1.279 and 0.282 correspond to success 

rates in the control and intervention groups (P0, P1) of (0.90, 0.97) and (0.50, 0.57), 
respectively. 
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